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CHARACTERIZATIONS OF CONTACT CR-WARPED PRODUCTS OF

NEARLY COSYMPLECTIC MANIFOLDS IN TERMS OF

ENDOMORPHISMS

WAN AINUN MIOR OTHMAN, SAYYEDAH A. QASEM, AND CENAP OZEL∗

Abstract. The main objective of this paper is to characterize contact CR-warped product

submanifolds of a nearly cosymplectic manifold in terms of endomorphisms T and F . We

also obtain some neccessary and sufficient conditions for integarbility of distributions involve

in the definition.

1. Introduction

For a submanifold M of an almost Hermitain (M̃, J, g), we decompose JU into tangential

and normal components as JU = TU + FU , for any vector field U tangent to M . Many

researchers including B.-Y. Chen described geometric properties of subamnifolds in terms

of T and F [9]. Later, such characterizations were extended for warped products in almost

Hermitian as well as almost contact settings in [1], [2], [3], [5], [9], [12], [13], [14], [15], [16],

[17], [18], [19], [20], [21], [22], [23], [24]. In the present paper, we obtain some results on

the characterization of contact CR-warped product submanifolds of a nearly cosymplectic

manifold in terms of endomorphisms T and F .
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The paper is organized as follows: In Section 2, we review some preliminary formulas

and definitions. Section 3 is devoted to the study of contact CR-submanifold of a nearly

cosymplectic manifold. In Section 4, we prove some lemmas on contact CR-warped product

submanifolds of a nearly cosymplectic manifold, and then prove our main theorems on the

characterization of warped product submanifolds in terms of the endomorphisms T and F .

2. Preliminaries

A (2n + 1)−dimensional manifold (M̃, g) is said to be an almost contact metric manifold if

it admits an endomorphism ϕ of its tangent bundle TM̃ , a vector field ξ, called structure

vector field and η, the dual 1−form of ξ satisfying the following.

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕ(ξ) = 0, η ◦ ϕ = 0, (2.1)

and

g(ϕU,ϕV ) = g(U, V )− η(U)η(V ), η(U) = g(U, ξ), (2.2)

for any U, V tangent to M̃ [8]. An almost contact metric structure (ϕ, ξ, η) is said to be a

normal if almost complex structure J on a product manifold M̃ ×R given by

J(U, f
d

dt
) = (ϕX − fξ, η(U)

d

dt
),

where f is a smooth function on M̃ × R, has no torsion, i.e., J is integrable, the condition

for normality in term of ϕ, η and ξ is [ϕ,ϕ] + 2dη⊗ ξ = 0 on M̃ , where [ϕ,ϕ] is the Nijenhius

tensor of ϕ. Finally, the second fundamental 2−form Φ is defined by Φ(U, V ) = g(U,ϕV ).

An almost contact metric structure (ϕ, η, ξ) is said to be cosymplectic if it is normal and both

Φ and η are closed. They characterized by (∇̃Uϕ)Y = 0 and ∇̃Uξ = 0. An almost contact

metric structure (ϕ, η, ξ) is said to be nearly cosymplectic if ϕ is killing, i.e., if

(∇̃Uϕ)U = 0 or equivalently (∇̃Uϕ)V + (∇̃V ϕ)U = 0, (2.3)

for any U, V tangent to M̃ , where ∇̃ is the connection of the metric g on M̃ . If we replace

U = ξ, V = ξ in (2.3), we find that (∇̃ξϕ)ξ = 0 which is implies that ϕ∇̃ξξ = 0. Now

applying ϕ and using (2.1), we get, ∇̃ξξ = 0. Since from Gauss formula finally, we get

∇ξξ = 0 and h(ξ, ξ) = 0. The structure is said to be a closely cosymplectic, if ϕ is killing and

η closed.

Now let M be a submanifold of M̃ . We will denote by ∇, the induced Riemannian

connection on M and g, is the Riemannian metric on M̃ as well as the metric induced on
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M . Let TM and T⊥M be the Lie algebra of vector fields tangent to M and normal to

M , respectively and ∇⊥ the induced connection on T⊥M . Denote by F(M) the algebra of

smooth functions on M and by Γ(TM) the F(M)-module of smooth sections of TM over

M . Then the Gauss and Weingarten formulas are given by

∇̃UV = ∇UV + h(U, V ), (2.4)

∇̃UN = −ANU +∇⊥
UN, (2.5)

for each U, V ∈ Γ(TM) and N ∈ Γ(T⊥M), where h and AN are the second fundamental

form and the shape operator (corresponding to the normal vector field N) respectively for

the immersion of M into M̃ . They are related as

g(h(U, V ), N) = g(ANU, V ) (2.6)

Now for any U ∈ Γ(TM), we write

ϕU = TU + FU, (2.7)

where TU and FU are the tangential and normal components of ϕU , respectively. Similarly

for any N ∈ Γ(T⊥M), we have

ϕN = tN + fN, (2.8)

where tN (resp. fN) is the tangential (resp. normal) component of ϕN . From (2.2) and

(2.7), it is easy to observe that

g(TU, V ) = −g(U, TV ), (2.9)

for each U, V ∈ Γ(TM). The covariant derivatives of the endomorphism ϕ, T and F are

defined, respectively as

(∇̃Uϕ)V = ∇̃UϕV − ϕ∇̃UV, ∀U, V ∈ Γ(TM̃) (2.10)

(∇̃UT )V = ∇UTV − T∇UV, ∀U, V ∈ Γ(TM) (2.11)

(∇̃UF )V = ∇⊥
UFV − F∇UV, ∀U, V ∈ Γ(TM). (2.12)

From [18] we have the following proposition

Proposition 2.1. On any nearly cosymplectic manifold ξ is a killing form
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From the statement of above proposition we have the equality g(∇̃Uξ, U) = 0 for any

vector field U tangent to nearly cosymplectic M̃ . We denote the tangential and normal parts

of (∇̃Uϕ)V by PUV and QUV such that

(∇̃Uϕ)V = PUV +QUV. (2.13)

for all U, V tangent to M . Making use of (2.2)-(2.12) in (2.13), we can easily obtain

PUV =(∇̃UT )V −AFV U − th(U, V ), (2.14)

QUV =(∇̃UF )V + h(U, TV )− fh(U, V ). (2.15)

Similarly for any N ∈ Γ(T⊥M), denoting the tangential and normal parts of (∇̃Uϕ)N by

PUN and QUN such that

(∇̃Uϕ)N = PUN +QUN. (2.16)

Making use (2.3), (2.7), (2.8) in (2.16), we obtain

PUN = (∇̃U t)N + TANU −AfNU (2.17)

QUN = (∇̃Uf)N + h(U, tN) + FANU, (2.18)

for all U ∈ Γ(TM) and N ∈ Γ(T⊥M). It is straightforward to verify the following properties

of P and Q,

(i) PU+VW = PUW + PVW, (ii) QU+VW = QUW +QVW,

(iii) PU (W + Z) = PUW + PUZ,

(iv) QU (W + Z) = QUW +QUZ,

(v) g(PUV,W ) = −g(V,PUW ), (vi) g(QUV,N) = −g(V,PUN),

(vii) PUϕV +QUϕV = −ϕ(PUV +QUV ).


(2.19)

In a nearly cosymplectic manifold M̃ , we have

(i) PUV + PV U = 0, (ii) QUV +QV U = 0, (2.20)

for any U, V ∈ Γ(TM̃).

3. Contact CR-submanifolds of a nearly cosymplectic manifold

Definition 3.1. A submanifold M tangent to the structure vector filed ξ of an almost con-

tact metric manifold M̃ is said to be invariant if ϕ(TxM) ⊆ (TxM) and anti-invariant if

ϕ(TxM) ⊆ (T⊥
x M) for each x ∈M .
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Definition 3.2. A submanifold M tangent to structure vector field ξ of an almost contact

metric manifold M̃ is said to be a contact CR-submanifold if there exist a pair of orthogonal

distributions D and D⊥ such that

(i) TM = D ⊕D⊥⊕ < ξ >, where < ξ > is 1-dimensional distribution spanned by ξ,

(ii) the distribution D is invariant, i.e., ϕ(D) ⊆ D,

(iii) the distribution D⊥ is anti-invariant, i.e., ϕD⊥) ⊆ (T⊥M).

If µ is an invariant subspace under ϕ of normal bundle T⊥M . Then, in case of contact

CR-submanifold, the normal bundle T⊥M can be decomposed as T⊥M = FD⊥ ⊕ µ. Let us

denotes the orthogonal porojections on D and D⊥ by B and C, respectively. Then for any

U ∈ Γ(TM), we have

U = BU + CU + η(U)ξ, (3.21)

where BU ∈ Γ(D) and CU ∈ Γ(D⊥). From (2.7), (2.8) and (3.21), we have

TU = ϕBU, FU = ϕCU. (3.22)

So we observe the following equalities

(i) TC = 0, (ii) FB = 0,

(iii) t(T⊥M) ⊆ D⊥ , (iv) f(T⊥M) ⊆ µ.

 (3.23)

Theorem 3.1. Let M be a contact CR-submanifold of a nearly cosymplectic manifold M̃ .

Then the distribution D⊕ < ξ > is integrable if and only if

2g(∇XY,Z) = g(h(Y, ϕX), ϕZ) + g(h(X,ϕY ), ϕZ), (3.24)

for any X,Y ∈ Γ(D⊕ < ξ >) and Z ∈ Γ(D⊥).

Proof. Let X,Y ∈ Γ(D⊕ < ξ >) and Z ∈ Γ(D⊥), then we derive

g([X,Y ], Z) = g(∇̃XY,Z)− g(∇̃YX,Z)

= g(∇̃XY,Z)− g(ϕ∇̃YX,ϕZ)

= g(∇̃XY,Z)− g(∇̃Y ϕX − (∇̃Y ϕ)X,ϕZ).
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From (2.4) and (2.3), we get

g([X,Y ], Z) =g(∇̃XY,Z)− g(h(Y, ϕX), ϕZ)− g((∇̃Xϕ)Y, ϕZ)

= g(∇̃XY,Z)− g(h(Y, ϕX), ϕZ)− g(∇̃XϕY, ϕZ)

+ g(ϕ∇̃XY, ϕZ)

= g(∇̃XY,Z)− g(h(Y, ϕX), ϕZ)− g(h(X,ϕY ), ϕZ)

+ g(∇̃XY,Z)

= 2g(∇XY,Z)− g(h(Y, ϕX) + h(X,ϕY ), ϕZ). (3.25)

Our assertion follows from the above relation, which proves the theorem completely.

Lemma 3.1. Let M be a contact CR-submanifold of a nearly cosymplectic manifold M̃ .

Then the distribution D⊕ < ξ > defines a totally geodesic foliation if and only if

h(Y, ϕX) + h(X,ϕY ) ∈ µ (3.26)

for all X,Y ∈ Γ(D⊕ < ξ >).

Proof. The distribution D ⊕ ξ is a totally geodesic foliation if and only if ∇XY ∈

Γ(D ⊕ ξ) for any X,Y ∈ Γ(D ⊕ ξ). Applying these definition in the Eq 3.25, we get the

required proof.

Similarly, for anti-invariant distribution, we have

Theorem 3.2. Let M be a contact CR-submanifold of a nearly cosymplectic manifold M̃ .

Then the distribution D⊥ is integrable if and only if

2g(∇ZW,ϕX) = g(h(X,Z), ϕW ) + g(h(X,W ), ϕZ) (3.27)

for all Z,W ∈ Γ(D⊥) and X ∈ Γ(D⊕ < ξ >).

Proof. Let us derive

g([Z,W ], ϕX) = g(∇̃ZW,ϕX)− g(∇̃WZ,ϕX)

= g(∇̃ZW,ϕX) + g(ϕ∇̃WZ,X)

= g(∇̃ZW,ϕX) + g(∇̃WϕZ,X)− g((∇̃Wϕ)Z,X),
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For any Z,W ∈ Γ(D⊥) and X ∈ Γ(D⊕ < ξ >). From (2.4), (2.5) and (2.3), we obtain

g([Z,W ], ϕX) = g(∇ZW,ϕX)− g(AϕZW,X) + g((∇̃Zϕ)W,X)

= g(∇ZW,ϕX)− g(AϕZW,X) + g(∇̃ZϕW,X)− g(ϕ∇̃ZW,X)

= g(∇ZW,ϕX)− g(AϕZW,X)− g(AϕWZ,X) + g(∇ZW,ϕX)

= 2g(∇ZW,ϕX)− g(AϕZW,+AϕWZ,X). (3.28)

Thus the desired result follows from the last the relation. It completes the proof of the

theorem.

The following corollary is a consequence of the Theorem 3.2,

Corollary 3.1. The anti-invariant distribution D⊥ of contact CR-submanifold M in a nearly

cosymplectic manifold M̃ is defines totally geodesic foliation if and only if

AϕZW +AϕWZ ∈ Γ(D⊥) (3.29)

for all Z,W ∈ Γ(D⊥).

Proof. The proof follows from (3.28) and the definition of totally geodesic foliation.

Theorem 3.3. The distribution D⊥ of a contact CR-submanifold M in a nearly cosymplectic

manifold M̃ is integrable if and only if

g(PZW,ϕX) = 2η(X)g(∇̂Zξ,W )

or equivalent

g(AϕZW,ϕX) = g(AϕWZ,ϕX), (3.30)

for all Z,W ∈ Γ(D⊥) and X ∈ Γ(D⊕ < ξ >).

Proof. Let use the definition of Lie bracket, then simplification gives

g([Z,W ], X) = g(∇̃ZW − ∇̃WZ,X),

for Z,W ∈ Γ(D⊥) and X ∈ Γ(D⊕ < ξ >). Using (2.2), we get

g([Z,W ], X) = g(ϕ∇̃ZW − ϕ∇̃WZ,ϕX)− η(X)g(∇̂Zξ,W ) + η(X)g(∇̂W ξ, Z).
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Hence, using the property of covariant derivative (2.10), structure equation of a nearly cosym-

plectic manifold (2.3) and Proposition 2.1, we obtain

g([Z,W ], X) = g(2PZW − ∇̃WϕZ + ∇̃ZϕW,ϕX)− 2η(X)g(∇̂Zξ,W ).

Now from Weingarten formula (2.5), we have

g([Z,W ], X) = g(2PZW,ϕX)− g(AϕZW −AϕWZ,ϕX)− 2η(X)g(∇̂Zξ,W ),

which proves the our assertion. It compete proof of the Theorem.

4. Contact CR-warped products of nearly cosymplectic manifolds

The warped product manifolds are the generalized version of Riemannian product manifolds.

The notion of warped product manifold defined as follows:

Let (B, g1) and (F, g2) be two Riemannian manifolds and f , a positive differentiable

function on B. The warped product of B and F is the Riemannian manifold B × F =

(B×F, g), where g = g1 +f2g2. A warped product manifold M is said to be a trivial warped

product if its warping function f is constant. A trivial warped product B×F is nothing but

Riemannian product B×f F where fF is the Riemannian manifold with Riemannian metric

f2gF which is homothetic to the original metric gF of F . Bishop and O’Neill [7] also obtained

the following lemma which provides some basic formulas on warped product manifolds

Lemma 4.1. Let M = B ×f F be a warped product manifold. If X,Y ∈ Γ(TB) and

Z,W ∈ Γ(TF ) then

(i) ∇XY ∈ Γ(TB),

(ii) ∇XZ = ∇ZX = (X ln f)Z,

(iii) ∇ZW = ∇′
ZW − g(Z,W )∇ln f,

where ∇ ln f is gradient of the function ln f which is defined as g(∇ ln f,X) = X ln f , for any

X ∈ Γ(TB). Moreover, ∇ and ∇′ are the Levi-Civitas connection on B and F , respectively.

It follows from Lemma 4.1 that B is totally geodesic submanifold in M and F is totally

umbilical submanifold in M . In this way, we investigate the characterization of non-trivial

warped product submanifolds MT ×fM⊥ of nearly cosymplectic manifolds in terms of T and

F . In terms tensor fields we have following characterization results.
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Theorem 4.1. [9] A CR-submanifold M of a Kaehler manifold M̃ is a CR-product if and

only if T is parallel, i.e.,

∇̃T = 0.

Theorem 4.2. [12] A proper contact CR-submanifold M of a Kaehler manifold M̃ is locally

CR-warped product if and only if T satisfies:

(∇̃UT )V = (TBUµ)CU + g(CU,CV )J∇µ

any U, V ∈ Γ(TM), where C and B are the projections on D⊥ and D, respectively.

In the proceeding these study, we derive the following results which are very important for

proving the characterization theorem.

Lemma 4.2. Let M = MT ×f M⊥ be a contact CR-warped product submanifold of a nearly

cosymplectic manifold M̃ . Then

(i) (∇̃XT )Z = 0, (ii) (∇̃ZT )X = (TXlnf)Z,

(iii) (∇̃ξT )X = T∇Xξ, (iv) (∇̃UT )ξ = −T∇BUξ,

(v) (∇̃UT )Z = g(CU,Z)T∇lnf .

for all X ∈ Γ(TMT ), Z ∈ Γ(TM⊥) and U ∈ Γ(TM).

Proof. First part directly follows from (2.11), Lemma 4.1(ii) and using the fact that

TZ = 0, ∀ Z ∈ Γ(TM⊥). For the second part, we find

(∇̃ZT )X = ∇ZTX − T∇ZX

= (TX ln f)Z − (X ln f)TZ

= (TX ln f)Z,

which is (ii). Similarly, to prove (iii), we have

(∇̃UT )Z = ∇UTZ − T∇UZ. (4.31)

Since TZ = 0, ∀ Z ∈ Γ(TM⊥) and using (3.21) in (4.31), we obtain

(∇̃UT )Z = −T{∇BUZ +∇CUZ + η(U)∇ξZ}.

From Lemma 4.1(ii), we derive

(∇̃UT )Z = −(BU ln f)TZ − T∇CUZ − η(U)(ξ ln f)TZ.
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Since ξ ln f = 0, funded by [18], then using Lemma 4.1(iii), it is easily obtain that

(∇̃UT )Z = −T{∇′CUZ − g(CU,Z)∇ ln f}

= g(CU,Z)T∇ ln f.

Now, for any X,Y ∈ Γ(TMT ), then from (2.14) and (2.20)(i), we get

(∇̃XT )Y + (∇̃Y T )X = 2th(X,Y ). (4.32)

By equation (2.11) and the fact that MT is totally geodesic in M , it follows that (∇̃XT )Y

lies in MT , thus left hand side in (4.32) completely lies in MT . Therefore equating the

tangential components along MT in las equation, we get th(X,Y ) = 0, which means that

h(X,Y ) ∈ Γ(µ). Then from (4.32), we find

(∇̃XT )Y + (∇̃Y T )X = 0. (4.33)

If, we set Y = ξ in (4.33), we simplifies

(∇̃XT )ξ + (∇̃ξT )X = 0

(∇̃ξT )X = T∇Xξ,

which gives the third result of the lemma. It completes proof of lemma.

First characterization theorem in terms of ∇T .

Theorem 4.3. Let M be a contact CR-submanifold of a nearly cosymplectic manifold M̃ with

both invariant and anti-invariant distributions are integrable. Then M is locally a CR-warped

product if and only if

(∇̃UT )U = (TBUλ)CU + ||CU ||2T∇λ, (4.34)

or equivalently

(∇̃UT )V + (∇̃V T )U = (TBV λ)CU + (TBUλ)CV + 2g(CU,CV )T∇λ, (4.35)

for each U, V ∈ Γ(TM) and λ is a C∞-function on M satisfying Zλ = 0, for each Z ∈ Γ(D⊥).

Proof. Assume that M be a contact CR-warped product submanifold of a nearly

cosymplectic manifold M̃ . Then applying (3.21) in (∇̃UT )U , we derive

(∇̃UT )U = (∇̃UT )BU + (∇̃UT )CU + η(U)(∇̃UT )ξ.
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Again applying (3.21) and using Lemma 4.2(iv), we get

(∇̃UT )U =(∇̃BUT )BU + (∇̃CUT )BU + (∇̃UT )CU

+ η(U)(∇̃ξT )TU − η(U)T∇BUξ.

As MT is totally geodesic in M , then the first term of right side in the above equation is zero

by using (2.3) and from the Lemma 4.2(ii), (iii), (v), we arrive at

(∇̃UT )U = (TBUλ)CU + ||CU ||2T∇λ,

where λ = ln f . Hence, we obtain desire result (4.34). Furthermore, the equation (4.35) can

be easily derive by replacing U by U + V in (4.34).

Conversely, suppose that M is a contact CR-submanifold of a nearly cosymplectic manifold

M̃ such that condition (4.35) holds. Then choosing X,Y ∈ Γ(D⊕ < ξ >) and using the fact

that CX = CY = 0 in (4.35), we get the following condition, i.e.,

(∇̃XT )Y + (∇̃Y T )X = 0. (4.36)

Thus, from (2.20)(i), for nearly cosymplectic M̃ ,

PXY + PYX = 0; (4.37)

From (4.36), (4.37) and (2.17), we can easily obtain the condition th(X,Y ) = 0, which

is implies that h(X,Y ) ∈ µ for all X,Y ∈ Γ(D⊕ < ξ >). Then using the integrability

of D⊕ < ξ > and Theorem 3.1, which indicate that g(∇XY, Z) = 0, for all Z ∈ Γ(D⊥).

This proves that D⊕ < ξ > is parallel and each of its leaves MT is totally geodesic in M .

Furthermore, using the fact BZ = BW = 0, we get

(∇̃ZT )W + (∇̃WT )Z = 2g(Z,W )T∇λ, (4.38)

for any Z,W ∈ Γ(D⊥). From (2.11), we have

(∇̃ZT )W + (∇̃WT )Z = AFZW +AFWZ + 2th(Z,W ). (4.39)

Thus by (4.38) and (4.39), it follows that

AFZW +AFWZ + 2th(Z,W ) = 2g(Z,W )P∇λ. (4.40)

Taking the inner product in (4.40) with X ∈ Γ(D⊕ < ξ >), we obtain

g(AFZW,X) + g(AFWZ,X) + 2g(th(Z,W ), X) = 2g(Z,W )g(T∇λ,X). (4.41)
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The second term of right hand side in (4.41) is zero from (3.23)(iii), that is

g(h(X,W ), ϕZ) + g(h(X,Z), ϕW ) = 2g(Z,W )g(T∇λ,X). (4.42)

From the hypothesis of theorem that we assumed the totally real distribution is integrable.

Then necessary and sufficient condition for integrability of D⊥ from the Theorem 3.2 and

using (4.42), it follows that

g(∇ZW,ϕX) = g(Z,W )g(T∇λ,X)

= −g(Z,W )g(∇λ, ϕX). (4.43)

As D⊥ is assumed to be integrable, then the second fundamental form of the immersion of

M⊥(leafofD⊥) into M is denoted by h⊥. Hence, in point view Gauss formula (2.4) in (4.43),

i.e.,

g(h⊥(Z,W ), ϕX) = −g(Z,W )g(∇λ, ϕX),

which is implies that

h⊥(Z,W ) = −g(Z,W )∇λ.

It means that M⊥ is totally umbilical in M with mean curvature vector H⊥ = −∇λ. Now

we can easily prove that H⊥ is parallel corresponding to the normal connection ∇′ of M⊥

in M , i.e., Z(λ) = 0 for all Z ∈ Γ(D⊥) and ∇Y∇λ ∈ Γ(D⊕ < ξ >). Hence, the leaves of

D⊥ are extrinsic spheres in M . From result of [11], we conclude that M is a warped product

submanifold. The proof is done.

Lemma 4.3. Let M = MT ×f M⊥ be a contact CR-warped product submanifold of a nearly

cosymplectic manifold M̃ . Then

(i) g((∇̃XF )Y, ϕW ) = 0, (ii) g((∇̃XF )Z,ϕW ) = 0,

(iii) g((∇̃ZF )X,ϕW ) = −(X ln f)g(Z,W ), (iv) g((∇̃ξF )Z,ϕW ) = 0,

(v) g((∇̃ZF )W ′, ϕW ) = g(QZW
′, ϕW ),

for any X,Y ∈ Γ(TMT ) and Z,W,W ′ ∈ Γ(TM⊥).

Proof. Let M be a contact CR-warped product submanifold of a nearly cosymplectic

manifold M̃ , then,

g((∇̃XF )Y, ϕW ) = g(−F∇XY, ϕW )

= −g(∇XY,W ).
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As MT is totally geodesic in M , then from the above equation, we get (i). To the other parts,

from (2.18), it is easily seen that

((∇̃XF )Z,ϕW ) = g((QXZ + fh(X,Z), ϕW ). (4.44)

Using nearly cosymplectic manifold (2.3), and the property (v),(vii) of (2.19) in equation

(4.44), we obtain

((∇̃XF )Z,ϕW ) = g(ϕX,PZW ).

Then integrability Theorem 3.3 of the distribution D⊥, gives

((∇̃XF )Z,ϕW ) = 2η(X)g(∇̂Zξ,W ) = 2η(X)(ξ ln f)g(Z,W ),

which is the result (ii) of lemma. Again, for any X ∈ Γ(TMT ) and Z ∈ Γ(TM⊥), we obtain

((∇̃ZF )X,ϕW ) = −g(F∇ZX,ϕW ).

From Lemma 4.1(ii), we obtain (iii) as follows

g((∇̃ZF )X,ϕW ) = −(X ln f)g(Z,W ).

Now to prove (v), from (2.18), we find that

g((∇̃ZF )W ′, ϕW ) = g(QZW ′, ϕW ).

Similarly, we obtain

g((∇̃ξF )Z,ϕW ) = g(QξZ + fh(ξ, Z), ϕW )

= g(QξZ,ϕW ).

Using the property (2.19)(vi), we can derive

g((∇̃ξF )Z,ϕW ) = g(ϕξ,PZW )

g((∇̃ξF )Z,ϕW ) = 0,

which is the last result. It completes proof of the lemma.

Similarly, the second characterization theorem in terms of ∇F .

Theorem 4.4. Assume that M be a contact CR-submanifold in a nearly cosymplectic man-

ifold M̃ with anti-invariant and invariant distributions are integrable. Then the M is locally

a CR-warped product if only if

g((∇̃UF )U,ϕW ) = −(BUλ)g(CU,W ) (4.45)
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or equivalently

g((∇̃UF )V + (∇̃V F )U,ϕW ) = −(BUλ)g(CV,W )− (BV λ)g(CU,W ) (4.46)

for each U, V ∈ Γ(TM) and λ is a C∞-function on M satisfying Zλ = 0 for each Z ∈ Γ(D⊥).

Proof. Let M be a contact CR-warped product submanifold in a nearly cosymplectic

manifold M̃ . The property (3.21) gives

g((∇̃UF )V, ϕW ) =g((∇̃BUF )BV,ϕW ) + g((∇̃CUF )BV,ϕW )

+ η(U)g((∇̃ξF )BV,ϕW ) + g((∇̃BUF )CV,ϕW )

+ g((∇̃CUF )CV,ϕW ) + η(U)g((∇̃ξF )CV,ϕW )

+ η(V )g((∇̃UF )ξ, ϕW ).

Using Lemma 4.3, we obtain

g((∇̃UF )V, ϕW ) = g(QCUCV,ϕW )− (BV λ)g(CU,W ). (4.47)

By the polarization identity, we get

g((∇̃V F )U,ϕW ) = g(QCV CU,ϕW )− (BUµ)g(CV,W ). (4.48)

From (4.47), (4.48) and (2.20)(ii), we get required result (4.46) or in particular, if we replace

V = U in (4.46) and using the property of nearly cosymplectic structure, i.e., QUU = 0, we

get first desired result of the theorem.

Conversely, let us consider that M be a CR-submanifold of a nearly cosymplectic manifold

M̃ with the condition (4.46) holds. Then using the fact that CX = CY = 0, in (4.46),

simplification gives

g((∇̃XF )Y + (∇̃Y F )X,ϕW ) = 0,

for each X,Y ∈ Γ(D⊕ < ξ >). Thus, from the relations (2.18) and (2.20)(ii), we derive

2g(fh(X,Y ), ϕW )− g(h(X,TY ) + h(Y, TX), ϕW ) = 0.

From the hypothesis of theorem, i.e., the distribution (D⊕ < ξ >) is integrable, then from

the Theorem 3.1 gives g(∇XY,W ) = 0, for all W ∈ Γ(D⊥) which is implies that ∇XY ∈

(D⊕ < ξ >). It means that the invariant distribution (D⊕ < ξ >) is a totally geodesic in

M , i.e., the leaves of (D⊕ < ξ >) in M are totally geodesic. Similarly, other part, we have

g((∇̃XF )Z + (∇̃ZF )X,ϕW ) = −(Xλ)g(Z,W ),
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for any Z ∈ Γ(D⊥), X ∈ Γ(D⊕ < ξ > and from (4.46). Then relations (2.12) and (2.18), we

derive

g(QXZ,ϕW )− g(F∇ZX,ϕW ) = −(Xλ)g(Z,W ).

On the other hand, the anti-invariant distribution D⊥ is integrable by hypothesis of the

theorem. Thus first term of left hand side identicaly zero by the Theorem 3.3, then the

above equation takes the form

g(∇ZW,X) = −g(Z,W )g(∇λ,X).

Let M⊥ denote the leaves of D⊥. If h′ denotes the second fundamental form of the immersion

of M⊥ into M , then by the Gauss formula (2.4), we can write as

g(h′(Z,W ), X) = −g(Z,W )g(∇λ,X),

which means that

h′(Z,W ) = −g(Z,W )∇λ.

It implies that M⊥ is totally umbilical in M with mean curvature vector H = −∇λ. Now

we shall prove that H is parallel corresponding to the normal connection D of M⊥ in M . In

similar way of the Theorem 4.3, this means that the leaves of D⊥ are extrinsic spheres in M .

Then by result of [11], M is locally a warped product. It completes proof the theorem.
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