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SOME REMARKS ON THE GENERALIZED MYERS THEOREMS

YASEMIN SOYLU

Abstract. In this paper, firstly, we prove a generalization of Ambrose (or Myers) theorem

for the Bakry-Emery Ricci tensor. Later, we improve the diameter estimate obtained by

Galloway for complete Riemannian manifolds. To obtain these results, we utilize the Riccati

inequality and the index form of a minimizing unit speed geodesic segment, respectively.

1. Introduction

Let (M, g) be a complete Riemannian manifold of dimension n ≥ 2 and let f be a smooth

function on M . By the Bakry-Emery Ricci tensor we mean

Ricf := Ric + Hessf, (1.1)

where Ric and Hessf are the Ricci tensor and the Hessian of f , respectively [2].

When f is a constant function, the Bakry-Emery Ricci tensor becomes the original Ricci

tensor. We recall Ambrose’s result [1], which gives an important generalization of the Myers

compactness theorem [13] for the original Ricci tensor as another variant.

Theorem 1.1. [1] If there exists a point p ∈M such that the condition∫ ∞
0

Ric(γ′(t), γ′(t))dt =∞ (1.2)
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holds along every geodesic γ(t) emanating from p ∈M , then manifold is compact.

In [19], Zhang proved the Ambrose’s compactness theorem for the Bakry-Emery Ricci

tensor given in (1.1).

Theorem 1.2. [19] If there exists a point p ∈ M such that every geodesic γ(t) emanating

from p satisfies ∫ ∞
0

Ricf (γ′(t), γ′(t))dt =∞, (1.3)

and f(x) ≤ C(d(x, p) + 1) for some constant C, where d(x, p) is the distance from p to x,

then M is compact.

Another generalization has been considered by Cavalcante-Oliveira-Santos in [3], where

the condition on f given in Theorem 1.2 is replaced with a condition on the derivation of f

as follows:

Theorem 1.3. [3] Suppose that there exists a point p in a complete manifold M such that

every geodesic γ(t) emanating from p satisfies∫ ∞
0

Ricf (γ′(t), γ′(t))dt =∞, (1.4)

and df
dt ≤ 0. Then M is compact.

The proofs of the above theorems are based on the Riccati inequality and a careful analysis

of this inequality being different from calculus of variations. Moreover, these theorems do

not require that the original Ricci tensor and the Bakry-Emery Ricci tensor be everywhere

non-negative. However, these results cannot give an upper bound for the diameter of a

manifold.

Our first aim is to improve condition on the function f under the same Ricf assumption

as in the Theorem 1.3.

On the other hand, Galloway [6] proved a perturbed version of Myers compactness theorem

by the derivative in the radial direction of some bounded function as follows:

Theorem 1.4 (Galloway). Let M be a complete Riemannian manifold and γ be a geodesic

joining two points of M . Suppose that

Ric(γ′(t), γ′(t)) ≥ a+
dφ

dt
(1.5)
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holds along γ for some constant a > 0, and | φ |≤ c for some constant c ≥ 0. Then M is

compact and

diam(M) ≤ π

a

(
c+

√
c2 + a(n− 1)

)
. (1.6)

Our second aim is to show that there is a sharper diameter estimate than Galloway’s

diameter estimate (1.6).

We are now ready to give our main theorems.

Theorem 1.5. Let (M, g) be a complete Riemannian manifold of dimension n ≥ 2. Suppose

there exists a point p ∈M such that every geodesic γ(t) emanating from p satisfies∫ ∞
0

Ricf (γ′(t), γ′(t))dt =∞, (1.7)

and f ′(t) ≤ 1
4(1− 1

t ) for all t ≥ 1, then manifold is compact.

In the above theorem, we provide that the condition f ′(t) ≤ 0 given in Theorem 1.3 for

t = 1. In order to prove Theorem 1.5, we use the Riccati inequality.

Theorem 1.6. Let (M, g) be a complete Riemannian manifold and γ be a geodesic joining

two points of M . Suppose that

Ric(γ′(t), γ′(t)) ≥ a+
dφ

dt
(1.8)

holds along γ for some constant a > 0, and | φ |≤ c for some constant c ≥ 0. Then M is

compact and

diam(M) ≤ 1

a

(
2c+

√
4c2 + a(n− 1)π2

)
. (1.9)

The diameter estimate (1.9) above is sharper than (1.6) by Galloway. In order to prove

above theorem, we use the index form of a minimizing unit speed geodesic segment. For

basic facts about this topic, we refer the reader to the book [8, 14]).

Remark 1.1. There exists many varied examples of compactness theorems involving the

original Ricci tensor and modified Ricci tensors; see for instance [4, 5, 7, 9–12, 15–18].

2. Proofs of the Theorems

Before stating our main results, we recall the definitions of gradient, Hessian and Laplacian

of any smooth function f ∈ C∞(M) on a Riemannian manifold. The gradient, Hessian and

Laplacian are defined by

g(∇f, V ) = V (f),
(
Hess(f)

)
(V,W ) = g(∇V∇f,W ) and ∆f = tr

(
∇∇f

)
(2.10)
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for all vector fields V,W , respectively. The Riemannian curvature tensor is defined as

R(V,W )Z = ∇V∇WZ −∇W∇V Z −∇[V,W ]Z, (2.11)

and the Ricci curvature as

Ric(V,W ) =

n∑
i=1

g(R(Ei, V )W,Ei) (2.12)

for all vector fields V,W,Z, where {Ei}ni=1 is an orthonormal frame of (M, g) Riemannian

manifold.

Proof of Theorem 1.5. We assume that M is a non-compact Riemannian manifold and

let γ(t) be an unit speed ray starting from p. For every t > 0, m(t) denotes the Laplacian

of distance function from a fixed point p ∈ M . We know from some calculations with the

Bochner formula that this gives the following Riccati inequality

m′(t) +
1

n− 1
m2(t) + Ric(γ′(t), γ′(t)) ≤ 0. (2.13)

We consider a smooth function F (t) defined by

F (t) := m(t) + ζ(t) (2.14)

for all t > 0, where ζ ∈ C∞(M). The derivation of F (t) gets

F ′(t) = m′(t) + ζ ′(t). (2.15)

Combining (2.13) and (2.15), we obtain

F ′(t)− ζ ′(t) +
1

n− 1
m2(t) + Ric(γ′(t), γ′(t)) ≤ 0. (2.16)

It is clear that we have

m(t) = F (t)− ζ(t), (2.17)

by (2.14). Substituting (2.17) into (2.16), we obtain

F ′(t)− ζ ′(t) +
1

n− 1

(
F (t)− ζ(t)

)2
+ Ric(γ′(t), γ′(t)) ≤ 0. (2.18)

Using the essential inequality (x+ y)2 ≥ 1
α+1x

2 − 1
αy

2 holding for all real numbers x, y and

positive real number α, we get

(
F (t)− ζ(t)

)2 ≥ 1

α+ 1
F 2(t)− 1

α
ζ2(t). (2.19)
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Substituting (2.19) into (2.18) and taking α = 1
n−1 > 0, we have

Ric(γ′(t), γ′(t)) ≤ −F ′(t) + ζ ′(t)− 1

n
F 2(t) + ζ2(t). (2.20)

If we add (Hessf)(γ′(t), γ′(t)) to the both sides of inequality (2.20), we have

Ricf (γ′(t), γ′(t)) ≤ −F ′(t) + ζ ′(t)− 1

n
F 2(t) + ζ2(t) + (Hessf)(γ′(t), γ′(t)). (2.21)

Integrating both sides of the inequality (2.21) from 1 to t, we obtain∫ t

1
Ricf (γ′(s), γ′(s))ds ≤−F (t) + F (1)−

∫ t

1

1

n
F 2(s)ds+

∫ t

1

(
ζ ′(s) + ζ2(s)

)
ds (2.22)

+ g(∇f, γ′)(t)− g(∇f, γ′)(1).

Therefore, under the assumption∫ ∞
0

Ricf (γ′(t), γ′(t))dt =∞ (2.23)

given in Theorem 1.5, we have

lim
t→∞
−F (t)−

∫ t

1

1

n
F 2(s)ds+

∫ t

1

(
ζ ′(s) + ζ2(s)

)
ds+ f ′(t) =∞, (2.24)

where f ′ = d
dtf(γ(t)) = g(∇f, γ′). Here, multiplying by 1/n on both sides then yields

lim
t→∞
− 1

n
F (t)−

∫ t

1

( 1

n
F (s)

)2
ds+

1

n

∫ t

1

(
ζ ′(s) + ζ2(s)

)
ds+

1

n
f ′(t) =∞. (2.25)

Because of (2.24), given C > 1 there exists t1 > 1 such that

− 1

n
F (t)−

∫ t

1

( 1

n
F (s)

)2
ds+

1

n

∫ t

1

(
ζ ′(s) + ζ2(s)

)
ds+

1

n
f ′(t) ≥ C (2.26)

for all t ≥ t1.

On the other hand, under the assumption f ′(t) ≤ 1
4(1− 1

t ) of Theorem 1.5, if the function

ζ is taken to be ζ(t) = 1
2t , then we get the following inequality

− 1

n
F (t)−

∫ t

1

( 1

n
F (s)

)2
ds ≥ C (2.27)

for all t ≥ t1.

Let us now consider an increasing sequence {t`} defined by

t`+1 = t` + C1−`, for ` ≥ 1, (2.28)

such that {t`} converges to T := t1 + C
C−1 as `→∞.

We claim the fact that −F (t) ≥ nC` for all t ≥ t`: To prove the claim, we use induction

argument. It is trivial from inequality (2.27) for ` = 1. By induction, we get the claim for `.
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Then we must prove that −F (t) ≥ nC`+1 for all t ≥ t`+1. By means of the inequality (2.27),

we obtain

−F (t) ≥ nC +
1

n

∫ t

1
F 2(s)ds

≥ 1

n

∫ t`

1
F 2(s)ds+

1

n

∫ t

t`

F 2(s)ds

≥ 1

n

∫ t

t`

F 2(s)ds

≥ nC2`(t− t`)

≥ nC2`(t`+1 − t`) = nC`+1. (2.29)

This proves the above claim.

From hence, we have

lim
`→∞

−F (t`) = −F (T ) ≥ lim
`→∞

nC`. (2.30)

However, this result contradicts with the smoothness of F (t). Namely, limt→T−−F (t)

=∞. This completes the proof of Theorem 1.5.

On the other hand, under the same assumptions given in the Theorem 1.4, we see that,

the above diameter estimate given by (1.6) can be improved as follows:

Proof of Theorem 1.6. Let p, q ∈M be two distinct point and γ a minimizing unit speed

geodesic segment from p to q of length ` > 0. Let {E1 = γ′, E2, . . . , En} be a parallel

orthonormal frame along γ and let h ∈ C∞([0, `]) be a real-valued smooth function such that

h(0) = h(`) = 0. Then, from the index form of γ, we have

n∑
i=2

I(hEi, hEi) =

∫ `

0

(
(n− 1)h′

2 − h2Ric(γ′, γ′)
)
dt. (2.31)

Using the assumption (1.8) given in Theorem 1.6 in the integral expression (2.31), we get

n∑
i=2

I(hEi, hEi) ≤
∫ `

0

(
(n− 1)h′

2 − ah2 − h2dφ
dt

)
dt. (2.32)

In the inequality (2.32), the term −h2 dφdt equals to

−h2dφ
dt

= − d

dt
(h2φ) + 2hh′φ. (2.33)

Integrating both sides of (2.33), we get∫ `

0
−h2dφ

dt
dt = 2

∫ `

0
hh′φdt ≤ 2

∫ `

0

∣∣hh′φ∣∣dt ≤ 2c

∫ `

0

∣∣hh′∣∣dt. (2.34)
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Thus, under the choice h(t) = sin(πt` ), we have

n∑
i=2

I(hEi, hEi) ≤
1

2`

[
(n− 1)π2 − a`2 + 4c`

]
. (2.35)

Since γ is a minimal geodesic, we must take

a`2 − 4c`− (n− 1)π2 ≤ 0. (2.36)

This inequality gives

` ≤ 1

a

(
2c+

√
4c2 + a(n− 1)π2

)
. (2.37)

This completes the proof of Theorem 1.6.
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