ON THE MEASURE OF TRANSCENDENCE OF $\zeta=\sum_{k=0}^{\infty} G_{k}^{-e_{k}}$ FORMAL LAURENT SERIES

AHMET Ş. ÖZDEMIR

Abstract. In this work, we determine the transcendence measure of the formal Laurent series, $\varsigma=\sum_{k=0}^{\infty} G_{k}^{-e^{k}}$ whose transcendence has been established by S. M. SPENCER [15]. Using the methods and lemmas in P. Bundschuh's article measure of transcendence for the above n is determined as

$$
T(n, H)=H^{-(d+1) q^{d}-e d q^{2 d}}
$$

On the other hand, it was proven that transcendence series η is not a U but is a S or T numbers according to the Mahler's classification.

1. Introduction

Let p a prime number and $u \geq 1$ an integer. Let F be a finite field with $q=p^{u}$ elements. We denote the ring of the polynomials with in one variable over F by $F[x]$ and its quotient field by $F(x)$.If $a \in F[x]$ is a non-zero polynomial, denote by ∂a its degree. If $a=0$, then its degree is defined as $\partial 0:=-\infty$. Let a and $b(b \neq 0)$ two polynomials from $F[x]$ and define a discrete valuation of $F(x)$ as follows

$$
\left|\frac{a}{b}\right|=q^{\partial a-\partial b}
$$

2010 Mathematics Subject Classification: 35Q79, 35Q35, 35Q40.
Key words:Formal Laurent series, Measure of Transcendence.

Let K be the completion of $F(x)$ with respect to this valuation. Every element ω of K can be uniquely represented by

$$
\omega=\sum_{n-k}^{\infty} c_{b} x^{-n}, c_{n} \in F
$$

If $\omega=0$, then all c_{n} are zero. If $\omega \neq 0$, then there exist and $k \in Z$ for which $c_{k} \neq 0$. If $\omega \neq 0$, then we have

$$
|\omega|=q^{-k} .
$$

Therefore K is the field all Formal Laurent series. The classical theory of transcendence over complex numbers has a similar version over K. Elements of $F[x]$ and $F(x)$ correspond to integers and fractions of the classical theory, respectively.

If ω is one of the roots of a non-zero polynomial with coefficients in $F[x]$, then $\omega \in K$ is said to be algebraic over $F(x)$. Otherwise, wis called transcendental over $F(x)$.

The studies to find transcendental numbers in K were initiated first by Wade [16-19]. Also Geijsel [4-7] did similar studies. As it is the case in the classical theory of transcendental numbers, it is possible to define a measure of transcendence.

The measure of transcendence is thoroughly studied in the classical theory. For example, the transcendence measure of e has been widely investigated by Mahler [9], Fel'dman [3] and Cijsow [2]. Example for transcendence measure in the field K have been given for the first time by Bundschuh [1]. Further more, Özdemir showed the measure of transcendence of some Formal Laurent series [11],[12].

In this work, we determine the transcendence measure of some Formal Laurent series whose transcendence has been established by S.M.Spencer [15]. We take the $G_{0}\left|G_{1}\right| G_{2} \ldots$, d e $g G_{0} \geq 1, e=e_{0}<e_{1}<e_{2}<\ldots,<e_{k}$ $\mid e_{k+1},{ }^{e_{1}} / e_{2} \neq p^{\prime}$ for $r>s, e_{k} \in Z$.

If $G \in F[x]$ is a fixed non-zero polynomial of degree, $\partial\left(G_{k}\right)=g_{k}, g \geq 1$ then the series

$$
\begin{equation*}
\varsigma=\sum_{k=0}^{\infty} G_{k}^{-e_{k}} \tag{1}
\end{equation*}
$$

is an element of K, and S.M.Spencer showed its transcendence in [14].
Using the methods and lemmas in Bundschuh's article [1], we determine a transcendence measure of ς. We take and arbitrary non-zero polynomial

$$
\begin{equation*}
P(y)=\sum_{v=0}^{n} a_{v} y^{v},\left(a_{v} \in F[x] ; v=0,1, \ldots, n\right) \tag{2}
\end{equation*}
$$

Whose degree $\partial(P)$ is less than or equal to n. The height of P is denoted by

$$
h(p)=\max _{v=0}^{n}\left|a_{v}\right|=q^{\max n_{v=0} \partial\left(a_{v}\right)}
$$

For the transcendental element $\varsigma=\sum_{k=0}^{\infty} G_{k}^{-e_{k}}$ of K, we define the positive quantity

$$
\Lambda_{n}(H, \varsigma)=\min |P(\varsigma)|,
$$

where $P \not \equiv 0, \partial(P) \leq n, h(P) \leq H$. If $T(n, H)$ is a function of the variables n, H of $\Lambda_{n}(H, \varsigma)$ which satisfies the inequality

$$
\begin{equation*}
\Lambda_{n}(H, \varsigma) \geq T(n, H) \tag{3}
\end{equation*}
$$

for all sufficiently large values of n and H, then $T(n, H)$ is said to be a transcendence measure of ς.

2. Preliminaries

Theorem 2.1. We take an arbitrary, non-zero polynomial

$$
\begin{equation*}
P(y)=\sum_{v=0}^{n} a_{v} y^{v},\left(a_{v} \in F[x] ; v=0,1, \ldots, n\right) \tag{4}
\end{equation*}
$$

further let $\partial(P)=d, h(p)=h$ and $a=\max _{v=0}^{d} \partial a_{v}$.

$$
\begin{equation*}
d p^{m n} \log h \geq g_{k} e_{k} \log q \tag{5}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
|P(\xi)| \geq h^{-(d+1) q^{d}-e d q^{2 d}} \tag{6}
\end{equation*}
$$

and the transcendence measure of ω is

$$
\begin{equation*}
T(n, H)=H^{-(d+1) q^{d}-e d q^{2 d}} \tag{7}
\end{equation*}
$$

As in the classical theory of transcendental number theory (see Schneider [13], Pagers 6), it is possible to define Mahler's classification on K. Let K be transcendental, and define :

$$
\begin{align*}
\Theta_{n}(H, \eta) & :=\lim _{H \longrightarrow \infty} \sup \frac{-\log \Theta_{n}(H, \eta)}{\log H} \\
\Theta(\eta) & :=\lim _{n \rightarrow \infty} \sup \frac{1}{n} \Theta_{n}(\eta) \tag{8}
\end{align*}
$$

Hence $\Theta_{n}(\eta) \geq n$ for every $n \in N$ and so $\Theta(\eta) \geq 1$. For every $n, H \in N$,

$$
\begin{equation*}
\Theta_{n}(H, \eta)<H^{-n} q^{n} \max \left(1,|\eta|^{n}\right) \tag{9}
\end{equation*}
$$

is satisfied (see Bundschuh [1], Lemma 3).

On the other hand, let the least natural number n satisfying $\Theta_{n}(\eta) \geq \infty$ be donated by $\mu(\eta)$. If there is no such n, then on may define $\mu(\eta)$ as ∞. In this case, the transcendental number $\eta \in R$ is called
S-Laurent series if $1 \leq \Theta(\eta)<\infty$ and $\mu(\eta)=\infty$,
T-Laurent series if $\Theta(\eta)=\infty$ and $\mu(\eta)=\infty$,
U-Laurent series if $\Theta(\eta)=\infty$ and $\mu(\eta)<\infty$.

Moreover the U-class may be divided into subclasses. If $\mu(\eta)=m(m>0)$, then η is called a U_{m} - Laurent series. Le Vaque [8] was the first to show that for all m, U_{m} is non-empty in the classical theory but the honour goes to Oryan [10] if the ground field is K.

According to the above classification, the series defined in (1) can not be a U - Laurent series. This fact may be proved by the help of the Theorem 2.1

Theorem 2.2. The η Laurent series defined by (1) doesn't belong to the class U so that it belongs to the class S or to the class T.

We will use the following lemmas in proof of the theorem.

Lemma 2.1. Let

$$
\begin{align*}
P(y) & =\sum_{v=0}^{n} a_{v} y^{v} \\
a_{v} & \in F[x], \quad a_{d} \neq 0(d \geq 1), a=\max _{v=0}^{d} \partial a_{v} \tag{10}
\end{align*}
$$

Then there are some elements $A_{0}, A_{1}, \ldots, A_{d} \in F[x]$, not all zero satisfying.

$$
\begin{align*}
\partial A_{1} & \leq a d\left(q^{d}-d+1\right) \quad \text { for } 0 \leq j \leq d \text { and } \\
\sum_{j=0}^{d} A_{j} y^{q^{j}} & =p(y) \sum_{j=0, q^{j} \geq d}^{d} A_{j} \sum_{k=0}^{q^{j}-d} b_{k} a_{d}^{-k-1} y^{q^{j}-d-k}=:, P(y) Q(y) \tag{11}
\end{align*}
$$

where $b_{0}:=1$ and b_{k}, for $k \geq 1$ is the sum of product of exactly k terms from $a_{0}, a_{1}, \ldots, a_{d}$, multiplied by (\pm).

Proof. See the [1], lemma 4, page 416.

Lemma 2.2. Let $\eta \in K$ and $|\eta|=q^{\lambda}$. Under the hypotheses of Lemma 1 we have

$$
\begin{equation*}
|Q(\eta)| \leq q^{a d\left(q^{d}-d+1\right)+\left(q^{d}-d\right) \max (a, \lambda)} . \tag{12}
\end{equation*}
$$

Proof. See the [1], lemma 5, page 417.

3. Proof of the Theorems

Proof. (Theorem 1)

Consider the polynomial defined by (4). With $\partial(p)=d, a_{d} \neq 0$. The Theorem is true obliviously for $d=0$. Because then $|P(\eta)|=\left|a_{0}\right| . a_{0} \in F[x]$ and since $a_{0} \neq 0$ and we have, $\left|a_{0}\right|=q^{\partial\left(a_{0}\right)}>1$. So the left side of (6) is less then 1 . Let $d \geq 1$. By Lemma 1 there are some elements the $A_{0}, A_{1}, \ldots, A_{d} \in F[x]$ not all zero, such that

$$
\begin{align*}
\sum_{j=0}^{d} A_{j} y^{q^{j}} & =p(y) \sum_{j=0, q^{j} \geq d}^{d} A_{j} \sum_{k=0}^{q^{j}-d} b_{k} a_{d}^{-k-1} y^{q^{j}-d-k}=:, P(y) Q(y) \tag{13}\\
\partial A_{j} & \leq a d\left(q^{d}-d+1\right) \leq a d q^{d}(0 \leq j \leq d) \tag{14}
\end{align*}
$$

In (13) we put η instead of y and using the fact that F is a field having q elements. We get

$$
\begin{equation*}
P(\eta) Q(\eta)=\sum_{j=0}^{d} A_{j} \eta^{q^{j}}=\sum_{j=0}^{d} A_{j} \sum_{k=0}^{\infty} G^{-e_{k} q^{j}} \tag{15}
\end{equation*}
$$

Separate the above sum as $S_{1}+S_{2}$, where

$$
\begin{equation*}
S_{1}=G^{e_{\beta} q^{d}} \sum_{j=0}^{d} A_{j} \sum_{k=0}^{+k_{j}} G^{-e_{k} q^{j}} \text { and } S_{2}=G^{e_{\beta} q^{d}} \sum_{j=0}^{d} A_{j} \sum_{k=k_{j}+1}^{\infty} G^{-e_{k} q^{j}} \tag{16}
\end{equation*}
$$

where β is non-negative integer to be chosen later. Let the rational integers $k_{j}(j=0,1, \ldots, d)$ be defined by

$$
\begin{equation*}
q^{j-d} e_{k_{j}}<e_{\beta} \leq q^{d-j} e_{k_{j}+1} \tag{17}
\end{equation*}
$$

1) First, we prove that $\left|S_{1}\right| \geq 1$. That is, we prove S_{1} is a polynomial bu not equal zero. Their terms of the S_{1} are

$$
\begin{equation*}
G^{e_{\beta} q^{d}} A_{j} G^{-e_{k} q^{j}}=A_{j} G^{e_{\beta} q^{d}-e_{k} q^{j}} \tag{18}
\end{equation*}
$$

We show that

$$
\begin{equation*}
e_{\beta} q^{d}-e_{k} q^{j} \geq 0 \tag{19}
\end{equation*}
$$

by (17), and since k ranges from 0 to k_{j} in the sum S_{1}. We have

$$
\begin{equation*}
e_{\beta} q^{d}-e_{k} q^{j} \geq q^{j}\left(e_{k_{j}}-e_{k_{j}}\right) \geq 0 \tag{20}
\end{equation*}
$$

which implies (19). By (19) and (18), S_{1} is polynomial. Now we show S_{1} isn't identically zero as equivalently. We have equality in (19) when and only when $k=\beta$ and $j=d$. If we write the terms of S_{1}, we find

$$
\begin{gather*}
S_{1}=A_{0}\left(\sum_{k=0}^{k_{0}} G^{e_{\beta} q^{d}-e_{k} q^{0}}\right)+\ldots+A_{d}\left(\sum_{k=0}^{k_{d}} G^{e_{\beta} q^{d}-e_{k} q^{d}}\right) \\
S_{1}=A_{0}\left(G^{e_{\beta} q^{d}-e_{0} q^{0}}+\ldots+G^{e_{\beta} q^{d}-e_{k_{0}} q^{0}}\right)+\ldots+A_{d}\left(G^{e_{\beta} q^{d}-e_{0} q^{d}}+\ldots+G^{e_{\beta} q^{d}-e_{k_{d}} q^{d}}\right) \tag{21}\\
\mu:=\min _{j=0}^{d-1}\left(e_{\beta} q^{d}-e_{k_{j}} q^{j}, e_{\beta} q^{d}-e_{\beta-1} q^{d}\right) \tag{22}
\end{gather*}
$$

G^{μ} divides of all terms in the sum(21) except only one term. Therefore,

$$
\begin{equation*}
S_{1}=G^{\mu} \cdot R+A_{d} \quad(R \in F[x]) \tag{23}
\end{equation*}
$$

and hence we find

$$
\begin{equation*}
S_{1} \equiv A_{d}\left(\bmod G^{\mu}\right) \tag{24}
\end{equation*}
$$

Since $h=h(P)=q^{a}$,

$$
\begin{equation*}
a=\frac{\log h}{\log q} \tag{25}
\end{equation*}
$$

By (5) and (25) we find

$$
\begin{equation*}
a d q^{d} \geq \frac{g}{e} \tag{26}
\end{equation*}
$$

From (19) and (26) it holds (27). For this. Consider the sequence

$$
\left\{e_{-1}, e=e_{0}, e_{1}, e_{2}, \ldots\right\}
$$

There are β non-negative integers such that

$$
\begin{equation*}
e_{\beta-1} \leq \frac{a d q^{d}}{g}<e_{\beta} \tag{27}
\end{equation*}
$$

From (27) we obtain the following statement for the above β

$$
\begin{equation*}
\frac{a d q^{d}}{g}<e_{\beta} \leq \frac{e a d q}{g} \tag{28}
\end{equation*}
$$

By (17) we have $e_{\beta} q^{d-j} \geq e_{k_{j}} \Longrightarrow q^{d-j} \geq \frac{e_{k_{j}}}{e_{\beta}} \Longrightarrow q^{d-j}-\frac{e_{k_{j}}}{e_{\beta}} \geq 0$. Hence we obtain

$$
\begin{equation*}
q^{d-j}-\frac{e_{k_{j}}}{e_{\beta}} \geq 1 .(j<d) \tag{29}
\end{equation*}
$$

further, since $e_{\beta-1}<e_{\beta} \Longrightarrow \frac{e_{\beta-1}}{e_{\beta}}<1 \Longrightarrow 0<1-\frac{e_{\beta-1}}{e_{\beta}}$. Thus we get

$$
\begin{equation*}
1-\frac{e_{\beta-1}}{e_{\beta}} \geq 1 \tag{30}
\end{equation*}
$$

From (22),

$$
\begin{equation*}
\mu=e_{\beta} \min _{j=0}^{d-1} q^{j}\left(\left(q^{d-j}-\frac{e_{k_{j}}}{e_{\beta}}\right), q^{d}\left(1-\frac{e_{\beta-1}}{e_{\beta}}\right)\right) \tag{31}
\end{equation*}
$$

by $(29),(30)$ and (31) and $q^{q}, q^{j}>1$ we get

$$
\begin{equation*}
\mu>e_{\beta} \tag{32}
\end{equation*}
$$

by (14), (28) and (32) we obtain

$$
g \mu>g e_{\beta}>a d q^{d}>a d\left(q^{d}-d+1\right) \geq \partial\left(A_{d}\right)
$$

that is,

$$
g \mu>\partial\left(A_{d}\right)
$$

this inequality means

$$
\partial\left(G^{\mu}\right)=g \mu>\partial\left(A_{d}\right)
$$

Hence we see G^{μ} doesn't divide A_{d}. That is

$$
A_{d} \not \equiv 0\left(\bmod G^{\mu}\right)
$$

by (28) and (36)

$$
\begin{equation*}
S_{1} \equiv A_{d} \not \equiv 0\left(\bmod G^{\mu}\right) \tag{33}
\end{equation*}
$$

therefore S_{1} is not identically 0 . so S_{1} is a non-zero polynomial. so it is shown that $\left|S_{1}\right| \geq 1$.
2) we will show $\left|S_{2}\right|<1$ since $k \geq k_{j}+1$ in S_{2}, for the degree of the terms of S_{2}, we may write the following inequality from (14):

$$
\begin{align*}
\partial\left(G^{e_{\beta} q^{d}} A_{j} G^{-e_{k} q^{j}}\right) & =\partial A_{j}+\partial G^{e_{\beta} q^{d}-e_{k} q^{j}} \\
& \leq a d q^{d}+g\left(e_{\beta} q^{d}-e_{k} q^{j}\right) \\
& \leq a d q^{d}+g\left(e_{\beta} q^{d}-e_{k_{j}+1} q^{j}\right) \\
& \leq a d q^{d}-g e_{\beta}\left(\frac{e_{k_{j}+1}}{e_{\beta}} q^{j}-q^{d}\right) \tag{34}
\end{align*}
$$

by (17) $q^{d} e_{\beta}<q^{j} e_{k_{j}+1} \quad 0<\frac{e_{k_{j}+1}}{e_{\beta}} q^{j}-q^{d}$ is an integer. further, by (27) we obtain

$$
\begin{equation*}
a d q^{q}<g e_{\beta} \tag{35}
\end{equation*}
$$

from (34), (35) and since $\frac{e_{k_{j}+1}}{e_{\beta}} q^{j}-q^{d}$ is positive integer, we get

$$
\partial\left(G^{e_{\beta}} A_{j} G^{-e_{k} q^{j}}\right)<0
$$

that is, the terms of S_{2} have negative degrees. this means

$$
\left|S_{2}\right|<1
$$

3) we will prove the claim of the theorem. by the definition of S_{1} and S_{2}, we can write $S_{1}+S_{2}=$ $G^{e_{\beta} q^{d}} P(\eta) Q(\eta)$. hence we obtain

$$
\begin{equation*}
\left|S_{1}+S_{2}\right|=\left|G^{e_{\beta} q^{d}}\right||P(\eta)||Q(\eta)| \tag{36}
\end{equation*}
$$

since $\left|S_{1}\right| \geq 1$ and $\left|S_{2}\right|<1$, we get

$$
\begin{equation*}
\left|S_{1}+S_{2}\right|=\max \left(\left|S_{1}\right|,\left|S_{2}\right|\right)=\left|S_{1}\right| \tag{37}
\end{equation*}
$$

By (36) and (37), we obtain

$$
\begin{equation*}
|P(\eta)||Q(\eta)|=\left|S_{1}\right|\left|G^{e_{\beta} q^{d}}\right|^{-1} \tag{38}
\end{equation*}
$$

let $|\eta|=q^{\lambda}$. By (1) and since $\left|G^{s e_{k}}\right|=q^{\operatorname{deg} G^{e_{k}}}=q^{g e_{k}}$,
we get $|\eta|=q^{-q e_{0}}=q^{-g e}$ therefore $\lambda=-g e$. since $\max (a, \lambda)=\max (a,-g e)=a$ and by lemma 2, we find

$$
\begin{equation*}
|Q(\eta)| \leq q^{a d\left(q^{d}-d+1\right)+\left(q^{d}-d\right) \max (a, \lambda)} \leq q^{a d q^{d}+a q^{d}} \leq q^{a(d+1) q^{d}} \tag{39}
\end{equation*}
$$

further, by (28)

$$
\begin{align*}
\left|G^{e_{\beta} q^{d}}\right| & =q^{g e_{\beta} q^{d}} \\
& \leq q^{e a d q^{d} q^{d}} \\
& =q^{e a d q^{2 d}} \tag{40}
\end{align*}
$$

by (38),(39),(40) and since $\left|S_{1}\right| \geq 1$

$$
\begin{align*}
|P(\eta)| & =\left|S_{1}\right|\left|G^{e_{\beta} q^{d}}\right|^{-1}|Q(\eta)|^{-1} \\
& \geq\left|G^{e_{\beta} q^{d}}\right|^{-1}|Q(\eta)|^{-1} \\
& \geq q^{e a d q^{2 d}} q^{-a(d+1) q^{d}} \tag{41}
\end{align*}
$$

by (41) and since $h=q^{a}$

$$
|P(\eta)| \geq h^{-(d+1) q^{d}-e d q^{2 d}}
$$

this is the claim of the theorem 1.

Proof. (Theorem 2)

let the degree of the polynomial P in Theorem 1 be $\partial(P)=d \leq n$ and let its height be

$$
\begin{gather*}
h(P)=h \leq H \text { by }(6), \\
|P(\eta)| \geq H^{-(n+1) q^{n}-e n q^{2 n}} . \tag{42}
\end{gather*}
$$

(42) and (5) and by the definition of Mahler's classification

$$
\Theta_{n}(H, \eta) \geq H^{-(n+1) q^{n}-e n q^{2 n}}
$$

for all sufficiently large natural numbers n and H . hence consequently

$$
\begin{gather*}
\log \Theta_{n}(H, \eta) \geq\left[-(n+1) q^{n}-e n q^{2 n}\right] \log H \\
\frac{\log \Theta_{n}(H, \eta)}{\log H} \leq(n+1) q^{n}-e n q^{2 n} \tag{43}\\
\Theta_{n}(\eta) \geq \lim _{H \rightarrow \infty} \sup \frac{-\Theta_{n}(H, \eta)}{\log H} \leq e n q^{2 n}+(n+1) q^{n} \tag{44}
\end{gather*}
$$

that is, for every index n

$$
\Theta_{n}(\eta)<\infty
$$

by the definition of Mahler's classification, $\mu(\eta)=\infty$. This shows η can never to the class U so that it belongs to the class S or to class T.

References

[1] Bundschuh, P., Transzendenzmasse in Körpern formaler Laurentreihen Jurnal für die reine und angewandte Mathematik, 299/300 411-432, (1978)
[2] Cijsow, P.L., Transcendence measures, Akademisch proefschrift, Amsterdam 107 pp. (1972)
[3] Fel'dman, N.I. On the problem of the measure of trancendence of e(russ) Uspekhi Math. Navk 18 207-213, (1963)
[4] Geijsel, J.M., Transcendence properties of Carlitz-Bessel functions, Math. Centre Report ZW 2/71 Amsterdam, 19 pp . (1971)
[5] Geijsel, J.M., Schneider's method in fields of characteristic p 2 Math. Centre Report ZW 17/73 Amsterdam, 12 pp (1973)
[6] Geijsel, J.M., Transcendence proporties of certain quantities over the quotient field of $F_{q}[x]$, Math. Centre Report ZN 58/74, Amsterdam, 62 pp. (1974)
[7] Geijsel, J.M., Transcendence in fields of positive characteristic, Matematical Centre Tracts 91. Amsterdam: Mathematisch Centrum. X, not consecutively paged (1979)
[8] Le Veque W.J., On Mahler's U-numbers J. London Math. Soc. 28 220-229, (1953)
[9] MAHLER, K. Zur Approximation der Exponential funktion und des Logarithmus, J. Reine Angew Math. 166 118-150, (1932)
[10] Oryan, M.H., Über die Unterklassen Um der Mahlerschen Klassen einteilung der trans- zendentel formalen Laurentreihen, İstanbul Univ. Fen Fak. Mec. Seri A, 45 43-63,(1980)
[11] Özdemir,A.Ş., On The Measure Of Transcendence Of Some Formal Laurent Series, Bulletin of Pure and Applied Science.Vol.19E (No.2) 2000 ; P.541-550.
[12] Özdemir,A.Ş., On The Measure Of Transcendence Of Formal Laurent Series, Bulletin of Pure and Applied Science.Vol.21E (No.1) 2002; P.173-184.
[13] Özdemir,A.Ş. "On The Measure of Transcendence of Formal Laurent series" Algebras, Group and Geometries, Hadronic Journal" volume 23, number 2, march 2006
[14] Schneider, Th., Eunführung in die transzendenten zahlen Berlin-Göttingen- Heidelberg (1957)
[15] Spencer, S.M. (1951) Transcendental Numbers Over Certain Function Field. Duke University ;p. 93-105.
[16] Wade, L.I., Certain quantities trenscentental over GF(pn,x), Duke Math. J. 8, 701- 702, (1941)
[17] Wade, L.I., Certain quantities trenscentental over GF(pn,x) II, Duke Math. J. 10, 587- 594, (1943)
[18] Wade, L.I., Transcendence properties of the Carlitz - functions, Duke Math. J. 13, 79-85 (1946)
[19] Wade, L.I., Two types of function field transcendental numbers, Duke Math. J. 755-758 (1944)

Marmara University, A. Educational Faculty, Department of Math. Goztepe-Kadikoy, Istanbul/Turkey

Email address: ahmet.ozdemir@marmara.edu.tr

