

International Journal of Maps in Mathematics Volume (2), Issue (1), (2019), Pages:(89-98) ISSN: 2636-7467 (Online) www.journalmim.com

ON SEMI-INVARIANT ξ^{\perp} -SUBMANIFOLDS OF LORENTZIAN PARA-SASAKIAN MANIFOLDS

MOBIN AHMAD*

ABSTRACT. In the present paper, we study semi-invariant ξ^{\perp} -submanifolds of Lorentzian para-Sasakian manifolds. We discuss the integrability conditions of the distributions D and D^{\perp} on semi-invariant ξ^{\perp} -submanifolds of Lorentzian para-Sasakian manifolds. We also obtain some characterizations for the totally umbilical semi-invariant ξ^{\perp} -submanifolds of Lorentzian para-Sasakian manifolds.

1. Introduction

In 1989, K. Motsumoto [1] introduced the notion of Lorentzian para-Sasakian manifold (LP-Sasakian manifold). I. Mihai and R. Rosca [2] defined the same notion independently and thereafter many authors [3, 4, 5] studied LP-Sasakian manifolds. M.M. Tripathi and U.C. De [6] studied submanifolds of a Lorentzian almost paracontact manifold. C. Ozgur [7] studied invariant submanifolds of LP Sasakian manifolds. In 1981, A. Bejancu [8] introduced the notion of semi-invariant submanifold or contact CR-submanifold, as a generalization of invariant and anti-invariant submanifolds of an almost contact metric manifold. P. Alegre [9] studied semi-invariant submanifolds of Lorentzian para-Sasakian manifold. CR-submanifolds

Received:2018-05-15 Revised:2018-08-29 Accepted:2019-02-19

Key words: Semi-invariant submanifolds, Lorentzian para-Sasakian manifold, Totally umbilical semiinvariant submanifolds, Totally geodesic leaves, Distributions.

* Corresponding author

²⁰¹⁰ Mathematics Subject Classification: 53C50, 53C2, 53C40, 52B25.

MOBIN AHMAD*

of LP-Saskian manifold were studied by several geometers (see, [10], [11], [12], [13], [14]). N. Papaghuic [15] defined ξ^{\perp} -submanifolds in which the structural vector field ξ is orthogonal to the submanifolds and studied geometry of the leaves on Kenmotsu manifold. Constantin C. et. al [16] studied semi-invariant ξ^{\perp} -submanifolds of generalized quasi-Sasakian manifolds. M. M. Tripathi [17] studied semi-invariant ξ^{\perp} -submanifolds of trans-Sasakian manifold. Further, S.Y. Perktas et. al [18] studied semi-invariant ξ^{\perp} -submanifolds of P-Sasakian manifold. In this paper, we study semi-invariant ξ^{\perp} -submanifolds of LP-Sasakian manifold. In particular, we recover the results of Papaghiuc [15] and Calin [16].

The paper is organized as follows. In section 2, we give a breif description of Lorentzian para-Sasakian manifold. In section 3, we find some results on semi-invariant ξ^{\perp} -submanifolds of Lorentzian para-Sasakian manifolds, discuss the integrability of distributions D and D^{\perp} of semi-invariant ξ^{\perp} -submanifolds of Lorentzian para-Sasakian manifolds and finally in section 4, we find some characterizations for the totally umbilical semi-invariant ξ^{\perp} -submanifolds of Lorentzian para-Sasakian manifolds.

2. Preliminaries

Lorentzian para-Sasakian manifold

Let \overline{M} be (2n + 1)-dimensional almost contact metric manifold with a metric tensor g, a tensor field ϕ of type (1, 1), a vector field ξ and a 1-form η which satisfy

$$\phi^2 X = X + \eta(X)\xi, \eta(\xi) = -1, \tag{2.1}$$

$$g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y), \qquad (2.2)$$

$$g(X,\xi) = \eta(X), \tag{2.3}$$

$$g(\phi X, Y) = g(X, \phi Y) \tag{2.4}$$

for all vector fields X, Y tangent to \overline{M} . Such a manifold is termed as Lorentzian paracontact manifold and the structure (ϕ, η, ξ, g) a Lorentzian para-contact structure [1]. Also in a Lorentzian para-contact structure the following relations hold:

$$\phi \xi = 0, \ \eta(\phi X) = 0, \operatorname{rank}(\phi) = n - 1.$$

A Lorentzian para-contact manifold \overline{M} is called Lorentzian para-Sasakian (LP-Sasakian manifold if [2]).

$$(\bar{\nabla}_X \phi)(Y) = g(X, Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi, \qquad (2.5)$$

90

$$\nabla_X \xi = \phi X \tag{2.6}$$

for all vector fields X, Y tangent to \overline{M} , where $\overline{\nabla}$ is the Riemannian connection with respect to g.

3. Semi-invariant ξ^{\perp} -submanifolds

Let M be an m-dimensional submanifold of \overline{M} , isometrically immersed in \overline{M} . The tangent bundle $T\overline{M}$ of \overline{M} is decomposed as

$$T\bar{M} = TM \oplus TM^{\perp}.$$

Definition 3.1 [8] An *m*-dimensional Riemannian submanifold M of a Lorentzian para-Sasakian manifold \overline{M} is called a semi-invariant ξ^{\perp} -submanifold of Lorentzian para-Sasakian manifold if ξ is normal to M and there exists on M a pair of distributions (D, D^{\perp}) such that (*i*) TM orthogonally decomposes as $D \oplus D^{\perp}$,

(*ii*) the distribution D_x is invariant under ϕ , that is $\phi D_x \subset D_x$ for each $x \in M$,

(*iii*) the distribution D^{\perp} is anti-invariant under ϕ , that is $\phi D_x^{\perp}(M) \subset T_x^{\perp}(M)$ where $T_x M$ and $T_x^{\perp} M$ are tangent and normal spaces of M at $x \in M$. If $D^{\perp} = 0$ then M is an invariant ξ^{\perp} -submanifold. The normal bundle $T^{\perp} M$ can also be decomposed as

$$T^{\perp}M = \phi D^{\perp} \oplus \mu \oplus \{\xi\},\$$

where $\phi \mu \subseteq \mu$.

Any vector X tangent to M is given by

$$X = PX + QX, \tag{3.1}$$

where PX and QX belong to the distribution D and D^{\perp} respectively. Moreover, for any $X \in \Gamma(TM)$ and $N \in \Gamma(TM^{\perp})$, we put

$$\phi X = tX + \omega X,\tag{3.2}$$

where tX (resp. ωX) denotes the tangential (resp. normal) components of ϕX and

$$\phi N = BN + CN, \tag{3.3}$$

where BN (resp. CN) denotes the tangential (resp. normal) component of ϕN .

MOBIN AHMAD*

Gauss formula for semi-invariant ξ^{\perp} -submanifolds of an LP- Sasakian manifold is given by

$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y). \tag{3.4}$$

Weingarten formula is given by

$$\bar{\nabla}_X N = -A_N X + \nabla_X^{\perp} N \tag{3.5}$$

for any $X, Y \in TM$, $N \in T^{\perp}M$, where h(resp. A_N) is the second fundamental form (resp. tensor) of M in \overline{M} and ∇^{\perp} denotes the operator of the normal connection. Moreover, we have

$$g(h(X,Y),N) = g(A_N X,Y).$$
 (3.6)

Now, we study the integrability of both the distributions D and D^{\perp} . For this purpose, first we establish some results for further use.

Proposition 3.1. Let M be a semi-invariant ξ^{\perp} -submanifold of an LP-Sasakian manifold \overline{M} . Then

(a)
$$(\nabla_X t)Y = A_{\omega Y}X + Bh(X,Y),$$
 (3.7)
(b) $(\nabla_X \omega)Y = Ch(X,Y) - h(X,tY) + g(X,Y)\xi$

 $\forall X, Y \in \Gamma(TM).$

Proof In view of (3.2), (3.3), (3.4) and (3.5), we have

$$(\overline{\nabla}_X \phi)Y = (\nabla_X t)Y - A_{\omega Y}X + (\nabla_X \omega)Y + h(X, tY) - \phi h(X, Y).$$
(3.8)

Using (2.6) in (3.8), we get

$$g(X,Y)\xi + \phi h(X,Y) = (\nabla_X t)Y - A_{\omega Y}X + (\nabla_X \omega)Y + h(X,tY).$$
(3.9)

Comparing tangential and normal components of (3.9), we have our assertion. We can state the following proposition.

Proposition 3.2 (16). Let M be a semi-invariant ξ^{\perp} -submanifold of an LP-Sasakian manifold \overline{M} . Then (a) $BN \in D^{\perp}$, (b) $CN \in \mu$ for any $N \in \Gamma(TM^{\perp})$.

Proposition 3.3. Let M be a semi-invariant ξ^{\perp} -submanifold of an LP-Sasakian manifold \overline{M} . Then

$$A_{\omega Z}W = A_{\omega W}Z.$$

Proof Let $Y, Z \in D^{\perp}$. Using (2.5), (3.2), (3.4) and (3.6), we have

 $g(A_{\phi W}Z, X) = g(h(X, Z), \phi W)$ $= g(\bar{\nabla}_X Z, \phi W)$ $= g(\phi \bar{\nabla}_X Z, W)$ $= g(\bar{\nabla}_X \phi Z, W)$ $= -g(\phi Z, \bar{\nabla}_X W)$ $= -g(h(X, W), \phi Z)$ $= -g(A_{\phi Z} W, X),$

which is equivalent to

$$A_{\phi W}Z = A_{\phi Z}W.$$

But from (3.2), we have $\phi Z = \omega Z$ and $\phi W = \omega W$, then above equation reduces to $A_{\omega W} Z = A_{\omega Z} W$.

Theorem 3.1. Let M be a semi-invariant ξ^{\perp} -submanifold of an LP-Sasakian manifold \overline{M} . Then the distribution D is integrable if and only if

$$h(X,\phi Y) = h(Y,\phi X) \tag{3.10}$$

 $\forall X, Y \in \Gamma(D).$

Proof Let $X, Y \in \Gamma(D)$. Then from (3.7)(b), we get

$$\omega[X,Y] = h(X,tY) - h(Y,tX).$$
(3.11)

Our assertion is a consequence of (3.11).

Theorem 3.2. Let M be a semi-invariant ξ^{\perp} -submanifold of an LP-Sasakian manifold \overline{M} . Then the distribution D^{\perp} is integrable.

Proof In view of (3.7)(a) and Proposition 3.3, letting $Z, W \in \Gamma(D^{\perp})$, we have

$$t[Z,W] = A_{\omega Z}W - A_{\omega W}Z = 0$$

Consequently, $[Z, W] \in \Gamma(D^{\perp})$ for all $Z, W \in \Gamma(D^{\perp})$. Hence D^{\perp} is integrable.

Suppose that $(e_i, \phi e_i, e_{2p+j}), i \in 1, 2, ..., p, j \in 1, 2, ..., q$ be an adapted orthonormal local frame on M, where $q = \dim D^{\perp}$. Now, we can state the following:

Theorem 3.3. Let M be a semi-invariant ξ^{\perp} -submanifold of an LP-Sasakian manifold \overline{M} . Then

$$\eta(H) = 1/m \ trace(A_{\xi}), \ m = 2p + q.$$

Proof From the general mean curvature formula $H = 1/m \sum_{a=1}^{s} trace(A_{\xi_a})\xi_a$, where $\{\xi_1, \xi_2, ..., \xi_s\}$ is an orthonormal basis in TM^{\perp} , the conclusion holds by straight forward computations.

Theorem 3.4. Let M be a semi-invariant ξ^{\perp} -submanifold of an LP-Sasakian manifold \overline{M} . Then

- if the distribution D is integrable, then its leaves are totally geodesic in M if and only if h(X,Y) ∈ Γ(μ), where X,Y ∈ Γ(D),
- (2) any leaf of the distribution D[⊥] is totally geodesic in M if and only if h(X, Z) ∈ Γ(μ), where X ∈ Γ(D) and Z ∈ Γ(D[⊥]).

Proof Let us prove the first statement. Let M^* be a leaf of the integrable distribution D and h^* the second fundamental form of M^* in M. Also, let $X, Y \in M^*$, then $X, Y \in D$. Differentiating covariantly $\phi Y = tY$ and using (3.4), we get

$$\bar{\nabla}_X tY + h^*(X, tY) = (\bar{\nabla}_X \phi)Y + \phi(\bar{\nabla}_X Y).$$

Using (2.5) in above equation, we have

$$(\bar{\nabla}_X tY) + h^*(X, tY) = g(X, Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi + \phi(\bar{\nabla}_X Y).$$

Taking inner product with Z and noting that $Z \epsilon D^{\perp}$, $\phi Z \epsilon \phi D^{\perp} \subset TM^{\perp}$, $g(\phi X, Y) = g(X, \phi Y)$, we get

$$\begin{split} g(h^*(X,tY),Z) &= g(\phi \overline{\nabla}_X Y,Z) \\ g(h^*(X,tY),Z) &= g(\overline{\nabla}_X Y,\phi Z) \\ g(h^*(X,tY),Z) &= g(\nabla_X Y + h(X,Y),\phi Z) \\ g(h^*(X,tY),Z) &= g(\nabla_X Y,\phi Z) + g((h(X,Y),\phi Z)) \\ g(h^*(X,tY),Z) &= g(h(X,Y),\phi Z), \end{split}$$

which gives

$$h^*(X, tY) = 0,$$

if and only if $h(X, Y) \in \mu$.

The proof of second part of the theorem is analogous to that of Kenmotsu case in ([15], P. 117).

4. Totally umbilical semi-invariant ξ^{\perp} -submanifolds

In this section, we obtain a complete characterization of a totally umbilical semi-invariant ξ^{\perp} -submanifold of an LP-Sasakian manifold \overline{M} . For a totally umbilical submanifold we have

$$h(X,Y) = g(X,Y)H, \ X,Y \in \Gamma(TM).$$

$$(4.1)$$

Theorem 4.1. A semi-invariant ξ^{\perp} -submanifold M of an LP-Sasakian manifold \overline{M} with dim $D^{\perp} \geq 2$ is totally umbilical if and only if

$$h(X,Y) = 1/m \ g(X,Y) \ trace \ (A_{\xi})\xi.$$
 (4.2)

Proof Suppose that M is a totally umbilical semi-invariant ξ^{\perp} -submanifold of an LP-Sasakian manifold \overline{M} . Let $X \in \Gamma(D)$ be the unit vector field and $N \in \Gamma(\mu)$. Using Gauss formula (3.4), we get

$$h(X,X) = -\nabla_X X + \phi(\nabla_X \phi X - (\nabla_X \phi)X) - \eta(\nabla_X X)\xi.$$

= $-\nabla_X X + \phi(\bar{\nabla}_X \phi X - (\bar{\nabla}_X \phi)X) - g(\nabla_X X + h(X,X),\xi)\xi.$
= $-\nabla_X X + \phi(\bar{\nabla}_X \phi X - (\bar{\nabla}_X \phi)X)$

Taking inner product with N, we have

$$g(H, N) = g(h(X, X), N) = 0,$$

which shows that $H \in \phi D^{\perp} \oplus span \{\xi\}$.

Now, letting $W, Z \in D^{\perp}$, From (2.5) and (3.5), we get

$$g(W,Z)\xi + \phi(\nabla_W Z + \phi h(W,Z)) = -A_{\phi Z}W + \nabla_W^{\perp}\phi Z.$$

Equating vertical components of above equations and then the inner product with ϕH gives

$$g(W,Z)g(\phi H,\phi H) = g(Z,\phi H)g(W,\phi H).$$
(4.3)

Since $D^{\perp} \geq 2$, for $Z = W \perp \phi H$, the above relation gives $\phi H = 0$ which implies that $H \in span{\xi}$. If we consider an orthonormal frame $\{e_i, e_{p+i}\}, i = 1, 2, 3, ..., p$ on M. Since M is a semi-invariant ξ^{\perp} -submanifold, we can write

$$H = g(H,\xi)\xi = 1/m \sum g(h(e_i,e_i),\xi)\xi = 1/m \ trace(A_{\xi})\xi$$

Using (4.1) in above equation, we get (4.2).

Conversely, if (4.2) holds, then we get (4.3). From (4.2) and (4.3) together we conclude that M is totally umbilical.

Corollary 4.1. Every semi-invariant ξ^{\perp} -hypersurface M of an LP-Sasakian manifold is geodesic.

Proof Let M is a hypersurface, that is $TM^{\perp} = span \{\xi\}$, which implies that $h(X, Y) \in span \xi$. Then Corollary 4.2 follows from (4.3).

We call a semi-invariant product as a semi-invariant ξ^{\perp} -submanifold of \overline{M} which can be locally written as a Riemannian product of a ϕ -invariant submanifold and a ϕ anti-invariant submanifold of \overline{M} , both of them orthogonal to ξ .

Theorem 4.2. Let M be a totally umbilical semi-invariant ξ^{\perp} -submanifold of an LP-Sasakian manifold \overline{M} with dim $D^{\perp} \geq 2$. Then M is a semi-invariant product.

Proof Let M be a totally umbilical submanifold, then h(X,Z) = 0 for any $X \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$. So by Theorem 3.4, the leaves of D^{\perp} are totally geodesic submanifold of M. By

Corollary 4.1, $h(X, Y) \in \text{span} \{\xi\} \subset \mu \text{ for any } X, Y \in \Gamma(D)$. Combining this fact with Theorem 3.4, this implies that the invariant distribution D is integrable and its integral manifolds are totally geodesic submanifolds of M. Hence we conclude that M is semi-invariant product.

Theorem 4.3. Let M be a totally umbilical semi-invariant ξ^{\perp} -submanifold of an LP-Sasakian manifold \overline{M} . If D is integrable, then each leaf of D is a totally geodesic submanifold of M.

Proof Using (3.7)(b) for any $X \in \Gamma(D)$, we get

$$\omega(\nabla_X X) = -g(X, X)CH + g(X, \phi X)H - g(X, X)\xi$$

Since $CH \in \Gamma(\mu)$ by Proposition 3.2, $H \in span \{\xi\}$ from Theorem 4.1, $\xi \in \Gamma(\mu)$ and $\omega(\nabla_X X) \in \phi D^{\perp}$. From the above equation we deduce that $\omega(\nabla_X X) = 0$, or equivalently

$$\nabla_X X \in \Gamma(D) \ \forall \ X \in \Gamma(D). \tag{4.4}$$

As D is integrable, Frobenius theorem ensures that M is foliated by leaves of D. Combining this fact with (4.4), we conclude that the leaves of D are totally geodesic submanifolds of M.

Acknowledgement. Integral University Manuscript Communication Number: IU/R & D/2017-MCN-00022. The author is greatful to the referees for their comments to improve the paper.

References

- Motsumoto, K.: On Lorentzian paracontact manifolds. Bull. of Yamagata Univ. Nat. Sci. 12 (2), 151-156 (1989)
- Mihai, I., Rosca, R.: On Lorentzian P-Sasakian manifolds. Classical Analysis, World Scientific Publi. 155-169 (1992)
- Matsumoto, K., Mihai, I.: On certain transformation in a Lorentzian para-Sasakian manifold. Tensor (N.S.) 47, 189-197 (1988)
- Mihai, I., Shaikh, A.A., De, U.C.: On Lorentzian para-Sasakian manifolds. Rendicontidel Senario Matematicodi Messina, Serie II (1999)
- Murathan, C., Yildiz, A., Arslan, K. and De, U.C.: On a class of Lorentzian para-Sasakian manifolds. Proc. Estonian Acad. Sci. Phys. Math. 55 (4), 210-219 (2006)
- Tripathi, M.M., De, U.C.: On Lorentzian almost para-Sasakian manifolds and their submanifolds. Journal of Korean Society of Mathematical Education 2, 101-125 (2011)

- Ozgur, C.: On invariant submanifolds of Lorentzian para-Sasakian manifolds. The Arabian Journal of Science and Technology 34 2A, 177-185 (2009)
- Bejancu, A.: Geometry of CR-submanifolds. Mathematics and Applications. D. Reidel Publishing Co., Dordrecht 1986
- 9. Alegre, P.: Semi-invariant submanifolds of Lorentzian para-Sasakian manifolds 44 (2), 391-406 (2011)
- Ahmad, M.: CR-submanifolds of LP-Sasakian manifolds endowed with a quarter symmetric metric connection. Bull. Korean Math. Soc. 49 (1), 25-32 (2012)
- Das, L. S.K. and Ahmad, A.: CR-submanifolds of LP-Sasakian manifolds with quarter symmetric nonmetric connection. Math. Sci. Res. J. 13 (7), 161-169 (2009)
- Ahmad, M., Ojha, J.P.: CR-submanifolds of LP-Sasakian manifold with the canonical semi-symmetric semi-metric connection. Int. J. Contemp. Math. Sci. 5 (33), 1637-1643 (2010)
- Ozgur, C., Ahmad, M. and Haseeb, A.: CR-submanifolds of LP-Sasakian manifolds with semi-symmetric metric connection. Hacettepe J. Math. And Stat. 39 (4), 489-496 (2011)
- De, U.C. and Sengupta, A.K.: CR-submanifolds of Lorentzian para-Sasakian manifolds. Bull. Malay. Math. Sc. Soc. 23, 199-206 (2000)
- Papaghuic, N.: On the geometry of leaves on a ξ[⊥]-submanifold in a Kenmotsu manifold. An. Stiit. Univ.
 Al. I. Cuza Iasi Sect. I a Mat. 38 (1), 111-119 (1992)
- 16. Calin, C., Crasmreanu, M., Munteanu, M.I. and Saltarlli, V.: Semi- invariant ξ^{\perp} -submanifolds of generalized quasi-Sasakian manifolds. Taiwanese journal of Mathematics **16** (6), 2053-2062 (2012)
- 17. Tripathi. M.M.: Almost semi-invariant ξ[⊥]-submanifolds of Trans-Sasakian manifolds. An. Stiit. Univ. Al.
 I. Cuza Iasi Sect. I a Mat. 41, 243-268 (1997)
- Perktas, S.Y., Tripathi, M.M., Kilic, E. and Keles, S.: ξ[⊥]-submanifolds of para-Sasakian Manifolds. Turkish, J. Math. doi. 10.3906/math.1307-13, 1-15 (2015)

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, INTEGRAL UNIVERSITY, KURSI ROAD, LUCKNOW-226026, INDIA.

Email address: mobinahmad68@gmail.com