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EXTENDED TRAVELING WAVE SOLUTIONS FOR SOME INTEGRO

PARTIAL DIFFERENTIAL EQUATIONS

SERIFE MUGE EGE

Abstract. In this study, an extended method is implemented to find traveling wave solu-

tions of two integro partial differential equations. The exact particular solutions containing

hyperbolic function type are obtained. By using symbolic computation it is shown that this

method is efficient mathematical tool for solving problems in nonlinear science.

1. Introduction

Many nonlinear physical pheonemena such as liquid dynamics, elasticity, chemical kine-

matics, relativity, optical fiber etc. are modelled by nonlinear partial differential equations.

Therefore traveling wave solutions of nonlinear partial differential equations have importance

in real world problems. Due to these solutions give information about the character of phys-

ical events, it is required to powerful methods such as the auxiliary equation method [1],

extended auxiliary equation method [2], Painleve method [3], inverse scattering method [4],

simple equation method [5], modified simple equation method [6, 7, 8, 9], extended simple

equation method [10], G′/G expansion method [11, 12, 13], tan(φ(ξ)/2)− expansion method

[14], tanh method [15], extended tanh method [16], exp(−phi(xi))-expansion method [17],

subequation method [18],modified Kudryashov method [19], generalized Kudryashov method
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[20, 21, 26], extended Kudryashov method [22], ansatz method [23] and so on.

In this paper, by inspiring the modified Kudryashov method, an extended method is

executed to find the traveling wave solutions for two integro partial differential equations,

namely, (1 + 1) - dimensional and (2 + 1) - dimensional Ito’s equations given as [24, 25, 26]:

vtt + vxxxt + 3(vxut + vvxt) + 3vxx

∫ x

−∞
vtdx = 0

where v is the function of (x, t) and

vtt + vxxxt + 3(2vxvt + vvxt) + 3vxx

∫ x

−∞
vtdx+ αvyt + βvxt = 0 (1.1)

where v is the function of (x, y, t).

The remnant of this paper organized as follows: In the following section we have a brief

review on the extended method. In section 3, we use this method to get traveling wave

solutions of Ito’s equations. Finally, conclusions are given in Section 4.

2. Methodology

The extended method is described systematically in this section [22].

Step 1. We suppose that given nonlinear partial differential equation for u(x, t) to be in the

form:

P (u, ut, ux, uy, uz, uxy, uyz, uxz, ...) = 0 (2.2)

which can be reduced to an ordinary differential equation. Then Eq.(2.2) reduces to a

nonlinear ordinary differential equation of the form:

H(u, uµ, uµµ, uµµµ, . . .) = 0 (2.3)

under the wave transformation

u(x, y, z, . . . , t) = u(µ), µ = k(x+ ct) or µ = x− ct, (2.4)

where k and c are constants.

Step 2. Suppose that the traveling wave solutions of Eq.(2.3) to be as follows:

u(µ) =
N∑
i=0

aiZ
i(µ) (2.5)

where ai(i = 0, 1, 2, .., N) are constants such that aN 6= 0 and Z = ± 1√
1±a2µ . The function

Z is the solution of equation of the auxilary ordinary differential equation

Zµ = lna(Z3 − Z). (2.6)
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Step 3. In order to calculate the positive integer N in formula (2.5) we consider the ho-

mogenous balance between the highest order nonlinear terms and highest order derivatives

in Eq. (2.3). Supposing us(µ)u(l)(µ) and (u(r)(µ))p are the highest order nonlinear terms of

Eq. (2.3) and we have

N =
2(l − pr)
p− s− 1

. (2.7)

Step 4. Substituting Eq.(2.5) into Eq.(2.3) and equating the coefficients of Zi to zero, we

obtain a system of algebraic equations. By solving this system with the help of Mathematica

packet program, we get the traveling wave solutions of Eq.(2.3).

3. Applications

3.1. (1+1) dimensional integro-differential Ito Equation. We first apply the method

to (1 + 1) - dimensional integro-differential Ito equation in the form:

vtt + vxxxt + 3(vxut + vvxt) + 3vxx

∫ x

−∞
vtdx = 0 (3.8)

where v is the function of (x, t).

We use the transformation

v(x, t) = ux(x, t).

This transformation carries Eq.(3.8) into following differential equation:

uxtt + uxxxxt + 3(uxxuxt + uxuxxt) + 3uxxxut = 0. (3.9)

Then, using travelig wave transformation (2.4) we have

− cu′′′ + u(v) − 3c(u′′u′′ + u′u′′)− 3cu′′′u′ = 0. (3.10)

where ′ = d
dξ . By integrating Eq.(3.10), we obtain, upon setting the integration constant to

zero,

u′′′ + 3c(u′)2 − cu′ = 0. (3.11)

Then using the transformation ω = u′ Eq.(3.11) can be written as

ω′′ + 3ω2 − cω = 0. (3.12)

Also we take

ω(µ) =

N∑
i=0

aiZ
i (3.13)
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where Z(µ) = ± 1
(1±e2µ)1/2 . We note that the function Z is the solution of Zµ = Z3 − Z.

Balancing the highest order derivative and nonlinear term we calculate

N = 4. (3.14)

Thus, we have

ω(µ) = a0 + a1Z(µ) + a2Z
2(µ) + a3Z

3(µ) + a4Z
4(µ) (3.15)

and substituting derivatives of ω(µ) with respect to µ in Eq.(3.15). The required derivatives

in Eq. (3.12) are obtained

ωµ = (Z3 − Z)(a1 + 2a2Z + 3a3Z
2 + 4a4Z

3), (3.16)

ωµµ = (Z3 − Z)[24a4Z
5 + 15a3Z

4 + (8a2 − 16a4)Z
3 (3.17)

+ (3a1 − 9a3)Z
2 − 4a2 − a1]. (3.18)

Substituting derivatives Eq.(3.15) and Eq.(3.16) into Eq.(3.12) and accumulate the coefficient

of each power of Zi, setting each of coefficient to zero, solving the resulting system of algebraic

equations we get the following solutions:

Case 1:

a0 = −4

3
, a1 = a1, a2 = 8, a3 = a3, (3.19)

a4 = −8, c = −4. (3.20)

Inserting Eq.(3.19) into Eq.(3.15), we obtain the following solutions of Eq.(3.8) with respect

to traveling wave transformation (2.4)

v1(µ) = −4

3
+
a1(1 + e2µ) + a3

(1 + e2µ)3/2
+

2

cosh2(µ)
, (3.21)

v2(µ) = −4

3
+
a1(1− e2µ) + a3

(1− e2µ)3/2
− 2

sinh2(µ)
. (3.22)

Thus, we obtain new exact solutions to Eq.(3.8)

v1(x, t) = −4

3
+
a1(1 + e2x+8t) + a3

(1 + e2x+8t)3/2
+

2

cosh2(x+ 4t)
, (3.23)

v2(x, t) = −4

3
+
a1(1− e2x+8t) + a3

(1− e2x+8t)3/2
− 2

sinh2(x+ 4t)
. (3.24)

Case 2:

a0 = 0, a1 = a1, a2 = −8, a3 = a3, (3.25)

a4 = −8, c = 4 (3.26)
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Figure 1. The exact solution v1 of Eq.(3.8)

Figure 2. The projection of v1 at t = 0

Inserting Eq.(3.25) into Eq.(3.15), we obtain the following solutions of Eq.(3.8) with respect

to traveling wave transformation (2.4)

v3(µ) =
a1(1 + e2µ) + a3

(1 + e2µ)3/2
+

2

cosh2(µ)
, (3.27)

v4(µ) =
a1(1− e2µ) + a3

(1− e2µ)3/2
− 2

sinh2(µ)
. (3.28)

Thus, we get new exact solutions to Eq.(3.8)

u3(x, t) =
a1(1 + e2x−8t) + a3

(1 + e2x−8t)3/2
+

2

cosh2(x− 4t)
, (3.29)

u4(x, t) =
a1(1− e2x−8t) + a3

(1− e2x−8t)3/2
− 2

sinh2(x− 4t)
. (3.30)

3.2. (2+1) dimensional integro-differential Ito Equation. We secondly apply the method

to (2 + 1) - dimensional integro-differential Ito equation in the form:

vtt + vxxxt + 3(2vxvt + vvxt) + 3vxx

∫ x

−∞
vtdx+ αvyt + βvxt = 0 (3.31)
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where v is the function of (x, y, t).

Using the transformation

v(x, t) = ux(x, t)

Eq.(3.31) turns into following differential equation:

uxtt + uxxxxt + 3(2uxxuxt + uxuxxt) + 3uxxxut + αuxyt + βuxxt = 0. (3.32)

By considering the traveling wave transformation µ = x + y − ct, Eq.(3.33) can be reduced

to the following ordinary differential equation:

(c− α− β)u′′′ − u(v) − 3((u′)2)′′ = 0 (3.33)

where ′ = d
dξ . If we integrate twice, we get

(c− α− β)u′ − u′′′ − 3(v′)2 = 0. (3.34)

Then using the transformation ω = u′ Eq.(3.34) can be written as

(c− α− β)ω − ω′′ − 3ω2 = 0. (3.35)

Also we take

ω(µ) =

N∑
i=0

aiZ
i (3.36)

where Z(µ) = ± 1
(1±e2µ)1/2 . We note that the function Z is the solution of Zµ = Z3 − Z.

Balancing the highest order derivative and nonlinear term we calculate

N = 4. (3.37)

Thus, we have

ω(µ) = a0 + a1Z(µ) + a2Z
2(µ) + a3Z

3(µ) + a4Z
4(µ) (3.38)

and substituting derivatives of ω(µ) with respect to µ in Eq.(3.38). The required derivatives

in Eq. (3.35) are obtained

ωµ = (Z3 − Z)(a1 + 2a2Z + 3a3Z
2 + 4a4Z

3), (3.39)

ωµµ = (Z3 − Z)[24a4Z
5 + 15a3Z

4 + (8a2 − 16a4)Z
3

+ (3a1 − 9a3)Z
2 − 4a2 − a1]. (3.40)

Substituting derivatives Eq.(3.38) and Eq.(3.39) into Eq.(3.35) and accumulating the coeffi-

cient of each power of Zi, setting each of coefficient to zero, solving the resulting algebraic



TRAVELING WAVE SOLUTIONS FOR SOME INTEGRO PARTIAL DIFFERENTIAL EQUATIONS 255

equation system we obtain the following solutions:

Case 1:

a0 = −4

3
, a1 = 0, a2 = 8, a3 = 0, (3.41)

a4 = −8, c = −4 + α+ β (3.42)

Inserting Eq.(3.41) into Eq.(3.38), we obtain the following solutions of Eq.(3.31) with respect

to traveling wave transformation µ = x+ y − ct

v1(µ) = −4

3
+

2

cosh2(µ)
, (3.43)

v2(µ) = −4

3
− 2

sinh2(µ)
. (3.44)

Thus, we obtain new exact solutions to Eq.(3.31) in the form:

v1(x, y, t) = −4

3
+

2

cosh2(x+ y − (4− α− β)t)
, (3.45)

v2(x, t) = −4

3
− 2

sinh2(x+ y − (4− α− β)t)
. (3.46)

Case 2:

a0 = 0, a1 = 0, a2 = 8, a3 = 0, (3.47)

a4 = −8, c = 4 + α+ β (3.48)

Inserting Eq.(3.47) into Eq.(3.38), we get the following solutions of Eq(3.31) with respect to

traveling wave transformation µ = x+ y − ct:

v1(µ) =
2

cosh2(µ)
, (3.49)

v2(µ) =
2

sinh2(µ)
. (3.50)

Thus, we obtain new exact solutions to Eq.(3.31) in the form:

v3(x, t) =
2

cosh2(x+ y − (4 + α+ β)t)
, (3.51)

v4(x, t) =
2

sinh2(x+ y − (4 + α+ β)t)
. (3.52)
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4. Conclusion

In this work, the extended method is executed to construct exact solutions of nonlinear in-

tegro partial differential equations with constant coefficients. By using the proposed method

we have successfully obtained analytical solutions of (1 + 1) - dimensional and (2 + 1) - di-

mensional Ito equations. Besides the solutions in [26] , hyperbolic function type solutions are

obtained. In addition, change in the parameters effects the speed of the wave. The obtained

solutions may have importance for some special technological and physical events. It can be

concluded that this method is standard, effective and also convenient for solving nonlinear

integro partial differential equations.
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