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ON SOME TENSOR CONDITIONS OF NEARLY KENMOTSU

f-MANIFOLDS

YAVUZ SELIM BALKAN AND CENAP ÖZEL∗

Abstract. In this paper, we continue to study on nearly Kenmotsu f -manifolds motivated

by previous study. In this time, we prove that a second-order symmetric closed recurrent

tensor is a multiple of the associated metric tensor on nearly Kenmotsu f -manifolds. Then,

we get some necessary condition under which a vector field on a nearly Kenmotsu f -manifold

will be a strict generalized contact or Killing vector field. Finally, we show that every ϕ-

recurrent nearly Kenmotsu f -manifold is an Einstein manifold of globally framed type and

every locally ϕ-recurrent nearly Kenmotsu f -manifold is a manifold of constant curvature.

1. Introduction

The studies on complex manifold is initiated by Schouten and van Dantzig in 1930 [20].

In 1933, Kähler introduced an important class of complex manifolds, which is called Kähler

manifold [13]. Then, Weil proved that the existence of (1, 1) tensor field J on complex

manifold, which satisfies

J2 = −I,

where I denotes the identity transformation [23]. In 1950, Ehresmann defined almost complex

manifolds, using this tensor field J . He proved that every complex manifold is an almost

complex manifold, but the converse is not true [7].
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In 1970, A. Gray introduced nearly Kähler manifolds which are not Kähler, using the

covariant derivative of almost complex structure J with respect to any vector field on manifold

[11]. Nearly Kähler manifolds satisfy

(∇XJ)X = 0,

for each vector field X. Then, using this definition, Blair introduced nearly cosymplectic

manifold in 1971 [4] and Blair et al. defined nearly Sasakian structure in 1976 [5]. Recently,

Balkan carried this notion on globally framed metric f -manifolds and he introduced and

studied on nearly C manifolds [2] and nearly Kenmotsu f -manifolds [1].

The notion of globally framed manifold or globally framed f -manifold, which is general-

ization of complex and contact manifolds, was introduced by Nakagawa in 1966 [16]. Then,

Blair defined three classes of globally framed manifolds, called K-manifold, S-manifold and

C-manifold [3]. Many researchers studied on these manifolds. Falcitelli and Pastore in-

troduced almost Kenmotsu f -manifolds in 2007 [8]. In 2014, Öztürk et al. defined almost

α-cosymplectic f -manifolds, which are generalization of almost C-manifolds and almost Ken-

motsu f -manifolds [18].

Tensor properties are so important in differential geometry, in particular in Riemannian

geometry. Many researchers focused on many aspect of this topic. Wong studied recurrent

tensor fields on a manifold endowed with a linear connection [24]. Levy proved that on a space

of constant curvature, second order symmetric parallel non-singular tensors are constant

multiples of the metric tensor [15]. Najafi and Hosseinpour Kashani considered this topic for

nearly Kenmotsu f manifolds [17].

Now, let (M, g) be a Riemannian manifold. If a (0, 2)-tensor field α satisfies ∇α = λ⊗α

for some 1-form λ, then it is said to be a recurrent tensor field on (M, g) . Here, the 1-form

λ is called the recurrence co-vector of α. It is easy to see that every multiple of the metric

tensor is a recurrent tensor. Furthermore, if α is called a closed recurrent tensor. Also we

can say that the set of closed recurrent tensors contains the set of parallel tensors as a subset,

for λ = 0 ([24], [25]).

In the present study, we focus on nearly Kenmotsu f -manifolds motivated by previous

studies. Firstly, we prove that a second-order symmetric closed recurrent tensor is a mul-

tiple of the associated metric tensor on nearly Kenmotsu f -manifolds. Then, we get some

necessary condition under which a vector field on a nearly Kenmotsu f -manifold will be

a strict generalized contact or Killing vector field. Finally, we show that every ϕ-recurrent



NEARLY KENMOTSU f -MANIFOLDS 75

nearly Kenmotsu f -manifold is an Einstein manifold of globally framed type and every locally

ϕ-recurrent nearly Kenmotsu f -manifold is a manifold of constant curvature −1.

2. Preliminaries

Let M be (2n+ s)-dimensional manifold and ϕ is a non-null (1, 1) tensor field on M . If

ϕ satisfies

ϕ3 + ϕ = 0, (2.1)

then ϕ is called an f -structure and M is called f -manifold [26]. If rankϕ = 2n, namely

s = 0, ϕ is called almost complex structure and if rankϕ = 2n + 1, namely s = 1, then ϕ

reduces an almost contact structure [10]. rankϕ is always constant [21].

On an f -manifold M , P1 and P2 operators are defined by

P1 = −ϕ2, P2 = ϕ2 + I, (2.2)

which satisfy

P1 + P2 = I, P 2
1 = P1, P 2

2 = P2,

ϕP1 = P1ϕ = ϕ, P2ϕ = ϕP2 = 0.
(2.3)

These properties show that P1 and P2 are complement projection operators. There are D and

D⊥ distributions with respect to P1 and P2 operators, respectively [27]. Also, dim (D) = 2n

and dim
(
D⊥
)

= s.

Let M be (2n+ s)-dimensional f -manifold and ϕ is a (1, 1) tensor field, ξi is vector field

and ηi is 1-form for each 1 ≤ i ≤ s on M, respectively. If
(
ϕ, ξi, η

i
)

satisfy

ηj (ξi) = δji , (2.4)

ϕ2 = −I +
s∑
i=1

ηi ⊗ ξi, (2.5)

then
(
ϕ, ξi, η

i
)

is called globally framed f -structure or simply framed f -structure and M is

called globally framed f -manifold or simply framed f -manifold [16]. For a framed f -manifold

M, the following properties are satisfied [16]:

ϕξi = 0, (2.6)

ηi ◦ ϕ = 0. (2.7)

If on a framed f -manifold M , there exists a Riemannian metric which satisfies

ηi (X) = g (X, ξi) , (2.8)
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and

g (ϕX, ϕY ) = g (X, Y )−
s∑
i=1

ηi (X) ηi (Y ) , (2.9)

for all vector fields X, Y on M, then M is called framed metric f -manifold [9]. On a framed

metric f -manifold, fundamental 2-form Φ defined by

Φ (X, Y ) = g (X, ϕY ) , (2.10)

for all vector fields X, Y ∈ χ (M) [9]. For a framed metric f -manifold,

Nϕ + 2
s∑
i=1

dηi ⊗ ξi, (2.11)

is satisfied, M is called normal framed metric f -manifold, where Nϕ denotes the Nijenhuis

torsion tensor of ϕ [12].

A globally framed metric f -manifold M is called Kenmotsu f -manifold if it satisfies

(∇Xϕ)Y =
s∑

k=1

{
g (ϕX, Y ) ξk − ηk (Y )ϕX

}
, (2.12)

for all vector fields X, Y ∈ χ (M) [18]. Furthermore, if a globally framed metric f -manifold

M satisfies

(∇Xϕ)Y + (∇Y ϕ)X = −
s∑

k=1

{
ηk (X)ϕY + ηk (Y )ϕX

}
(2.13)

then it is called nearly Kenmotsu f -manifold. It is easily seen that every Kenmotsu f -

manifold is a nearly Kenmotsu f -manifold, but the converse is not true. When a normal

Kenmotsu f -manifold M is normal, it is Kenmotsu f -manifold [1]. On a nearly Kenmotsu

f -manifold M, the following identities hold:

R (ξi, X)Y =
s∑

k=1

{
−g (X, Y ) ξk + ηk (Y )X

}
, (2.14)

R (X, Y ) ξi =
s∑

k=1

{
ηk (X)Y − ηk (Y )X

}
, (2.15)

S (ϕX, ϕY ) = S (X, Y ) + (2n+ s− 1)
s∑

k=1

ηk (X) ηk (Y ) , (2.16)

(
∇Xηi

)
Y = g (X, Y )−

s∑
k=1

ηk (X) ηk (Y ) , (2.17)

s∑
k=1

ηk (R (X, Y )Z) =

s∑
k=1

{
g (X, Z) ηk (Y )− g (Y, Z) ηk (X)

}
, (2.18)

for any vector fields X, Y on M [1].
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A vector field X on a nearly Kenmotsu f -manifold M is said to be a generalized contact

vector field, if

LXη
k (Y ) = σηk (Y ) (2.19)

or a conformal vector field, if

LXg (Y, Z) = ρg (Y, Z) , (2.20)

for any vector fields Y and Z on M, where σ and ρ are scalar function defined on M and LX

denotes the Lie derivative along X. Moreover, X is called strict generalized contact vector

field or Killing vector field if σ = 0 or ρ = 0.

3. Recurrent Tensor Fields of the Second Order On Nearly Kenmotsu

f-manifolds

Theorem 3.1. Let M be a nearly Kenmotsu f -manifold. Then a second-order symmetric

closed recurrent tensor field whose recurrence co-vector annihilates ξk is a multiple of the

metric tensor g for each 1 ≤ k ≤ s.

Proof. We suppose that M is a nearly Kenmotsu f -manifold and α is a closed recur-

rent (0, 2)-tensor on M which satisfies λ (ξk) = 0, for each 1 ≤ k ≤ s. After a straightforward

calculation, we obtain

α (R (W, X)Y, Z) +α (Y, R (W, X)Z) = λ (W )α (∇XY, Z)−λ (X)α (∇WY, Z) , (3.21)

for any vector fields X, Y, Z, W on M. Putting Y = Z = W = ξi in (3.21) and using

∇Xξi = −ϕ2X, then in view of λ (ξi) = 0 we have

α (R (ξk, X) ξk, ξk) + α (ξk, R (ξk, X) ξk) = 0. (3.22)

By using (2.14) and (2.15) in (3.22), we get

g (X, ξi)
s∑

k=1

{α (ξk, ξi) + α (ξi, ξk)} − α (X, ξi)− α (ξi, X) = 0 (3.23)

Differentiating (3.23) along Y and using ∇ξkξk = 0, it follows that

{g (∇YX, ξi) + g (X, ∇Y ξi)}
s∑

k=1

{α (ξk, ξi) + α (ξi, ξk)} (3.24)

= α (∇YX, ξi) + α (X, ∇Y ξi) + α (∇Y ξi, X) + α (ξi, ∇YX) .
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Replacing X by ∇YX in (3.24), we derive

g (∇YX, ξi)
s∑

k=1

{α (ξk, ξi) + α (ξi, ξk)} − α (∇YX, ξi)− α (ξi, ∇YX) = 0 (3.25)

From (3.24) and (3.25), we deduce

g (X, ∇Y ξi)
s∑

k=1

{α (ξk, ξi) + α (ξi, ξk)} = α (X, ∇Y ξi) + α (∇Y ξi, X) . (3.26)

Taking in account of ∇Xξi = −ϕ2X, then we conclude that

g

(
X, Y −

s∑
k=1

ηk (Y ) ξk

)
s∑

k=1

{α (ξk, ξi) + α (ξi, ξk)} (3.27)

= α

(
X, Y −

s∑
k=1

ηk (Y ) ξk

)
+ α

(
Y −

s∑
k=1

ηk (Y ) ξk, X

)
(3.28)

Using (3.23) and (3.27), we find

α◦ (X, Y ) =

s∑
k=1

α∗ (ξk, ξi) g (X, Y ) . (3.29)

Here, α◦ denotes the symmetric part of α defined by

α◦ (X, Y ) =
s

2
{α (X, Y ) + (Y, X)}

and α∗ (ξk, ξi) = α (ξk, ξi) +α (ξi, ξk) . Furthermore, by using (3.23) and ∇α = λ⊗α, then

we have ∇Xµ = λ (X)µ, where X is an arbitrary vector field on M and

µ =
s∑

k=1

α∗ (ξk, ξi) .

Hence, if α is a parallel tensor or equivalently λ = 0, so we can say µ is a constant function,

but in general µ is not a constant function. Additionally, if α is symmetric, i.e.α = α◦, then

we conclude α = µg and λ = dµ.

4. Geometric Vector Fields on Nearly Kenmotsu f-manifolds

Theorem 4.1. Every generalized contact vector field on a nearly Kenmotsu f -manifold leav-

ing the Ricci tensor invariant is a generalized strict contact vector field.

Proof. Let us suppose that a generalized contact vector field X leaves the Ricci

tensor invariant, i.e.

LXS (Y, Z) = 0, (4.30)

for any vector fields Y and Z on M. Taking Y = ξi in (4.30), it implies that

LX (S (Y, ξi)) = S (LXY, ξi) + S (Y, LXξi) . (4.31)
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By using (2.16), (2.19) and (4.31), then we have

(1− (2n+ s))σ
s∑

k=1

ηk (Y ) = S (Y, LXξi) . (4.32)

Taking Y = ξj in (4.32) and using (2.16), then we obtain

σ =

s∑
k=1

ηk (LXξi) . (4.33)

On the other hand, substituting ξi for Y in (2.19) it follows that

σ = −
s∑

k=1

ηk (LXξi) , (4.34)

which means σ = 0.

Theorem 4.2. Every vector field on a nearly Kenmotsu f -manifold leaving the curvature

tensor invariant is a Killing vector field.

Proof. For a vector field X on a nearly Kenmotsu f -manifold, we assume that

LXR = 0. It is well-known that the curvature tensor of g satisfies

g (R (U, V )Y, Z) + g (R (U, V )Z, Y ) = 0, (4.35)

for all vector fields U, V, Y, Z on M. Applying LX to (4.35), we have

LXg (R (U, V )Y, Z) + LXg (R (U, V )Z, Y ) = 0. (4.36)

Setting U = Y = Z = ξi in (4.36) and using (2.14), we derive

LXg (V, ξi) = ηi (V )LXg (ξi, ξi) . (4.37)

On the other hand, putting U = Y = ξi in (4.36) and using (2.14), it implies that

0 = LXg (V, Z)− ηi (V )

s∑
k=1

LXg (ξk, Z) (4.38)

+LXg (ξi, V )

s∑
k=1

ηk (Z)− g (V, Z)LXg (ξi, ξi)

From (4.37) and (4.38), then we get

LXg (V, Z) = ρg (V, Z) , (4.39)

where ρ = g (ξi, ξi) . Under the assumption LXR = 0, we see that LXS = 0. Furthermore,

it is said to be

ρ = −2g (LXξi, ξi) =
2

2n+ s− 1
S (LXξi, ξi) =

1

(1− 2n− s)
LXS (ξi, ξi) = 0. (4.40)
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5. ϕ-Recurrent Nearly Kenmotsu f-manifolds

Firstly, we give some basic definitions.

Definition 5.1. A nearly Kenmotsu f -manifold M is said to be locally ϕ-symmetric manifold

in the sense of Takahashi [22] if it satisfies

ϕ2 ((∇WR) (X, Y )Z) = 0, (5.41)

for all vector fields X, Y, Z, W orthogonal to ξk, for each 1 ≤ k ≤ s.

Definition 5.2. A nearly Kenmotsu f -manifold M is said to be ϕ-recurrent manifold in the

sense of Takahashi [22] (locally ϕ-recurrent manifold, resp.) if there exists a nonzero 1-form

B such that

ϕ2 ((∇WR) (X, Y )Z) = B (W )R (X, Y )Z, (5.42)

for arbitrary vector fields X, Y, Z, W (for all X, Y, Z, W orthogonal to ξk, for each

1 ≤ k ≤ s).

Theorem 5.1. Let M be an η-Einstein nearly Kenmotsu f -manifold. If at least one of the

coefficients is constant function, then M is an Einstein manifold.

Proof. From (5.42), we have

(∇WR) (X, Y )Z =
s∑

k=1

ηk ((∇WR) (X, Y )Z) ξk −B (W )R (X, Y )Z. (5.43)

By using (5.43) and Bianchi identity, we obtain

B (W )
s∑

k=1

ηk (R (X, Y )Z) +B (X)
s∑

k=1

ηk (R (Y, W )Z) +B (Y )
s∑

k=1

ηk (R (W, X)Z) = 0.

(5.44)

Now, let {ei} , 1 ≤ i ≤ 2n+ s be an orthonormal basis of the tangent space at any point of

the manifold. Setting Y = Z = ei in (5.44) and taking summation over i, in view of (2.14)

and (2.15), then we conclude that

B (W )

s∑
k=1

ηk (X) = B (X)

s∑
k=1

ηk (W ) , (5.45)

for any vector fields X, W . Replacing X by ξi in (5.45), it implies that

B (W ) = ηi
(
B̂
) s∑
k=1

ηk (W ) , (5.46)
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where B (ξi) = g
(
ξi, B̂

)
= ηi

(
B̂
)
. Now, let us suppose that M is η-Einstein, the we can

write

S (X, Y ) = ag (X, Y ) + b
s∑

k=1

ηk (X) ηk (Y ) , (5.47)

where a and b are scalar functions on M . Taking Y = ξi in (2.17), from (5.47) we deduce

a+ b = 1− 2n− s. (5.48)

Using local coordinate, we can rewrite (5.47) as follows:

Rij = agij + b
s∑

k=1

ηki η
k
j , (5.49)

which implies

r = (2n+ s) a+ sb. (5.50)

Taking the covariant derivative with respect to g from (5.49), we derive

Rij,m = a,mgij +
s∑

k=1

{
b,mη

k
i η

k
j + bηki,mη

k
j + bηki η

k
j,m

}
. (5.51)

By contracting (5.51) with gim, we get

Rmj,m = a,j +
s∑

k=1

{
b,mξ

mηkj + bηki,mg
imηkj + bηki η

k
j,mg

im
}
. (5.52)

We know that Rmj,m =
1

2
r,j . Thus we have

r,j = 2

{
a,j +

s∑
k=1

[b,mξ
m + 2nb] ηkj

}
. (5.53)

Here, we use (2.17) and ηi,mg
im =

{
gim −

∑s
k=1 η

k
i η

k
m

}
gim = 2n. Moreover, taking the

covariant derivative of (5.48) and from (5.50), then we obtain

r,j = 2na,j . (5.54)

Substituting (5.54) into (5.53), it follows that

na,j = a,j +

s∑
k=1

[b,mξ
m + 2nb] ηkj . (5.55)

By contracting (5.55) with ξj and using (5.48), we deduce

b,mξ
m = −2b. (5.56)

Moreover, if b or a is a constant function, then (5.56) implies that b = 0. Hence, M is an

Einstein manifold.
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Theorem 5.2. Every ϕ-recurrent nearly Kenmotsu f -manifold is an Einstein manifold.

Proof. By using (5.43), we obtain

− g ((∇WR) (X, Y )Z, U) +
s∑

k=1

ηk ((∇WR) (X, Y )Z) ηk (U) = B (W ) g (R (X, Y )Z, U) .

(5.57)

Let {ei}, 1 ≤ i ≤ 2n + s be an orthonormal basis of the tangent space at any point of the

manifold M . Setting X = U = ei in (5.57) and taking summation over i, then we deduce

that

− (∇WS) (Y, Z) +
2n+s∑
i=1

ηi ((∇WR) (ei, Y )Z) ηi (ei) = B (W )S (Y, Z) . (5.58)

Replacing Z by ξk in (5.58), we have

− (∇WS) (Y, ξk) +
2n+s∑
i=1

ηi ((∇WR) (ei, Y ) ξk) η
i (ei) = B (W )S (Y, ξk) . (5.59)

Now, we will show that
∑2n+s

i=1 ηi ((∇WR) (ei, Y ) ξk) η
i (ei) vanishes identically. Firstly, we

recall

2n+s∑
i=1

ηi ((∇WR) (ei, Y ) ξk) η
i (ei) =

s∑
k=1

ηk ((∇WR) (ei, Y ) ξk) (5.60)

=
s∑

k=1

g ((∇WR) (ek, Y ) ξk, ξk) ,

where we use ηi (ei) = 0 for i = 1, . . . , 2n. From the properties, we find

s∑
k=1

g ((∇WR) (ek, Y ) ξk, ξk) (5.61)

=

s∑
k=1

{g (∇WR (ek, Y ) ξk, ξk)− g (R (∇W ek, Y ) ξk, ξk)

−g (R (ek, ∇WY ) ξk, ξk)− g (R (ek, Y )∇W ξk, ξk)} .

Making use of (5.61) at p ∈ M and using gij (p) = δij , we conclude that ∇W ek (p) = 0. On

the other hand, we get

s∑
k=1

g (R (ek, ∇WY ) ξk, ξk) = −
s∑

k=1

g (R (ξk, ξk)∇WY, ek) = 0, (5.62)

since R skew-symmetric. By virtue of (5.62) and ∇W ek (p) = 0 in (5.61), we derive

s∑
k=1

g ((∇WR) (ek, Y ) ξk, ξk) =

s∑
k=1

{g (∇WR (ek, Y ) ξk, ξk) (5.63)

−g (R (ek, Y )∇W ξk, ξk)} .
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By using g (R (ek, Y ) ξk, ξk) = −g (R (ξk, ξk)Y, ek) = 0, we find

s∑
k=1

{g (∇WR (ek, Y ) ξk, ξk)− g (R (ek, Y ) ξk, ∇W ξk)} = 0, (5.64)

which implies

0 =
s∑

k=1

g ((∇WR) (ek, Y ) ξk, ξk) (5.65)

= −
s∑

k=1

{g (R (ek, Y ) ξk, ∇W ξk) + g (R (ek, Y )∇W ξk, ξk)} ,

since R skew-symmetric. Hence, we prove
∑2n+s

i=1 ηi ((∇WR) (ei, Y ) ξk) η
i (ei) = 0 and from

(5.59) we have

− (∇WS) (Y, ξk) = B (W )S (Y, ξk) . (5.66)

Furthermore, it is well-known that

(∇WS) (Y, ξk) = ∇WS (Y, ξk)− S (∇WY, ξk)− S (Y, ∇W ξk) . (5.67)

By applying (2.16), (2.17) and ∇Xξi = −ϕ2X in (5.67), it follows

(∇WS) (Y, ξk) = − (2n+ s− 1) g (Y, W )− S (Y, W ) . (5.68)

Plugging (5.68) into (5.66) and using (5.46), we conclude that

S (Y, W ) = (1− 2n− s) g (Y, W ) + (1− 2n− s) ηi
(
B̂
) s∑
k=1

ηk (Y ) (W ) ,

which means the manifold η-Einstein of globally framed type with a = (1− 2n− s) is con-

stant. By Theorem 4., it is said to be M is an Einstein manifold

Theorem 5.3. A locally ϕ-recurrent nearly Kenmotsu f -manifold has constant curvature

−1.

Proof. Differentiating (2.15) with respect to any vector field W and taking in account

of (2.17), after an easy calculation we find

(∇WR) (X, Y ) ξi = g (W, X)Y − g (W, Y )X −R (X, Y )W. (5.69)

By using (2.18) and from (5.69), we get

s∑
k=1

ηk ((∇WR) (X, Y ) ξk) = 0. (5.70)



84 YAVUZ SELIM BALKAN AND CENAP ÖZEL∗

From (5.69) and (5.70), we have from (5.43)

s∑
k=1

(∇WR) (X, Y ) ξk = B (W )
s∑

k=1

R (X, Y ) ξk. (5.71)

By virtue of (5.69), it implies that

− g (W, X)Y + g (W, Y )X +R (X, Y )W = B (W )

s∑
k=1

R (X, Y ) ξk. (5.72)

Thus, if X and Y are orthogonal to ξk for each 1 ≤ k ≤ s, we derive

s∑
k=1

R (X, Y ) ξk = 0. (5.73)

Hence, for all vector fields X, Y and W, we deduce

R (X, Y )W = −{g (W, X)Y + g (W, Y )X} ,

which gives us desired result.

6. Example

Let M be a 6-dimensional manifold given by

M =
{

(x1, x2, y1, y2, z1, z2) ∈ R6 : z1, z2 6= 0
}

where (x1, x2, y1, y2, z1, z2) are standard coordinates in R6. We choose the vector fields

as in the following:

e1 = e−(z1+z2)
∂

∂x1
, e2 = e−(z1+z2)

∂

∂x2
,

e3 = e−(z1+z2)
∂

∂y1
, e4 = e−(z1+z2)

∂

∂y2
,

e5 =
∂

∂z1
, e6 =

∂

∂z2
.

which are linearly independent at any point of M. Denote g the Riemannian metric defined

by

g = e2(z1+z2)
2∑
i=1

{dxi ⊗ dxi + dyi ⊗ dyi + dzi ⊗ dzi} .

Let η1 and η2 be 1-forms given by η1 (X) = g (X, e5) and η2 (X) = g (X, e6) for any vector

field on M , respectively. Thus {e1, e2, e3, e4, e5, e6} is an orthornormal basis of tangent

space at any point on M . We define the (1, 1)-tensor field ϕ as follows:

ϕ

(
2∑
i=1

(
xi

∂

∂xi
+ yi

∂

∂yi
+ zi

∂

∂zi

))
=

2∑
i=1

(
xi

∂

∂yi
− yi

∂

∂xi

)
.
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Hence we derive

ϕe1 = e3, ϕe2 = e4, ϕe3 = −e1, ϕe4 = −e2, ϕe5 = 0, ϕe6 = 0.

By virtue of the linearity of g and ϕ, we deduce that

η1 (e5) = 1, η2 (e6) = 1, ϕ2X = −X + η1 (X) e5 + η2 (X) e6

g (ϕX, ϕY ) = g (X, Y )− η1 (X) η1 (Y )− η2 (X) η2 (Y ) .

Then for ξ1 = e5 and ξ2 = e6,
(
ϕ, ξi, η

i, g
)

defines a globally framed metric f -structure on

M. It is clear that the 1-forms are closed. On the other hand, we get

Φ

(
∂

∂xi
,
∂

∂yi

)
= g

(
∂

∂xi
, ϕ

∂

∂yi

)
= g

(
∂

∂xi
, − ∂

∂xi

)
= e−2(z1+z2)

which means that Φ = −e2(z1+z2). Therefore, we obtain

dΦ = −2e2(z1+z2) (dz1 + dz2) ∧ dx ∧ dy = 2 (η1 + η2) ∧ Φ

which gives us M is an almost Kenmotsu f -manifold. After some easy computations, it is

clearly seen that the Nijenhuis tensor field vanishes identically, that is, M is normal. So

M is a Kenmotsu f -manifold. It is well-known that every Kenmotsu f -manifold is a nearly

Kenmotsu f -manifold (see [2]). Thus we conclude that M is a nearly Kenmotsu f -manifold

Furthermore we have

[e1, e5] = [e1, e6] = e1,

[e2, e5] = [e2, e6] = e2,

[e3, e5] = [e3, e6] = e3,

[e4, e5] = [e4, e6] = e3

and remaning terms [ei, ej ] = 0 for all 1 ≤ i, j ≤ 6

The Riemannian connection ∇ of the metric tensor g is given by Koszul’s formula which

is defined by

2g (∇XY, Z) = Xg (Y, Z) + Y g (Z, X)− Zg (X, Y )

−g (X, [Y, Z])− g (Y, [X, Z]) + g (Z, [X, Y ]) .

By using this Koszul’s formula, then we obtain

∇e1e1 = ∇e2e2 = ∇e3e3 = ∇e4e4 = − (e5 + e6)
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and the other terms ∇eiej = 0 for all 1 ≤ i, j ≤ 6. It is welknown that Riemannian curvature

tensor is defined by

R (X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X, Y ]Z (6.74)

for any vector fields on M. By the above results, we can easily get the non-vanishing com-

ponents of the Riemannian curvature tensors as in the following:

R (e1, e5) e1 = R (e1, e6) e1 = e5 + e6,

R (e2, e5) e2 = R (e2, e6) e2 = e5 + e6,

R (e3, e5) e3 = R (e3, e6) e3 = e5 + e6,

R (e4, e5) e4 = R (e4, e6) e4 = e5 + e6.

(6.75)

Now, let X, Y and Z be three vector fields given by

X = a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6,

Y = b1e1 + b2e2 + b3e3 + b4e4 + b5e5 + b6e6,

Z = c1e1 + c2e2 + c3e3 + c4e4 + c5e5 + c6e6

where ai, bi and ci are all non-zero real numbers for all i = 1, . . . , 6. By taking into account

of (6.75) in (6.74), then we get

R (X, Y )Z = {a1c1 + a2c2 + a3c3 + a4c4} (b5 + b6) (e5 + e6) .

Again by using (6.75), then we obtain the scalar curvature r = 8. By these considerations, it

is said that the 6-dimensional manifold M satisfies Theorem 2 and Theorem 3.

7. Conclusion

In this paper, we study some tensor conditions on nearly Kenmotsu f -manifold and we

generalize some previous results obtain by Najafi and Hosseinpour in [17] since a nearly

Kenmotsu f -manifold is a nice generalization of nearly Kenmotsu one. Additonally, we

construct an example satisfying some corresponding results.
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Mathematici Helvetici, 20 (1) (1947) 110-116.

[24] Wong Y. C., Recurrent tensors on a linearly connected differentiable manifolds, Trans. Amer. Math. Soc.,

99 (2) (1961) 325-341.



88 YAVUZ SELIM BALKAN AND CENAP ÖZEL∗
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