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ON RICCI TENSOR IN THE GENERALIZED SASAKIAN-SPACE-FORMS

SUDHAKAR K. CHAUBEY∗ AND AHMET YILDIZ

Abstract. The object of the present paper is to study the properties of generalized Sasakian-

space-forms. We prove the results related to Ricci symmetric, Ricci recurrent, cyclic par-

allel and Codazzi type Ricci tensors. Results on Ricci soliton and gradient Ricci soliton

are proved. Also, we provide the examples of generalized Sasakian-space-forms which are

verified our results.

1. Introduction

An almost Hermitian manifold endowed with an almost complex structure J is said to be

a generalized complex-space-form if the curvature tensor R is non-vanishing and satisfies

R(X,Y )Z = F1{g(Y,Z)X − g(X,Z)Y }+ F2{g(X, JZ)JY

−g(Y, JZ)JX + 2g(X,JY )JZ},

for smooth functions F1, F2 and all the vector fields X, Y , Z. Motivated by this fact,

P. Alegre et al. [1] defined the generalized Sasakian-space-forms and proved many new re-

sults. They also validate the existence of such space forms by providing non-trivial examples.
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An almost contact metric manifold M equipped with almost contact structure (φ, ξ, η, g) is

said to be a generalized Sasakian-space-form if its non-vanishing curvature tensor R satisfies

the relation

R(X,Y )Z = f1{g(Y,Z)X − g(X,Z)Y }+ f2{g(X,φZ)φY

−g(Y, φZ)φX + 2g(X,φY )φZ}+ f3{η(X)η(Z)Y

−η(Y )η(Z)X + η(Y )g(X,Z)ξ − η(X)g(Y, Z)ξ}, (1.1)

for smooth functions f1, f2, f3 on M and all the vector fields X, Y, Z ∈ T (M), where T (M)

denotes the tangent bundle of the manifold M . We will denote the generalized Sasakian-

space-form byM(f1, f2, f3). A generalized Sasakian space form can be cosymplectic, Sasakian

and Kenmotsu space forms if M is cosymplectic with f1 = c
4 = f2 = f3, M is Sasakian and

f1 = c+3
4 , f2 = f3 = c−1

4 and M is Kenmotsu together with f1 = c−3
4 , f2 = f3 = c+1

4

respectively, where c is constant. Thus we can say that the generalized Sasakian-space-forms

are the natural generalization of cosymplectic, Sasakian and Kenmotsu space forms. Various

new results of the generalized Sasakian-space-forms have been noticed in ([1]-[4], [14]-[16],

[21]-[23], [28]).

In the beginning of 80′s, Hamilton [18] introduced the notion of Ricci flow to obtain a

canonical metric on a differentiable manifold. Since then it became a powerful tool to study

Riemannian manifolds of positive curvature. To prove the Poincaré conjecture, Perelman

([25], [26]) used Ricci flow and its surgery. Also Brendle and Schoen [8] proved the dif-

ferentiable sphere theorem by using Ricci flow. The evolution equation for metrics on a

Riemannian manifold, called Ricci flow and defined as

∂

∂t
gij(t) = −2Sij , g(0) = g0,

for g0 fixed metric on M , where Sij denotes the components of Ricci tensor. The solutions

of Ricci flow are called the Ricci solitons if they are governed by a one parameter family of

diffeomorphisms and scalings. A triplet (g, V, λ) on a Riemannian manifold (M, g) is called

a Ricci soliton [19], natural generalized of Einstein metric, and satisfies

1

2
LV g + S + λg = 0, (1.2)

where S is the Ricci tensor, LV g denotes the Lie derivative of Riemannian metric g along

the vector field V on M and λ is a real constant [19]. A Ricci soliton is said to be steady,

expanding or shrinking if λ = 0, λ > 0 or λ < 0, respectively. Ricci solitons are self similar
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solution of the Ricci flow, possible singularity models of the Ricci flow and critical points of

Perelman’s λ-entropy and µ-entropy [9]. Many authors studied the properties of of the Ricci

solitons but few are ([9]-[13], [22], [27]). The metric g is said to be gradient Ricci soliton if

the vector field V is the gradient of a potential function −f . In such case (1.2) assumes the

form

∇∇f = S + λg, (1.3)

where ∇ represents the Levi-Civita connection of the metric g.

Motivated by above studies, present authors continue the study of generalized Sasakian-

space-forms and Ricci solitons. We organize the paper as: After introduction in section

2, we brief the basic results of contact metric manifolds and generalized Sasakian-space-

forms. In section 3, we present the equivalent conditions for scalar curvature, necessary and

sufficient condition for Ricci symmetric and cyclic parallel Ricci tensor. We also prove that

the generalized Sasakian-space-forms are certain class of almost contact metric manifolds

under certain restrictions. The properties of Ricci and gradient Ricci solitons are given in

section 4. Section 5 deals with examples of the generalized Sasakian-space-forms which are

verified our results.

2. Preliminaries

Let a differentiable manifold M (dimM = 2n + 1) of differentiability class C∞ carries

a global differentiable 1-form η (η ∧ (dη)n 6= 0), a global non-vanishing vector field or the

characteristic vector field ξ and the structure vector field φ, then M is said to have a (φ, ξ, η)-

structure or almost contact structure (φ, ξ, η) to M if

η(ξ) = 1 and φ2 = −I + η ⊗ ξ, (2.4)

where I denotes the identity transformation [6]. From (2.4), it can be easily see that φξ = 0,

η.φ = 0 and rank φ = 2n. A Riemannian metric g of type (0, 2) is said to be compatible

with the almost contact structure (φ, ξ, η) if the relations

g(X,Y ) = g(φX, φY ) + η(X)η(Y ), g(X, ξ) = η(X) (2.5)

hold for arbitrary vector fields X and Y on M . An almost contact structure (φ, ξ, η) equipped

with a compatible Riemannian metric g is known as almost contact metric structure (φ, ξ, η, g)

and the manifold M endowed with the almost contact metric structure is called an almost

contact metric manifold. If the fundamental 2-form of M defined as Φ(X,Y ) = g(X,φY ) for
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arbitrary vector fields X and Y on M and satisfies dη = Φ, then an almost contact metric

manifold reduces to a contact metric manifold. A normal contact metric manifold is an

almost contact metric manifold with [φ, φ] = −2dη⊗ ξ, where [φ, φ] represents the Nijenhuis

tensor of φ and d is an exterior derivative. A normal contact metric manifold is Sasakian

manifold. A Sasakian manifold is always a K-contact manifold (ξ is Killing) although in

dimension 3, K-contact is Sasakian. It is noticed that the generalized Sasakian-space-forms

M(f1, f2, f3) satisfy the followings:

S(X,Y ) = (2nf1 + 3f2 − f3)g(X,Y )− (3f2 + (2n− 1)f3)η(X)η(Y ), (2.6)

QX = (2nf1 + 3f2 − f3)X − (3f2 + (2n− 1)f3)η(X)ξ, (2.7)

R(X,Y )ξ = (f1 − f3){η(Y )X − η(X)Y }, (2.8)

R(ξ,X)Y = (f1 − f3){g(X,Y )ξ − η(Y )X}, (2.9)

S(X, ξ) = 2n(f1 − f3)η(X), (2.10)

r = 2n(2n+ 1)f1 + 6nf2 − 4nf3 (2.11)

for all X, Y, Z ∈ T (M). Here Q denotes the Ricci operator such that S(X,Y ) = g(QX,Y )

and r is the scalar curvature to M .

Before going to prove our main results in next sections, we recall the followings:

Definition 2.1. A Riemannian manifold M of dimension n is said to be Ricci symmetric if

the non-vanishing Ricci tensor S of M satisfies (∇XS)(Y, Z) = 0 ∀ X, Y, Z ∈ T (M).

Definition 2.2. An n-dimensional Riemannian manifold M endowed with the non-zero Ricci

tensor S is said to be a Ricci recurrent [24] if (∇XS)(Y, Z) = A(X)S(Y,Z) holds for all

X, Y, Z ∈ T (M). Here A is a non-zero 1-form.

Definition 2.3. A non-zero Ricci tensor S of an n-dimensional Riemannian manifold M is

said to be Codazzi type [5], or cyclic parallel [17] if S satisfies (∇XS)(Y,Z) = (∇Y S)(X,Z),

or (∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) = 0, respectively for all X, Y, Z ∈ T (M).
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3. Main Results

In this section, we study the properties of Ricci symmetric, Ricci recurrent, Codazzi type

Ricci tensor and cyclic parallel Ricci tensor on a generalized Sasakian-space-form.

We recall the following theorem of P. Alegre et al. [1] that we will be useful to prove our

main results.

Theorem 3.1. Let M(f1, f2, f3) be a generalized Sasakian-spce-form. Let M is a contact

metric manifold, then f1 − f3 is constant on M (see Theorem 3.10, page 164, [1]).

Lemma 3.1. On a generalized Sasakian-space-form M(f1, f2, f3), the following conditions

are equivalent:

(i) scalar curvature of M(f1, f2, f3) is constant,

(ii) (2n− 1)f1 + 3f2 is constant,

(iii) 3f2 + (2n− 1)f3 is constant.

Proof. Let us suppose that the scalar curvature of M(f1, f2, f3) is constant and

therefore dr(X) = 0 for arbitrary vector field X on M(f1, f2, f3). From (2.11), we have

r = 2n{(2n+ 1)f1 + 3f2 − 2f3} = 2n{(2n− 1)f1 + 3f2 + 2(f1 − f3)}.

In view of Theorem 3.1 and above discussion, we have d((2n − 1)f1 + 3f2)(X) = 0, for the

vector field X on M(f1, f2, f3). This shows that (2n−1)f1 +3f2 is constant on M(f1, f2, f3).

Hence (i)⇒ (ii). Next,

(2n− 1)f1 + 3f2 = (2n− 1)(f1 − f3) + 3f2 + (2n− 1)f3,

which shows that

d((2n− 1)f1 + 3f2)(X) = d(3f2 + (2n− 1)f3)(X).

If (2n− 1)f1 + 3f2 is constant on M(f1, f2, f3), then 3f2 + (2n− 1)f3 is also constant on it.

Now we have to prove that (iii)⇒ (i). Equation (2.11) can be written as

r − 2n(2n+ 1)(f1 − f3) = 2n{3f2 + (2n− 1)f3}.

It is obvious from the above equation and Theorem 3.1 that dr(X) = 2nd(3f2 + (2n −

1)f3)(X). This informs that if 3f2 + (2n− 1)f3 is constant on M(f1, f2, f3), then the scalar

curvature of M(f1, f2, f3) will be also constant. This complete the proof.
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In [28], authors proved that on a Ricci symmetric generalized Sasakian-space-form, f1−f3

is constant. Motivated by this, we are going to prove the following:

Theorem 3.2. Let M(f1, f2, f3) be a (2n+ 1)-dimensional generalized Sasakian-space-form.

Then M(f1, f2, f3) is Ricci symmetric if and only if either the characteristic vector field of

M is parallel and scalar curvature is constant or 3f2 + (2n− 1)f3 = 0 .

Proof. Equation (2.6) can be rewritten as

S(Y,Z) = ag(Y,Z) + bη(Y )η(Z), (3.12)

where a = 2nf1 + 3f2− f3 and b = −3f2− (2n− 1)f3 are smooth functions on M(f1, f2, f3).

In consequence of (3.12) and the Theorem 3.1, we have

da(X) + db(X) = 0, (3.13)

for arbitrary vector field X ∈ T (M). Covariant derivative of (3.12) along the vector field X

gives

(∇XS)(Y,Z) = da(X)g(Y, Z) + db(X)η(Y )η(Z)

+b[(∇Xη)(Y )η(Z) + (∇Xη)(Z)η(Y )]. (3.14)

Setting Z = ξ and using (2.4) and (3.13) in (3.14), we find

(∇XS)(Y, ξ) = b[(∇Xη)(Y ) + (∇Xη)(ξ)η(Y )].

Since g(ξ, ξ) = 1⇒ g(∇Xξ, ξ) = 0, therefore above equation takes the form

(∇XS)(Y, ξ) = b(∇Xη)(Y ). (3.15)

Let us suppose that M(f1, f2, f3) is Ricci symmetric, that is ∇S = 0, and therefore (3.14)

assumes the form

da(X)g(Y,Z) + db(X)η(Y )η(Z) + b[(∇Xη)(Y )η(Z) + (∇Xη)(Z)η(Y )] = 0. (3.16)

Changing Z by ξ in (3.16) and then using (2.4), (2.5) and (3.13), we have

b(∇Xη)(Y ) = 0. (3.17)

This reflects that either b = 0, i.e., 3f2 + (2n− 1)f3 = 0 and (∇Xη)(Y ) 6= 0 or (∇Xη)(Y ) =

0 ⇒ ∇Xξ = 0, that is the characteristic vector filed of the manifold is parallel and b 6= 0.

Thus in view of ∇Xξ = 0, equations (2.5), (3.13) and (3.16) reflect that

da(X)g(φY, φZ) = 0, ∀ X,Y, Z ∈ T (M). (3.18)
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In general, g(φY, φZ) 6= 0 on almost contact metric manifold and thus a = constant ⇒ r =

constant, where Theorem 3.1 and Lemma 3.1 are used. To prove the converse part first we

suppose that 3f2 + (2n − 1)f3 = 0 and (∇Xη)(Y ) 6= 0 and thus with (3.13) and (3.14), we

find that ∇S = 0. Secondly, we consider that 3f2 + (2n− 1)f3 6= 0 and (∇Xη)(Y ) = 0 with

constant scalar curvature on M(f1, f2, f3) . Since r is constant, therefore by Lemma 3.1 it

can easily verify that a, b = constants. Hence equation (3.14) shows that ∇S = 0. Thus the

Theorem is proved.

Theorem 3.3. [7] Let M2n+1 be a contact metric manifold of dimension (2n + 1) and

R(X,Y )ξ = 0 for all vector fields X and Y ∈ T (M). Then M2n+1 is locally the product

of a flat (n + 1)-dimensional manifold and an n-dimensional manifold of positive constant

curvature 4.

By considering above discussions and Theorems 3.2 and 3.3, we state the following:

Corollary 3.1. Let M(f1, f2, f3) be a (2n+ 1)-dimensional generalized Sasakian-space-form

and 3f2 + (2n − 1)f3 6= 0. Then M is locally isometric to En+1 × Sn(4) for n > 1 and flat

for n = 1.

Next we are going to study the Ricci recurrent generalized Sasakian-space-forms and

prove its existence. We suppose that the generalized Sasakian-space-form M(f1, f2, f3) is

Ricci recurrent, that is the non-vanishing Ricci tensor S of M(f1, f2, f3) satisfies

(∇XS)(Y,Z) = A(X)S(Y, Z), (3.19)

for arbitrary vector fields X, Y and Z on M(f1, f2, f3), where A is any non-zero 1-form [24].

Setting Z = ξ and using (2.6) in (3.19), we get

(∇XS)(Y, ξ) = 2n(f1 − f3)A(X)η(Y ), (3.20)

i.e.

b(∇Xη)(Y ) = 2n(f1 − f3)A(X)η(Y ), (3.21)

where equations (3.15) and (3.20) are used. Putting Y = ξ in (3.21) and then use of (2.4)

and (2.5) we have A = 0, provided f1 6= f3. Hence we observe the following:

Theorem 3.4. There does not exist a Ricci recurrent generalized Sasakian-space-form M(f1, f2, f3),

provided f1 6= f3.
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Theorem 3.5. Let M(f1, f2, f3) be a generalized Sasakian-space-form and 3f2 + (2n− 1)f3

is a non-zero constant on it. Then the Ricci tensor of M(f1, f2, f3) is cyclic parallel if and

only if the characteristic vector field of the manifold is Killing.

Proof. In (3.14) setting Y = Z = ei, where {ei, i = 1, 2, ..., 2n + 1} be a set of

orthonormal vector field of the tangent space at each point of the manifold M and taking

summation over i (1 ≤ i ≤ 2n+ 1), we find that

dr(X) = (2n+ 1)da(X) + db(X).

Since 3f2 + (2n− 1)f3 is a non-zero constant and therefore by Lemma 3.1 it is obvious that

the scalar curvature of M(f1, f2, f3) is constant. Thus above equation gives

(2n+ 1)da(X) + db(X) = 0. (3.22)

From (3.14), we have

(∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y )

= da(X)g(Y, Z) + da(Y )g(Z,X) + da(Z)g(X,Y )

+db(X)η(Y )η(Z) + db(Y )η(Z)η(X) + db(Z)η(X)η(Y )

+b[(∇Xη)(Y )η(Z) + (∇Xη)(Z)η(Y ) + (∇Y η)(X)η(Z)

+(∇Y η)(Z)η(X) + (∇Zη)(Y )η(X) + (∇Zη)(X)η(Y )]. (3.23)

Let us suppose that the Ricci tensor of M(f1, f2, f3) is cyclic parallel. Then (3.23) converts

into the form

da(X)g(Y,Z) + da(Y )g(Z,X) + da(Z)g(X,Y )

+db(X)η(Y )η(Z) + db(Y )η(Z)η(X) + db(Z)η(X)η(Y )

+b[(∇Xη)(Y )η(Z) + (∇Xη)(Z)η(Y ) + (∇Y η)(X)η(Z)

+(∇Y η)(Z)η(X) + (∇Zη)(Y )η(X) + (∇Zη)(X)η(Y )] = 0. (3.24)

Changing Y and Z by ξ and using (2.4) and (2.5) in (3.24), we get

da(X) + db(X) + 2{da(ξ) + db(ξ)}η(X) + 2(∇ξη)(X) = 0.

In consequence of (3.13), last expression becomes

(∇ξη)(X) = 0. (3.25)
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Replacing Y and Z with ei in (3.24) and then taking summation for i, 1 ≤ i ≤ (2n+ 1), we

have

(n+ 1) da(X) + db(ξ)η(X) + b
2n+1∑
i=1

(∇eiη)(ei)η(X) = 0, (3.26)

where equations (2.4), (2.5), (3.13) and (3.25) are used. Putting X = ξ and using (2.5) and

(3.13) in (3.26), we obtain

nda(ξ) + b
2n+1∑
i=1

(∇eiη)(ei) = 0, (3.27)

Equations (3.13), (3.26) and (3.27) give

da(X) = da(ξ)η(X) = −db(X). (3.28)

In consequence of (2.5), (3.13) and (3.24), we have

da(X)g(φY, φZ) + da(Y )g(φZ, φX) + da(Z)g(φX, φY )

+b[(∇Xη)(Y )η(Z) + (∇Xη)(Z)η(Y ) + (∇Y η)(X)η(Z)

+(∇Y η)(Z)η(X) + (∇Zη)(Y )η(X) + (∇Zη)(X)η(Y )] = 0. (3.29)

Setting Z = ξ in (3.29), we get

(∇Xη)(Y ) + (∇Y η)(X) = 0, (3.30)

where equations (2.5), (3.13), (3.22), (3.25) and (3.28) are used. This shows that the char-

acteristic vector field ξ of M(f1, f2, f3) is Killing. Conversely, we suppose that the equation

(3.30) holds and 3f2 + (2n − 1)f3 is a non-zero constant on M(f1, f2, f3). With the help of

(3.13), (3.22), (3.23), (3.30) and Lemma 3.1, we can prove that (∇XS)(Y,Z)+(∇Y S)(Z,X)+

(∇ZS)(X,Y ) = 0. Hence the statement of the Theorem is satisfied.

Theorem 3.6. If the Ricci tensor of M(f1, f2, f3) is of Codazzi type, then M(f1, f2, f3) is

either a certain class of almost contact metric manifold whose characteristic vector field ξ

satisfies (3.36) or Ricci symmetric.

Proof. From (3.14), we have

(∇XS)(Y,Z)− (∇Y S)(X,Z) = da(X)g(Y,Z) + db(X)η(Y )η(Z)

−da(Y )g(X,Z)− db(Y )η(X)η(Z) + b[(∇Xη)(Y )η(Z)

+(∇Xη)(Z)η(Y )− (∇Y η)(X)η(Z)− (∇Y η)(Z)η(X)]. (3.31)
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Let us suppose that the Ricci tensor ofM(f1, f2, f3) to be Codazzi type, that is (∇XS)(Y,Z) =

(∇Y S)(X,Z). Thus from equation (3.31), we have

0 = b[(∇Xη)(Y )η(Z) + (∇Xη)(Z)η(Y )− (∇Y η)(X)η(Z)− (∇Y η)(Z)η(X)]

+da(X)g(Y,Z) + db(X)η(Y )η(Z)− da(Y )g(X,Z)− db(Y )η(X)η(Z). (3.32)

Changing Y and Z with ξ in (3.32), we obtain

b(∇ξη)(X) = 0, (3.33)

where equations (2.4), (2.5) and (3.13) are used. Again setting Z = ξ in (3.32) and then

using equations (2.4), (2.5), (3.13) and (3.33), we conclude that

b[(∇Xη)(Y )− (∇Y η)(X)] = 0. (3.34)

This shows that either b = 0⇐⇒ 3f2 + (2n− 1)f3 = 0 or (∇Xη)(Y )− (∇Y η)(X) = 0, that

is the contact 1-form η is closed. Now we have two cases:

Case I: Let us suppose that b is a non vanishing smooth function on M(f1, f2, f3) and

(∇Xη)(Y )− (∇Y η)(X) = 0, that is the contact 1-form η is closed. Thus we have

g(∇Xξ, Y ) = g(X,∇Y ξ).

Again putting Y = ξ in (3.32), we find that

b(∇Xη)(Z)− da(ξ){g(X,Z)− η(X)η(Z)} = 0, (3.35)

where equations (2.4), (2.5), (3.13) and (3.33) are used. The straight forward calculation

from (3.35) shows that

∇Xξ = ν{X − η(X)ξ}, (3.36)

ν = da(ξ)
b 6= 0. Equation (3.36) reveals that M(f1, f2, f3) under consideration is a certain class

of almost contact metric manifold. If b is a non-zero constant, then da(ξ) = 0⇐⇒ ∇Xξ = 0.

Thus the characteristic vector field ξ of M is parallel. On the other hand if ν ∈ R (R is a

real number and ν 6= 0), the equation (3.36) reflects that M(f1, f2, f3) with our assumption

becomes ν-Kenmotsu manifold [20].

Case II: In this case we consider that (∇Xη)(Y ) − (∇Y η)(X) 6= 0 and b = 0 ⇐⇒ 3f2 +

(2n− 1)f3 = 0 on M(f1, f2, f3). By considering this fact, (2.6) takes the form

S(Y,Z) = 2n(f1 − f3)g(Y, Z), (3.37)
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provided f1 6= f3. Taking covariant derivative of (3.37) along the vector field X, we find that

(∇XS)(Y, Z) = 0 (3.38)

by virtue of Theorem 3.1. This tell us that the Ricci tensor of M(f1, f2, f3) is Ricci symmetric

and manifold under consideration to be Einstein manifold. Hence the statement of the

Theorem is satisfied.

4. Ricci soliton in generalized Sasakian-space-forms

This section deals with the study of Ricci soliton and gradient Ricci soliton in generalized

Sasakian-space-forms M(f1, f2, f3). In [16], authors proved that on the generalized Sasakian-

space-form a second order parallel symmetric tensor is proportional to a metric tensor g.

Recently P. Majhi with U. C. De [22] studied the properties of Ricci soliton and gradient

Ricci soliton in three dimensional generalized Sasakian-space-forms under certain restrictions.

Since ∇g = 0 on M and therefore for a constant λ ∈ R (R being real number), ∇2λg = 0

holds on M . Therefore equation (1.2) shows that LV g + 2S is parallel. This discussion with

Theorem 3.1 [for more details see p.4 , [16]] reflects that LV g + 2S is a constant multiple of

metric tensor g, that is LV g + 2S = αg, where α is a constant. Thus LV g + 2S + 2λg =

(α+ 2λ)g = 0⇒ λ = −α
2 . We state the following lemma:

Lemma 4.1. Let M(f1, f2, f3) is a (2n + 1)-dimensional generalized Sasakian-space-form.

A Ricci soliton (g, V, λ) on M(f1, f2, f3) to be shrinking and expanding if α is > 0 and < 0,

respectively.

In particular, if we suppose that V = ξ on M(f1, f2, f3), then (Lξ)g(ξ, ξ) = 0. Setting

X = Y = V = ξ in (1.2) and then applying (2.4) and (2.10), we find that λ = −2n(f1 − f3).

Hence we can say the following:

Lemma 4.2. A Ricci soliton (g, ξ, λ) in M(f1, f2, f3) (dimM = 2n + 1) is shrinking, ex-

panding and steady if f1 > f3, f1 < f3 and f1 = f3, respectively.

Remark 4.1. It is observed in Lemma 4.2 that the classification of Ricci flow is independent

of smooth function f2.

Also we consider that V is a point wise collinear with ξ, that is V = βξ, where β is a

non-zero smooth function on M(f1, f2, f3). Thus we have

2S(X,Y ) = −2λg(X,Y )− (Xβ)η(Y )− (Y β)η(X)− β{g(∇Xξ, Y ) + g(X,∇Y ξ)}. (4.39)
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Changing X and Y with ξ in (4.39) and then utilizing equations (2.4) and (2.5), we have

λ = −{ξβ + 2n(f1 − f3)}. (4.40)

Again putting X = ξ in (4.39) and making use of equations (2.4), (2.5), (2.10) and (4.40),

we conclude

dβ = −(ξβ)η, (4.41)

which shows that β is constant and therefore from (4.40) λ = −2n(f1− f3) on M(f1, f2, f3).

Let us suppose that the Ricci tensor of M(f1, f2, f3) is cyclic parallel and therefore by the

Theorem 3.5 we can say that the characteristic vector field of M(f1, f2, f3) is Killing. By

considering this fact and (4.41), equation (4.39) takes the form

S(X,Y ) = −2n(f1 − f3)g(X,Y ), (4.42)

for all X,Y ∈ T (M). Equation (4.42) with Theorem 3.1 reveals that M(f1, f2, f3) is an

Einstein manifold. It is obvious from (4.42) and Theorem 3.1 that the scalar curvature of

M(f1, f2, f3) is constant. Hence we state the following:

Theorem 4.1. Let M(f1, f2, f3) be a (2n+ 1)-dimensional generalized Sasakian-space-form

whose Ricci tensor is cyclic parallel. If the metric g is a Ricci soliton and V pointwise

collinear with the characteristic vector field ξ on M(f1, f2, f3), then the scalar curvature to

be constant and M(f1, f2, f3) is an Einstein manifold.

Next we are going to study the properties of gradient Ricci soliton on generalized Sasakian-

space-forms. Let the Ricci tensor of M(f1, f2, f3) is cyclic parallel and g is a gradient Ricci

soliton on M(f1, f2, f3). Thus we have from (1.3)

∇YDf = QY + λY, (4.43)

for arbitrary vector field Y on M(f1, f2, f3), where D denotes the gradient operator of g. In

view of (4.43), we get the expression for curvature tensor as

R(X,Y )Df = (∇XQ)(Y )− (∇YQ)(X), (4.44)

for all the vector fields X,Y on M(f1, f2, f3). We have from equation (4.44)

g(R(ξ, Y )Df, ξ) = g((∇ξQ)(Y )− (∇YQ)(ξ), ξ). (4.45)

In consequence of (2.7) and Theorem 3.1, we can easily prove that

(∇YQ)(ξ) = 0. (4.46)
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From equation (2.7), we conclude that

(∇XQ)(Y ) = da(X)Y + db(X)η(Y )ξ + b[(∇Xη)(Y )ξ + η(Y )∇Xξ].

Setting X = ξ in last expression and utilizing the equations (2.4), (2.5), (3.13) and (3.25),

we have

(∇ξQ)(Y ) = da(ξ)(Y − η(Y )ξ). (4.47)

By using the equations (4.46) and (4.47), equation (4.45) assumes the form

g(R(ξ, Y )Df, ξ) = 0, ∀ Y ∈ T (M). (4.48)

Also from equations (2.9) and Theorem 3.1, we get

g(R(ξ, Y )Df, ξ) = (f1 − f3){g(Y,Df)− η(Df)η(Y )}. (4.49)

Equations (4.48) and (4.49) give

Df = (ξf)ξ, (4.50)

provided f1 6= f3 on M(f1, f2, f3). In view of (4.43) and (4.50), we compute

S(X,Y ) + λg(X,Y ) = g(Y (ξf)ξ + (ξf)∇Y ξ,X). (4.51)

Changing X with ξ in (4.51) and then using the equations (2.4), (2.5) and (2.10), we have

Y (ξf) = {λ+ 2n(f1 − f3)}η(Y ). (4.52)

Using (4.52) in (4.51), we find that

S(X,Y ) + λg(X,Y ) = {λ+ 2n(f1 − f3)}η(X)η(Y ) + (ξf)g(∇Y ξ,X). (4.53)

By the help of (4.53), equation (4.43) takes the form

∇YDf = {λ+ 2n(f1 − f3)}η(Y )ξ + (ξf)∇Y ξ. (4.54)

We have from equation (4.54)

R(X,Y )Df = (ξf)R(X,Y )ξ + [λ+ 2n(f1 − f3)]{dη(X,Y )ξ

+η(Y )∇Xξ − η(X)∇Y ξ}+X(ξf)∇Y ξ − Y (ξf)∇Xξ,

which gives

g(R(X,Y )(ξf)ξ, ξ) = [λ+ 2n(f1 − f3)]dη(X,Y ), (4.55)

where equations (2.4), (2.5), (2.8), (4.50) and (4.52) are used. From (4.55), we get

λ = −2n(f1 − f3) (4.56)
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because dη(X,Y ) is non-vanishing on contact metric manifold (in general). From (4.52) and

(4.56), we calculate that

ξf = c (constant)

and hence

df = cξ =⇒ cdη = 0 =⇒ c = 0.

Using this fact in above equation, we conclude that f = constant. In view of (4.53), (4.56)

and above facts, we obtain

S(X,Y ) = 2n(f1 − f3)g(X,Y ).

If f1 6= f3, then by Theorem 3.1 we can say that M(f1, f2, f3) is an Einstein manifold. Thus

we state:

Theorem 4.2. Let M(f1, f2, f3) be a (2n+ 1)-dimensional generalized Sasakian-space-form

whose Ricci tensor is cyclic parallel and f1 6= f3. If the metric g of M(f1, f2, f3) is a gradient

Ricci soliton, then the manifold is an Einstein manifold and the scalar curvature is constant.

5. Examples

Example 5.1. Let N(p, q) be a generalized complex-space-form of dimension 2n, then by the

warped product M = R ×f N endowed with the almost contact metric structure (φ, ξ, η, gf )

is a generalized Sasakian-space-form M(f1, f2, f3) with

f1 =
p− (f ′)2

f2
, f2 =

q

f2
, f3 =

p− (f ′)2

f2
+
f ′′

f
, (5.57)

where f = f(t), t ∈ R (set of real number) and f ′ denotes the first derivative of f with

respect to t and f ′′, second derivative of f with respect to t [1]. If we choose f(t) = sin pt for

non-zero constant p, where t 6= 2nπ
p , π+2nπ

p and q = (2n−1)p(p−1)
3 (6= 0), then equation (5.57)

takes the form

f1 =
p− p2cos2pt

sin2pt
, f2 =

(2n− 1)(p2 − p)
3sin2pt

and f3 =
p− p2

sin2pt
.

It is obvious from the above expression that f1−f3 = p2 = constant. Hence the Theorem 3.1

is verified.

Also, (2n − 1)f1 + 3f2 = (2n − 1)p2 = constant and 3f2 + (2n − 1)f3 = 0. Again from

(2.11) and above relation, the scalar curvature r = 2n{(2n+1)f1 +3f2−2f3} = (2n+1)p2 =

constant. These relations verify the statement of the Lemma 3.1.
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Above result with (2.6) give

S(X,Y ) = 2np2g(X,Y ), (5.58)

for arbitrary vector fields X and Y on M(f1, f2, f3). Taking covariant derivative of (5.58)

along the vector field Z, we have

(∇ZS)(X,Y ) = 0. (5.59)

From equation (5.59), we can easily observe that M(f1, f2, f3) is Ricci symmetric if and only

if 3f2 + (2n− 1)f3 = 0. Hence the statement of the Theorem 3.2.

Example 5.2. Let us suppose that M = R ×f N equipped with an almost contact metric

structure (φ, ξ, η, gf ) is a generalized Sasakian-space-form M(f1, f2, f3), where f1, f2, f3 are

smooth functions on M defined in (5.57) and N(p, q) be a generalized complex-space-form.

If we consider f(x) = e2t, t ∈ R and 3q+(2n−1)p = µe4t (0 6= µ ∈ R), then equation (5.57)

converts in to the form

f1 =
p− 4e4t

e4t
, f2 =

q

e4t
, f3 =

p− 4e4t

e4t
+ 4. (5.60)

It is obvious from equation (5.60), f1 − f3 = −4(constant). Hence the statement of the

Theorem 3.1.

In view of (2.11) and (5.60), we find that

(2n− 1)f1 + 3f2 = µ− 4(2n− 1) = constant, 3f2 + (2n− 1)f3 = µ = constant

and r = 2n(µ − 4(2n − 1)) = constant. From the above discussion, we can see that Lemma

3.1 is verified.

Also equations (2.11) and (5.60) give

S(X,Y ) = (µ− 8n)g(X,Y )− µη(X)η(Y ), ∀X,Y, Z ∈ T (M). (5.61)

Differentiating (5.61) covariantly along the vector field Z, we obtain

(∇ZS)(X,Y ) = −µ{(∇Zη)(X)η(Y ) + (∇Zη)(Y )η(X)}. (5.62)

From (5.62), we find that

(∇ZS)(X,Y ) + (∇XS)(Y,Z) + (∇Y S)(Z,X)

= −µ{[(∇Zη)(X) + (∇Xη)(Z)]η(Y ) + [(∇Zη)(Y )

+(∇Y η)(Z)]η(X) + [(∇Xη)(Y ) + (∇Y η)(X)]η(Z)}. (5.63)
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From equation (5.63), it can be easily prove that the Ricci tensor of M(f1, f2, f3) is cyclic

parallel if and only if the characteristic vector field ξ is Killing. Thus the Theorem 3.5 is

verified.
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