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NULL HYPERSURFACES IN INDEFINITE NEARLY KAEHLERIAN

FINSLER SPACE-FORMS

SAMUEL SSEKAJJA∗

Abstract. We study the geometry of null hypersurfaces, M , in indefinite nearly Kaehle-

rian Finsler space-forms F2n. We prove new inequalities involving the point-wise vertical

sectional curvatures of F2n, based on two special vector fields on an umbilic hypersurface.

Such inequalities generalize some known results on null hypersurfaces of Kaehlerian space

forms. Furthermore, under some geometric conditions, we show that the null hypersurface

(M,B), where B is the local second fundamental form of M , is locally isometric to the null

product MD ×MD′ , where MD and MD′ are the leaves of the distributions D and D′ which

constitutes the natural null-CR structure on M .

1. Introduction

A Finsler manifold is a manifold F where each tangent space is equipped with a Minkowski

norm, that is, a norm that is not necessarily induced by an inner product. This norm also

induces a canonical inner product. However, in sharp contrast to the Riemannian case, these

Finsler-inner products are not parameterized by points of F, but by directions in the tangent

space of F. Thus one can think of a Finsler manifold as a space where the inner product does

not only depend on where you are, but also in which direction you are looking. For example,
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length, geodesics, curvature, connections, covariant derivative, and structure equations all

generalize. However, normal coordinates do not [22]. More details on the basics of Finsler

spaces can be found in [17, 22], and any other references cited therein. Subspaces of definite

Finsler spaces have been investigated in details. For example, [12] has studied the geometry

of CR-submanifolds of Kaehlerian Finsler spaces.

Indefinite Finsler spaces have also been studied by many researchers, for instance see [8, 9].

Null subspaces naturally exists in indefinite spaces, and in case of semi-Riemannian spaces,

they have been investigated to a good depth by a lot of scholars like [1, 2, 7, 11, 14, 15, 16, 18,

19, 21]. Despite such numerous work on null subspaces of indefinite semi-Riemannian spaces,

there is only one paper by A. Bejancu [4] which talks about null hypersurfaces of indefinite

Finsler spaces. The paper lays out the geometric objects induced on such hypersurfaces and

also discusses the structure equations involving the vertical curvature tensors. The aim of

this paper is to extend his work by fully investing the geometry of null hypersurfaces (M, g)

in indefinite nearly Kaehlerian Finsler space-forms. Several new classification results are

proved on totally umbilic hypersurfaces, as well as the geometry of the null hypersurface

(M,B), where M is the second fundamental form of M . Such a hypersurface has also been

studied by Bejan and Duggal in [7]. The paper is arranged as follows; Section 2 focusses on

the basic preliminaries on Finsler spaces as well null subspaces necessary for the rest of the

paper. In Section 3, we discuss totally umbilic hypersurfaces in which we give conditions on

the sectional curvature of F depending on two vector fields U and V on M , as well as its null

sectional curvature (see Theorems 3.1 and 3.2). Finally, Section 4 is devoted to the geometry

of (M,B) in which we show that its a product manifold under some geometric conditions

(see Theorems 4.2 and 4.3).

2. Preliminaries

Let M
2n

be a smooth 2n-dimensional manifold and TM
2n

be the tangent bundle of M .

Let i : M
2n −→ TM

2n
be the natural imbedding, i.e., i(x) = 0x ∈ TxM

2n
, for x ∈M2n

. Let

us put TM
′

= TM
2n\i(M2n

). The coordinates of a point of TM
2n

are denoted by (xi, yi),

where (xi) and (yi) are the coordinates of a point x ∈ M2n
and the components of a vector

y ∈ TxM
2n

, respectively. Consider a continuous function L(x, y), for (x, y) ∈ TM ′, defined

on TM
2n

and suppose that the following conditions are satisfied

(1) L is smooth on TM
′
.

(2) L(x, λy) = λL(x, y), for all λ ∈ [0,∞).
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(3) The metric tensor

gij(x, y) =
1

2

∂2L2

∂yi∂yj
, (2.1)

is positive definite.

Then, we say that (M
2n
, L) is a Finsler manifold [22].

Let π : TM
′ −→M

2n
be the natural projection and π−1TM

2n −→ TM
′

be the pullback

bundle of TM
2n

by π. A bundle morphism J : π−1TM
2n −→ π−1TM , J

2
= −I is said

to be a Finslerian almost complex structure [12] on M
2n

. Let u ∈ TM ′, then π−1u TM
2n

=

{u}×TxM
2n

, x = π(u), denotes the fiber over u in π−1TM
2n

. Moreover, any ordinary almost

complex structure J : TM
2n −→ TM

2n
, J

2
= −I, admits a natural lift to the Finslerian

almost complex structure J̃ given by J̃uX = (u, Jxπ̂X), x = π(u), X ∈ π−1u TM
2n

, u ∈ TM ′,

where π̂ denotes the projection onto the second factor of TM
′ × TM2n

. Denote by VTM ′

the vertical vector bundle over TM
′
, that is, VTM ′ = ker dπ, where dπ is the differential of

π. Then, any section of VTM ′ is called a Finsler vector field. Also, any section of the dual

vector bundle V∗TM ′ is a Finsler 1-form.

Let F2n be a Finsler space endowed with the Finslerian almost complex structure J . Then,

F2n is said to be an almost Hermitian Finsler space [12] if

g(JX, JY ) = g(X,Y ), (2.2)

for all X,Y ∈ Γ(VTM ′). A connection ∇ in the induced bundle (π−1TM, g) is called metrical

[12] (resp. almost complex ) if

∇g = 0, resp. ∇ J = 0. (2.3)

A tangent vector Z on TM
′

is called horizontal if ∇Zυ = 0, where υ is the Liouville vector

field. Let N be the distribution of all horizontal vector fields of TM
′
. It is referred to

as the horizontal distribution [12] of ∇. Then ∇ is regular if its horizontal distribution is

nonlinear connection on TM
′
. The pair (N,∇) consisting of a connection in π−1TM

2n
and

a nonlinear connection on TM
′

is called a Finsler connection on M
2n

. The fundamental

theorem of Finsler geometry asserts that there exists a regular connection ∇ in the induced

bundle (π−1TM, g), called a Cartan connection [12] on (M
2n
, L). Consequently, (M

2n
, L, J)

is called a Kaehlerian Finsler space if its Cartan connection is almost complex (see [12] for

more details).
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According to Bejancu [3], an a almost Hermitian manifold M is nearly Kaehlerian if its

Levi-Civita connection ∇ satisfies the relation

(∇XJ)Y + (∇Y J)X = 0, (2.4)

for any X,Y ∈ Γ(TM). It then follows directly that a Kaehlerian manifold is a nearly

Kaehlerian manifold. Let (M
2n
, L, J) be an almost Hermitian Finsler space. We say that

(M
2n
, L, J) is a nearly Kaehlerian Finsler space if its Cartan connection ∇ satisfies (2.4).

Let ∇ be the Cartan connection of the Finsler space (M
2n
, L) and R

V
its vertical cur-

vature tensor. If u ∈ TM
′

and p is a 2-dimensional real subspace of a fibre π−1u M
2n

, let

s(p) = R
V
u (X,Y,X, Y ), for some gu-orthonormal basis {X,Y } in p, be the vertical sectional

curvature of (M
2n
, L) [13, p. 97]. Let σ : GF2(M

2n
) −→ TM

′
be the bundle of all 2-subspaces

in fibres of the induced bundle π−1TM
2n

of (M
2n
, L). Its standard fibre is the Grassmann

manifold G2,2n(R) of all 2-planes in R2n. Note that the vertical sectional curvature is a

function s : GF2(M
2n

) −→ R rather than a function on TM
′
. Let (M

2n
, L, J) be a nearly

Kaehlerian Finsler space; a Finslerian 2-plane p ∈ GF2(M
2n

) is said to be holomorphic if

J(p) = p. The restriction of s to the holomorphic 2-planes is referred to as the holomorphic

V-sectional curvature. Then, (M
2n
, L, J) is said to be a complex Finslerian V-space-form

[12] if there exists c ∈ C∞(TM
′
) such that the following equality s = c ◦ σ holds on all holo-

morphic 2-planes p ∈ GF2(M
2n

). If (∇, N) is a metrical Finsler connection (M,L, J) then

the associated vertical curvature R
V

(X,Y, Z,W ) := g(R
V

(X,Y )Z,W ) is skew-symmetric in

X,Y , respectively in Z,W , and thus the above procedure is easily generalized such as to

yield a well defined conept of (holomophic) V-sectional curvature. Moreover, if the holomor-

phic V-sectional curvature s (constracted with respect to (∇, N)), does not depend on the

2-places p ∈ π−1u TM
2n

but only on the direction u ∈ TM
′
, then M

2n
is also referred to

as a complex V-space form with respect to (∇, N). Let (M
2n
, L, J) be a nearly Kaehlerian

Finsler space-form. The vertical curvature tensor R
V

(X,Y, Z,W ) is given by

R
V

(X,Y, Z,W ) =
c

4
[g(X,W )g(Y,Z)− g(X,Z)g(Y,W ) + g(X, JW )g(Y, JZ)

− g(X, JZ)g(Y, JW )− 2g(X, JY )g(Z, JW )] +
1

4
[g((∇XJ)W, (∇Y J)Z)

− g((∇XJ)Z, (∇Y J)W )− 2g((∇XJ)Y, (∇ZJ)W )], (2.5)

for all Finslerian vector fields X,Y, Z,W of M
2n

(see [23]). Suppose, instead that g is non-

degenerate on TM
2n

, i.e., rank(g) = 2n on any coordinate neighborhood of TM . Clearly,

at any point u of TM
′
, gu is a pseudo-Euclidean metric on the fibre VTM ′ at u. Denote
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by q the index of gu, i.e., q is the dimension of the largest subspace of VTM ′ on which g is

negative definite. We further suppose g is of constant index, q, on TM . In this case g is said

to be an indefinite Finsler metric and F2n = (M
2n
, L, g) is called an indefinite Finsler space

[4, 8, 9]. Furthermore, if F2n is of constant (holomorphic) V-sectional curvature as described

earlier, then we say that F2n is an indefinite Finsler space-form.

Consider a hypersurface (M, g) ofM
2n

. From now on, we assume that g is of index q, where

1 < q < 2n. In this case g may be degenerate in some points of TM ; suppose g is degenerate

on TM of constant rank (2n − 1). Then we call M a null hypersurface of F2n. Consider,

for each p ∈ TM , the vector space VTM⊥p = {Xp ∈ VTM
′
p : gp(Xp, Yp) = 0, ∀Yp ∈ VTMp},

and construct VTM⊥ = ∪p∈TMVTM⊥p . Notice that VTM⊥ is a one dimensional vector

subbundle of VTM ′|TM . Moreover, M is a null hypersurface of F2n if and only if VTM⊥

is a vector subbundle of VTM . Throughout the paper, all manifolds are supposed to be

paracompact and smooth. We denote by F(M) the algebra of differentiable functions on M

and by Γ(E) the F(M)-module of differentiabale sections of a vector bundle E over M . We

also assume that all associated structures are smooth.

In the theory of non-degenerate submanifolds of a Finsler space VTM⊥ plays an important

role in introducing main geometrical objects, such as second fundamental form, shape opera

tor, induced connection, etc. Contrary to this situation in case of a null hypersurface, VTM⊥

fails to be complementary to VTM in VTM ′|TM . Motivated by the above, the author [4]

(also see [15]) constructed a complementary (non-orthogonal) vector bundle to VTM in

VTM ′|TM which plays the role of VTM⊥. In fact, consider a complementary vector bundle

S(VTM) of VTM⊥ in VTM , i.e. we have VTM = S(VTM) ⊥ VTM⊥. It is easy to see that

S(VTM) is a non-degenerate vector subbundle of VTM , whose existence is secured by the

paracompactness of M . S(VTM) is called the screen distribution [4] of M . Next, along to

S(VTM) we have the decomposition VTM ′|TM = S(VTM) ⊥ S(VTM)⊥, where S(VTM)⊥

is the complementary vector bundle to S(VTM) in VTM ′|TM .

Theorem 2.1 ([4]). Let M be a null hypersurface of F2n and S(VTM) be the screen distri-

bution of M . Then there exists a unique cector bundle tr(VTM) of rank 1 over TM , such

that for any non-zero section ξ of VTM⊥ on a coordinate neighborhood U ⊂ TM , there exists

a unique section N of tr(VTM) on U satisfying: g(N, ξ) = 1, and g(N,N) = g(N,X) = 0,

for all X ∈ Γ(S(VTM)|U ).
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The vector bundle tr(VTM) above is called the null transversal vector bundle of M with

respect to S(VTM). Moreover, we have the following decomposition

VTM ′|TM = S(VTM) ⊥ {VTM⊥ ⊕ tr(VTM)}

= VTM ⊕ tr(VTM). (2.6)

Let (M, g) be a null hypersurface of F2n. In view of (2.6), the author [4] proves (see

Theorem 2.1) that there is a unique nonlinear connection HTM [4] on TM , which is a sub-

bundle of tr(VTM)⊕VTM2n
. Accordingly, HTM is called the induced nonlinear connection

on TM . Denote by (HTM,∇), the induced Finsler connection on M by (N,∇) on M
2n

.

Locally, the Gauss and Weingarten equations of M are given by

∇XY = ∇XY +B(X,Y )N and ∇XN = −ANX + τ(X)N, (2.7)

for all X ∈ Γ(TTM), Y ∈ Γ(VTM) and N ∈ Γ(tr(VTM)). Here, B is called the local second

fundamental form of M , and AN its shape operator. furthermore, τ is a differential 1-form

on TM . It then follows that ∇ is a linear connection on TM . Denote by P the projection of

VTM onto S(VTM), then the local Gauss and Weingarten formulae of S(VTM) are given

by

∇XPY = ∇∗XPY + C(X,PY )ξ and ∇Xξ = −A∗ξX − τ(X)ξ, (2.8)

for all X ∈ Γ(TTM) and ξ ∈ Γ(VTM⊥). Moreover, C is the local second fundamental form

of S(VTM), and ∇∗ is a linear connection on it, which is a metric connection. In general, ∇

is not a metric connection. In fact, if η is a one form on VTM by η(·) = g(·, N), then ∇g is

given by

(∇Xg)(Y, Z) = B(X,Z)η(Y ) +B(X,Y )η(Z), (2.9)

for all X ∈ Γ(TTM) and Y,Z ∈ Γ(VTM). Notice that B is degenerate and in fact, B(·, E) =

0. The shape operators A∗ξ and AN are screen-valued and relate to their shape local second

fundamental forms according to the relations

B(X,Y ) = g(A∗ξX,Y ) and C(X,PY ) = g(ANX,PY ). (2.10)

The null hypersurface M is said to be totally umbilic [15] if B = ρ⊗ g, where ρ is a smooth

function on a coordinate neighborhood U ⊂ TM . In case ρ = 0, we say that M is totally

geodesic. In the same line, M is called screen totally umbilic if C = % ⊗ g, where % is a
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smooth function on a coordinate neighborhood U ⊂ TM . When % = 0, we say that M is

screen totally geodesic.

Denote by R
V

and R, the curvature tensors of ∇ and ∇. Let further, ∇◦ be Schouten-Van

Kampen connection [5] on TM and T ◦ its torsion. Then

R
V

(X,Y )Z =R(X,Y )Z +Ah(X,Z)Y −Ah(Y,Z)X

+ (∇tXh)(Y,Z)− (∇tY h)(X,Z)− h(T ◦(X,Y ), Z), (2.11)

for any X,Y ∈ Γ(TTM), and Z ∈ Γ(VTM). Here, (∇tXh)(Y,Z) = ∇tXh(Y,Z)−h(∇◦XY, Z)−

h(Y,∇XZ), where∇t is the tranversal (linear) connection and h(X,Y ) = B(X,Y )N . Further

details regarding the fundamental equations of null hypersfaces can be found in [4, 15, 16].

As seen above, let ξ and N the metric normal and the transversal sections, respectively.

Since (g, J) is an almost Hermitian structure and Jξ is a null vector field, it follows that JN

is null too. Moreover, g(Jξ, ξ) = 0 and, thus, Jξ is tangent to TM . Let us consider S(VTM)

containing JVTM⊥ as a vector subbundle. Consequently, N is orthogonal to Jξ and we have

g(JN, ξ) = −g(N, Jξ) = 0 and g(JN,N) = 0. This means that JN is tangent to TM and in

particular, it belongs to S(VTM). Thus, Jtr(VTM) is also a vector subbundle of S(VTM).

In view of (2.2), we have g(Jξ, JN) = 1. It is then easy to see that JVTM⊥⊕Jtr(VTM) is a

non-degenerate vector subbbundle of S(VTM), with 2-dimensional fibers. Then there exists a

non-degenerate distribution D0 on TM such that S(VTM) = {JVTM⊥⊕Jtr(VTM)} ⊥ D0.

It is easy to check that D0 is an almost complex distribution with respect to J , i.e. JD0 = D0.

The decomposition of VTM becomes VTM = {JVTM⊥ ⊕ Jtr(VTM)} ⊥ D0 ⊥ VTM⊥. If

we set D := VTM⊥ ⊥ JVTM⊥ ⊥ D0 and D′ = Jtr(VTM), then VTM = D ⊕ D′. Here,

D is an almost complex distribution and D′ is carried by J just into the transversal bundle.

Thus, we have a null CR submanifold as in [15, 16] for null hypersurfaces of semi-Riemannian

manifolds. Finally, let us set

U := −JN and V := −Jξ. (2.12)

3. Totally umbilic hypersurfaces

In this section, we prove several charateriazation results on umbilic hypersurfaces of an

indefinite nearly Kaehlerian Finsler space-form F2n := (M(c)2n, L, g, J). To that end, we

have the following.
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Theorem 3.1. Let F2n be an indefinite 2n-dimensional nearly Kaehlerian Finsler space-

form, admitting a totally umbilic null hypersurface (M, g). Then, c satisfies c > 0, c =

0 or c < 0 if and only if the vector field ∇∗UV is timelike, null (or identically zero), or

spacelike, respectively. Moreover, the umbilicity factor ρ satisfies the differential equations

ξρ+ ρτ(ξ)− ρ2 = 0 and PXρ+ ρτ(PX) = 0. for any X ∈ Γ(VTM).

Proof. Setting Y = W = ξ and X = Z in (2.5) and using (2.12), we derive

R
V

(Z, ξ, Z, ξ) = −3c

4
g(Z, V )2 − 3

4
g((∇ZJ)ξ, (∇ZJ)ξ). (3.13)

A straightforward calculation, while considering (2.7), (2.8) and (2.12), leads to

(∇ZJ)ξ = −∇∗ZV − C(Z, V )ξ − ρg(Z, V )N + ρJZ − τ(Z)V. (3.14)

In view of (3.14), the second term on the right hand side of (3.13) becomes

−3

4
g((∇ZJ)ξ, (∇ZJ)ξ) = −3

4
g(∇∗ZV,∇∗ZV ) +

3

2
ρg(∇∗ZV, JZ)

+
3ρ2

2
g(Z,U)g(Z, V )− 3ρ2

4
g(Z,Z). (3.15)

On the other hand, setting Y = ξ and X = Z in (2.11) and taking the inner product of the

resulting equation with ξ, we get

R
V

(Z, ξ, Z, ξ) = g((∇tZh)(ξ, Z)− (∇tξh)(Z,Z)− h(T ◦(Z, ξ), Z), ξ)

= (ρ2 − ρτ(ξ)− ξρ)g(Z,Z). (3.16)

Using (3.13), (3.15) and (3.16), we get

(ρ2 − ρτ(ξ)− ξρ)g(Z,Z) = −3c

4
g(Z, V )2 − 3

4
g(∇∗ZV,∇∗ZV )

+
3

2
ρg(∇∗ZV, JZ) +

3ρ2

2
g(Z,U)g(Z, V )− 3ρ2

4
g(Z,Z), (3.17)

in which we have used the fact that the adapted connection ∇◦ coincides with ∇. Setting

Z = U and Z = U + V in (3.17) in turn, we get

c+ g(∇∗UV,∇∗UV ) = 0, (3.18)

and 2(ξρ+ ρτ(ξ)− ρ2) = −3c

4
− 3

4
g(∇∗U+V V,∇∗U+V V ). (3.19)

By considering the facts (∇V J)V = 0 and that M is totally umbilic, we derive ∇∗V V =

[ρ − C(V, V )]ξ − τ(V )V . Thus, g(∇∗U+V V,∇∗U+V V ) = g(∇∗UV,∇∗UV ) and (3.18) and (3.19)

implies that ξρ + ρτ(ξ) − ρ2 = 0, proving the first assertions of the theorem and the first

differential differential equation of ρ.
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Next, we prove the second differential equation of the theorem. To that end, (2.5) and

(2.11) implies

[Xρ+ρτ(X)]g(Y, Z)− [Y ρ+ ρτ(Y )]g(X,Z) =
c

4
[−g(X,V )g(Y, JZ)

+ g(Y, V )g(X, JZ) + 2g(Z, V )g(X, JY )] +
1

4
[g((∇XJ)ξ, (∇Y J)Z)

− g((∇Y J)ξ, (∇XJ)Z)− 2g((∇ZJ)ξ, (∇XJ)Y )], (3.20)

for all X,Y, Z ∈ Γ(S(VTM)). Setting Y = Z = V in (3.20), we get

−[V ρ+ ρτ(V )]g(X,V ) = −3

4
g((∇V J)ξ, (∇XJ)V ). (3.21)

Using (2.4), we see that (∇V J)V = 0, which helps to derive

−∇V V = −ρξ + τ(V )V. (3.22)

Thus, in view of (2.7), (2.8) and (2.12), we have

(∇V J)ξ = −∇V V + JA∗ξV − τ(V )V = −∇V V + ρξ − τ(V )V. (3.23)

Hence, considering (3.21), (3.22) and (3.23), we get

−[V ρ+ ρτ(V )]g(X,V ) = 0, ∀X ∈ Γ(S(VTM)). (3.24)

Setting X = U in (3.24), we get

V ρ+ ρτ(V ) = 0. (3.25)

On the other hand, setting X = V and Y = Z = U in (3.20), we derive

−[Uρ+ ρτ(U)] =
3

4
g((∇UJ)ξ, (∇UJ)V ). (3.26)

A straightforward calculation, using (2.7), (2.8) and (2.12), we derive (∇UJ)ξ = −∇UV −

τ(U)V and (∇UJ)V = −J∇UV − τ(U)ξ. Thus, (3.26) gives

Uρ+ ρτ(U) = 0. (3.27)

Next, let Y = Z = JX in (3.20), for some X ∈ Γ(D0), we get

[Xρ+ ρτ(X)]g(JX, JX) = −3

4
g((∇XJ)JX, (∇JXJ)ξ). (3.28)

As 0 = (∇XJ)X = ∇XJX − J ∇XX by (2.4), we have J ∇X JX + ∇XX = 0. Using this

relation, we derive

(∇XJ)JX = ∇XJ
2
X − J ∇XJX = −∇XX − J ∇X JX = 0. (3.29)
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Considering (3.28) and (3.29), we get

Xρ+ ρτ(X) = 0, ∀X ∈ Γ(D0). (3.30)

Hence, part (3) of the theorem follows from (3.25), (3.27) and (3.30), which completes the

proof.

As consequence, we have the following results.

Corollary 3.1. Let F2n be an indefinite nearly Kaehlerian Finsler space-form, such that

J ∇ = 0. If F2n admits a totally umbilic null hypersurface (M, g), then c = 0.

Proof. From (3.18), we have c + g(∇∗UV,∇∗UV ) = 0. Also, from the assumption

J ∇ = 0, we see that (∇UJ)V = 0, which implies that −J∇∗UV = τ(U)ξ − C(U, V )V , in

which we have used (2.7) and (2.8). Thus, g(∇∗UV,∇∗UV ) = g(J∇∗UV, J∇∗UV ) = 0, which

gives c = 0.

Corollary 3.2. Let F2n be an indefinite 2n-dimensional nearly Kaehlerian Finsler space-

form. If F2n admits a totally umbilic null hypersurface (M, g), such that V is parallel with

respect to ∇∗, then c = 0.

Proof. From (3.18), we have c = 0. By (3.17), we have 2ρ2g(Z,U)g(Z, V ) −

ρ2g(Z,Z) = 0, for all Z ∈ Γ(VTM). Setting Z = X ∈ Γ(D0) in this relation and noticing

that g(X,U) = g(X,V ) = 0, we get ρ = 0. Thus, M is totally geodesic which completes the

proof.

Corollary 3.3. Let F2n be an indefinite nearly Kaehlerian Finsler space-form, admitting a

totally umbilic null hypersurface (M, g). If M is also screen totally umbilic, then M is screen

totally geodesic.

Proof. By a straightforward calculation, we have g(∇Uξ, U) = g(∇Uξ, U) =

g(J ∇Uξ,N). In view of (2.4), we have J ∇Uξ = ∇UJξ + (∇ξJ)U , and the previous re-

lation simplifies to

g(∇Uξ, U) = g(∇UJξ,N) + g((∇ξJ)U,N)

= −g(Jξ,∇UN) + g(∇ξN,N)− g(∇ξU,U) = %. (3.31)

But using (2.8), we see that g(∇Uξ, U) = −B(U,U) = −ρg(U,U) = 0. Thus, in view of

(3.31), we get % = 0, showing that M is screen totally geodesic which completes the proof.
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Let x ∈ M and ξ be a null vector of TxM . A plane H of TxM is called a null plane

directed by ξ if it contains ξ, gx(ξ,W ) = 0 for any W ∈ H and there exists W0 ∈ H such that

gx(W0,W0) 6= 0. Thus, the null section curvature of H with respective to ξ and the induced

connection ∇ of M , is defined as a real number Kξ(H) = gx(R(W, ξ)ξ,W )/gx(W,W ), where

W 6= 0 is any vector in H independent with ξ (see [15] or [16] for more details). Moreover, the

author in [20] proved that an n(where n ≥ 3)-dimensional Lorentzian manifold is of constant

curvature if and only if its null sectional curvatures are everywhere zero.

Theorem 3.2. Let F2n be an indefinite 2n-dimensional nearly Kaehlerian Finsler space-

form, admitting a totally umbilic and screen totally umbilic null hypersurface (M, g). Then,

the null sectional curvature Kξ(H) of M vanishes if and only if V is parallel with respect to

∇∗.

Proof. Considering (2.11) and Corollary 3.3, we have

g(R(X,Y )Z,PW ) = g(R(X,Y )Z,PW ), (3.32)

for all X,Y ∈ Γ(TTM) and Z,W ∈ Γ(VTM). Setting X = PW = W and Y = Y = ξ in

(3.32) and using (2.5), we have

g(R(W, ξ)ξ,W ) =
3c

4
g(W,V )2 +

3

4
g((∇WJ)ξ, (∇WJ)ξ). (3.33)

But in view of (2.8) and (2.12), we have (∇WJ)ξ = −∇WV + ρJW − τ(W )V . Thus, from

(3.33) , we have

g((∇WJ)ξ, (∇WJ)ξ) = g(∇WV,∇WV )− 2ρg(∇WV, JW ) + ρ2g(W,W )

= g(∇∗WV,∇∗WV )− 2ρg(∇∗WV, JW )

− 2ρ2g(W,U)g(W,V ) + ρ2g(W,W ). (3.34)

Suppose that V is parallel with respect to ∇∗, then the term g(∇∗WV,∇∗WV ) vanishes. More-

over, −2ρg(∇∗WV, JW ) vanishes too. Furthermore, by Corollary 3.2, we have c = 0 and

ρ = 0. Then, (3.34) reduces to

g((∇WJ)ξ, (∇WJ)ξ) = −2ρ2g(W,U)g(W,V ) + ρ2g(W,W ) = 0. (3.35)

Hence, considering (3.35) in (3.33), we see that Kξ(H) = 0. The converse is obvious, and

the proof is complete.

The following result follows easily from Theorem 3.2.
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Corollary 3.4. Let F2n be an indefinite 2n-dimensional normal nearly Kaehlerian Finsler

space-form, admitting a totally umbilic null hypersurface (M, g). Then, the null sectional

curvature Kξ(H) of M vanishes.

4. Geometry of (M, g) from the distributions D and D′

In this section, we give new results on the null hypersurface (M, g) based on the nature of

D and D′ with respect to the second fundamental form B of M . Denote by Q the projection

morphism of TM onto D. Then, in view of (2.12), any X ∈ Γ(VTM) can be written as

X = QX + u(X)U , where u is a 1-form locally defined on M by u(·) = g(·, V ). Applying J

to this relation we have

JX = FX + u(X)N, (4.36)

where F is a (1,1)-tensor globally defined on M by F = J ◦ Q. Moreover, it is easy to see

that (F, u, U) is a local almost contact structure on M , satisfying

F 2 = −I + u⊗ U, u(U) = 1. (4.37)

Notice that (F, u, U) is never an almost contact metric structure on with respect to degenerate

metric g. Using (2.4), (2.7) and (2.8), we derive

(∇XF )Y + (∇Y F )X = u(Y )ANX + u(X)ANY − 2B(X,Y )U, (4.38)

and

B(X,FY ) +B(Y, FX) = −B(X,V )η(Y )−B(Y, V )η(X)

− g(∇XV, Y )− g(∇Y V,X)− u(X)τ(Y )− u(Y )τ(X), (4.39)

for any X,Y ∈ Γ(VTM).

Theorem 4.1. Let F2n be an indefinite 2n-dimensional normal nearly Kaehlerian Finsler

space-form, admitting a totally umbilic and screen totally umbilic null hypersurface (M, g).

If F is parallel then c = 0.

Proof. Suppose that F is parallel. Then, (4.38) and the facts M is totally umbilic

and screen totally umbilic, gives %u(Y )X+%u(X)Y = 2ρg(X,Y )U . In view of Corollary 3.3,

M is screen totally geodesic and thus, we have 2ρg(X,Y )U = 0. Hence, ρ = 0 and M is

totally geodesic. On the other hand, (∇XF )ξ = 0 and (2.8) gives ∇XV = −τ(X)V , which

together with (3.18) gives c = 0. This completes the proof.
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In [6], the authors introduced the concept of mixed geodesic non-degenerate CR-submanifolds

of a space form. More precisely, a CR-submanifold is called mixed geodesic if its second

fundamental h satisfies h(X,Y ) = 0, where X ∈ Γ(D) and Y ∈ Γ(D⊥). Here, D is a

J-invariant distribution on M and D⊥ is an anti-invariant distribution which is orthog-

onal and complementary to D in M . As we have already secured a CR structure on a

null hypersurface (M, g) (see Section 2), in which the invariant distribution D is given by

D = VTM⊥ ⊥ JVTM⊥ ⊥ D0 and its complementary (but not orthogonal) distribution D′

by D′ = Jtr(VTM), we can define the concept of mixed geodesic for M as follows.

Definition 4.1. Let (M, g) be a null hypersurface of a complex space. Then, M is said to

be mixed totally geodesic if B(X,Y ) = 0, for X ∈ Γ(D) and Y ∈ Γ(D′).

It follows that any totally geodesic null hypersurface (M, g) of F2n is trivially mixed geodesic.

Notice that the distribution D′ in integrable while D is generally non-integrable. In fact,

it is easy to show, using (2.4) and (2.7), that D is integrable if and only if

B(X, JY )−B(Y, JX) = 2g((∇XJ)Y, ξ), (4.40)

for all X,Y ∈ Γ(D). A null hypersurface (M, g) will be called mixed foliate if M is mixed

totally geodesic and (4.40) holds, i.e. D is integrable. Since D and D′ are not g-orthogonal

distributions, one may not be able to describe the nature of (M, g) depending on the leaves

MD and MD′ of D, assumed integrable, and D′, respectively. However, when M is mixed

foliate, we know that D ⊥B D′. This prompt us to consider the null hypersurface (M,B),

that is; the null hypersurface M endowed with its local second fundamental form B, instead

of its natural degenerate metric g. Notice that (M,B) is also degenerate since the second

fundamental form B is degenerate. More precisely, B(ξ, ·) = 0. It is easy to see that the

radical distribution of (M,B) is kerA∗ξ . Such hypersurfaces were also studied by C. L. Bejan

and K. L. Duggal [7]. A distribution D on M will be call B-totally null if B vanishes on D.

It follows that a totally geodesic M is B-totally null hypersurface.

The following lemma is fundamental to our study of (M, g) and (M,B).

Lemma 4.1. Let (M, g) be a mixed foliate null hypersurface of F2n. Then,

2cg(Y, Y ) = 4B(JY,∇Y U)− 4B(Y,∇JY U)

+ g((∇JY J)U, (∇Y J)ξ)− g((∇Y J)U, (∇JY J)ξ),

for all Y ∈ Γ(D0).
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Proof. For any X,Y ∈ Γ(D), we have

(∇XB)(Y,U) = −B(∇XY, U)−B(Y,∇XU), (4.41)

where we have used the fact that M is mixed totally geodesic. Then, interchanging X and

Y in (4.41) and subtracting the new relation from (4.41), we get

(∇XB)(Y, U)− (∇YB)(X,U)

= −B([X,Y ], U) +B(X,∇Y U)−B(Y,∇XU)

= B(X,∇Y U)−B(Y,∇XU). (4.42)

In view of (4.42) and (2.11), we derive

g(R
V

(X,Y )U, ξ) = B(X,∇Y U)−B(Y,∇XU), (4.43)

for any X,Y ∈ Γ(D). On the other hand, (2.5) gives

R
V

(X,Y, U, ξ) =
c

2
g(X, JY ) +

1

4
[g((∇XJ)ξ, (∇Y J)U)

− g((∇XJ)U, (∇Y J)ξ)− 2g((∇XJ)Y, (∇UJ)ξ)]. (4.44)

Notice that (∇JY J)Y = 0, for any Y ∈ Γ(D0). In fact, by (2.4) we have (∇Y J)Y = 0, which

implies that ∇Y JY = J ∇Y Y . Then, using this relation, we derive

(∇JY J)Y = −(∇Y J)JY = ∇Y Y + J
2∇Y Y = 0. (4.45)

Setting X = JY , where Y ∈ Γ(D0), in (4.43) and (4.44), and considering (4.45), we get the

lemma. Hence, the proof.

As a consequence of Lemma 4.1, we have the following result.

Theorem 4.2. Let (M, g) be a mixed foliate null hypersurface of an indefinite nearly Kaehle-

rian Finsler space-form F2n, such that F is parallel. Then c = 0. Moreover, (M,B) is locally

a null product manifold MD×MD′, where MD is a leaf of the invariant distribution D, which

is a B-totally null manifold and MD′ is a curve of the anti-invariant D′.

Proof. The assumption F is parallel implies that

∇XU = u(∇XU)U, ∀X ∈ Γ(VTM). (4.46)
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Using (4.46) and the fact that M is mixed foliate, we derive

B(JY,∇Y U) = u(∇Y U)B(JY, U) = 0, (4.47)

and B(Y,∇JY U) = u(∇JY U)B(Y,U) = 0, (4.48)

for any Y ∈ Γ(D0). On the other hand, applying (2.7), (2.8) and the assumption F is parallel,

we have

(∇XJ)Y = −u(Y )ANX +B(X,Y )U + [B(X,FY )

+Xu(Y ) + u(Y )τ(X)− u(∇XY )]N, (4.49)

for any X,Y ∈ Γ(VTM). Replacing Y by U and ξ in (4.49), in turns, we get

(∇XJ)U = −ANX + [τ(X)− u(∇XU)]N, (4.50)

and (∇XJ)ξ = −[B(X,V ) + u(∇Xξ)]N = 0, (4.51)

respectively, for any X ∈ Γ(VTM). Considering (4.47), (4.48), (4.50) and (4.51) in Lemma

4.1, we get 2cg(Y, Y ) = 0 for any Y ∈ Γ(D0), which implies that c = 0 as D0 is non-

degenerate. Next, let us consider the manifold (M,B). As F is parallel, (4.38) implies

that

2B(X,Y )U = u(Y )ANX + u(X)ANY, (4.52)

for any X,Y ∈ Γ(VTM). Since u vanishes on D, (4.52) implies B(X,Y ) = 0, for any

X,Y ∈ Γ(D). Thus, the distribution D is totally B-degenerate. Furthermore, using (4.52),

we derive B(U,U) = C(U, V ) and ANV = 0. From (4.46), D′ is parallel. Notice that FX

has no component in D′ for any X ∈ Γ(VTM). In fact, by (4.36) and (2.12), we have

g(FX, V ) = g(JX, V ) = −g(JX, Jξ) = −g(X, ξ) = 0, i.e. FX ∈ Γ(D) for all X ∈ Γ(VTM).

Using this fact and the assumption that F is parallel, we have ∇XFY = F∇XY ∈ Γ(D), for

any X ∈ Γ(VTM) and Y ∈ Γ(D), hence, D is parallel too. Consequently, since D ⊥B D′

by the mixed geodesic assumption and that D and D′ are integrable distributions, then by

the arguments originally used by de Rham [10], (M,B) is locally a semi-Riemannian product

MD×MD′ , where MD is a leaf of the invariant distribution D, which is a totally null manifold

with respect to B, and MD′ is a curve of the anti-invariant distribution D′, which completes

the proof.

The following results follows immediately from Theorem 4.2.
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Corollary 4.1. There exist no mixed foliate null hypersurface (M, g) of an indefinite nearly

Kaehlerian Finsler space-form F2n, such that F is parallel and c 6= 0.

Corollary 4.2. Let (M, g) be a mixed foliate null hypersurface of an indefinite nearly Kaehle-

rian Finsler space-form F2n, such that F is parallel and C(U, V ) = 0. Then, the following

holds;

(1) c = 0,

(2) (M,B) is locally a null product manifold MD × MD′, where MD is a leaf of the

invariant distribution D, which is a B-totally null manifold, and MD′ is a B-null

curve of the anti-invariant D′,

(3) each leaf MD carries a Kaehlerian structure (F, g|D).

In case J is parallel, such that both D′ and J(VTM⊥) are parallel distributions on M , we

have the following result.

Theorem 4.3. Let (M, g) be a mixed foliate null hypersurface of an indefinite nearly Kaehle-

rian Finsler space-form F2n, such that ∇ J = 0 and the distribution D′ is parallel. Then,

c = 0. Moreover, if J(VTM⊥) is also parallel, then the following holds;

(1) if τ = 0, the type numbers of M and S(VTM) satisfies tM (x) ≤ 1 and tS(VTM)(x) ≤ 1,

for any x ∈M ,

(2) (M,B) is locally a null product MD ×MD′, where MD is a leaf of D, which is a

B-totally degenerate manifold of complex dimension, and MD′ is a B-null curve of

D′,

(3) (M, g) is totally geodesic,

(4) (F, g|D) is a Kaehlerian structure on the leaf MD.

Proof. As ∇ J = 0, we have

(∇XF )Y = u(Y )ANX −B(X,Y )U, (4.53)

and (∇Xu)Y = −B(X,FY )− u(Y )τ(X), ∀X,Y ∈ Γ(VTM), (4.54)

in which we have used (2.7), (2.8) and (4.36). Setting Y = U in (4.53) and (4.54), we,

respectively, get

∇XU = FANX + τ(X)U and τ(X) = u(∇XU). (4.55)
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On the other hand, setting Y = ξ in (4.53) and taking the second relation of (4.55), we get

∇XV = FA∗ξX − τ(X)V. (4.56)

First, suppose that D′ is parallel, then by (4.55) we have

FANX = 0 and ∇XU = τ(X)U, ∀X ∈ Γ(VTM). (4.57)

Considering (4.57) in Lemma 4.1, we get

cg(Y, Y ) = 2τ(Y )B(JY, U)− 2τ(JY )B(Y, U) = 0, (4.58)

for all Y ∈ Γ(D0), in which we have used the fact that M is mixed geodesic. As D0 is

non-degenerate, (4.58) gives c = 0.

Now, suppose that J(VTM⊥) is parallel, then (4.56) implies FA∗ξX = 0 and ∇XV =

−τ(X)V , for any X ∈ Γ(VTM). Equivalently, we have

A∗ξX = B(X,V )U and ∇XV = −τ(X)V. (4.59)

Notice that, as D′ and J(VTM⊥) are parallel distributions on M , we see, from 4.57) and

(4.59), that the vector fields U and V are parallel with respect to ∇ if and only if τ = 0.

Hence, part (1) follows easily from Corollary 1 of [14, p. 184]. Furthermore, it is easy to

show that D is also parallel. In fact, as D is integrable, (4.40) and ∇ J = 0 implies that

B(X,FY ) = B(Y, FX), for any X,Y ∈ Γ(D). Setting Y = ξ in this relation and using the

facts −V = Fξ and B(ξ, FX) = 0, we get B(X,V ) = 0, for any X ∈ Γ(D). Thus, the first

relation of (4.59) gives

A∗ξX = 0, ∀X ∈ Γ(D). (4.60)

In view of (4.60) and (4.53), we have

(∇XF )Y = 0, ∀X,Y ∈ Γ(D). (4.61)

Using (4.61) together with the fact FX ∈ Γ(D) for any X ∈ Γ(VTM), we get ∇XFY =

F∇XY ∈ Γ(D). Hence, D is parallel. Since D ⊥B D′ by the assumption of mixed geodesic,

and that D and D′ are integrable, we see that (M,B) is locally a product manifold MD×MD′ ,

in which we have considered de Rham’s [10] arguments on the existence of product manifolds.

Here, MD is a B-totally null leaf of D as B = 0 on D (see (4.60)), and MD′ is a B-null curve

of D′, as B = 0 on D′ by (4.59) and the fact M is mixed geodesic. Furthermore, MD has

complex dimension since D is an invariant distribution. We have also seen that B = 0 on



204 SAMUEL SSEKAJJA

both D and D′, which means that M is totally geodesic, proving part (3). Finally, part (4)

follows from (4.37) and (4.61), which completes the proof.

Corollary 4.3. The only mixed foliate null hypersurfaces of an indefinite nearly Kaehlerian

Finsler space-form F2n, such that ∇ J = 0 and the distributions D′ and J(VTM) parallel are

the geodesic ones.

By definition of Lie derivative along vector fields, we have

(LV g)(X,Y ) = B(V, Y )η(X) +B(V,X)η(Y )

+ g(∇XV, Y ) + g(X,∇Y V ), ∀X,Y ∈ Γ(VTM), (4.62)

in which we have used (2.9). In view of (4.39), we can rewrite (4.62) as

(LV g)(X,Y ) = −B(X,FY )−B(Y, FX)− u(X)τ(Y )− u(Y )τ(X). (4.63)

In case the distribution J(VTM⊥) is killing, (4.63) becomes

B(X,FY ) +B(Y, FX) + u(X)τ(Y ) + u(Y )τ(X) = 0. (4.64)

In particular, if X,Y ∈ Γ(D), (4.64) gives B(X,FY ) +B(Y, FX) = 0. Moreover, if J ∇ = 0

and D is integrable, then the last relation and (4.40) and (4.37) gives B(X,Y ) = 0, for all

X,Y ∈ Γ(D). Furthermore, if D′ is parallel, we see from (4.53) that B(X,U) = C(X,V ),

for all X ∈ Γ(VTM). Also note, from (4.53) and the facts B = 0 on D and FX ∈ Γ(D) for

any X ∈ Γ(VTM), that the distribution D is parallel. Thus, putting all the above together,

and considering Theorem 4.3, we have the following result.

Corollary 4.4. Under the assumptions of Theorem 4.3, if instead the distribution J(VTM⊥)

is killing then (M,B) is locally a null product MD ×MD′, where MD is a leaf of D, which

is a B-totally degenerate manifold of complex dimension, and MD′ is a B-non-null curve of

D′, unless C(U, V ) = 0.
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