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DECOMPOSITION ON QTAG-MODULES WITH CERTAIN

SUBMODULES

RAFIQUDDIN∗ AND AYAZUL HASAN

Abstract. A module M over an associative ring R with unity is a QTAG-module if every

finitely generated submodule of any homomorphic image of M is a direct sum of uniserial

modules. In this paper, we study some decomposition results on QTAG-modules with

certain submodules in terms of the cardinality g(M).

1. Introduction and Terminology

Let R be any ring with unity. A uniserial module M is a module over a ring R, whose

submodules are totally ordered by inclusion. This means simply that for any two submodules

N1 and N2 of M , either N1 ⊆ N2 or N2 ⊆ N1. A module M is called a serial module if it is

a direct sum of uniserial modules. An element x ∈M is uniform, if xR is a non-zero uniform

(hence uniserial) module and for any R-module M with a unique decomposition series, d(M)

denotes its decomposition length.
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A module MR is called a TAG-module if it satisfies the following two conditions:

(I) Every finitely generated submodule of every homomorphic image of M is a direct

sum of uniserial modules.

(II) Given any two uniserial submodules U and V of a homomorphic image of M , for any

submodule W of U , any non-zero homomorphism f : W → V can be extended to a

homomorphism g : U → V , provided the composition length d(U/W ) ≤ d(V/f(W )).

A module MR satisfying only condition (I) is called a QTAG-module. The study of

QTAG-modules was initiated by Singh [11]. This is a very fascinating structure that has

been the subject of research of many authors. Different notions and structures of QTAG-

modules have been studied, and a theory was developed, introducing several notions, inter-

esting properties, and different characterizations of submodules. Many interesting results

have been obtained, but there is still a lot to explore.

Everywhere in the text of the present article; let it be agreed that all the rings are asso-

ciative with unity (1 6= 0) and modules are unital QTAG-modules. For a uniform element

x ∈M, e(x) = d(xR) and HM (x) = sup

{
d

(
yR

xR

)
| y ∈M, x ∈ yR and y uniform

}
are the

exponent and height of x in M, respectively. Hk(M) denotes the submodule of M generated

by the elements of height at least k and Hk(M) is the submodule of M generated by the ele-

ments of exponents at most k. Let us denote byM1, the submodule ofM , containing elements

of infinite height. As defined in [5], the module M is h-divisible if M = M1 =
∞⋂
k=0

Hk(M).

The module M is h-reduced if it does not contain any h-divisible submodule. In other words,

it is free from the elements of infinite height. The module M is said to be bounded, if there

exists an integer k such that HM (x) ≤ k for every uniform element x ∈M .

A submodule N of M is h-pure [3] in M if N ∩Hn(M) = Hn(N), for every integer n ≥ 0.

A submodule B ⊆ M is a basic submodule [5] of M , if B is h-pure in M , B = ⊕Bi, where

each Bi is the direct sum of uniserial modules of length i and M/B is h-divisible. A sub-

module N ⊆ M is said to be high [4], if it is a complement of M1 i.e. M = N ⊕M1. The

sum of all simple submodules of M is called the socle of M and is denoted by Soc(M). The

cardinality of the minimal generating set of M is denoted by g(M). For all ordinals α, fM (α)

is the αth-Ulm invariant of M (see [6]) and it is equal to g
(
Soc(Hα(M))/Soc(Hα+1(M))

)
.
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Imitating [8], the submodules Hk(M), k ≥ 0 form a neighborhood system of zero, thus

a topology known as h-topology arises. Closed modules are also closed with respect to this

topology. Thus, the closure of N ⊆ M is defined as N =
∞⋂
k=0

(N + Hk(M)). Therefore the

submodule N ⊆M is closed with respect to h-topology if N = N .

It is interesting to note that almost all the results which hold for TAG-modules are also

valid for QTAG-modules [9]. Many results of this paper are the generalization of [10]. Our

notations and terminology generally agree with those in [1] and [2].

2. Elementary results

We start here with a recollection of the following notions from [7].

Definition 2.1. A basic submodule Bu of a QTAG-module M is said to be an upper basic

submodule if g(M/Bu) = min{g(M/B) |B is a basic submodule of M}.

Definition 2.2. A basic submodule Bl is said to be a lower basic submodule of M if g(M/Bl) =

fin g(M) = min{Hk(M)}.

To develop the study, we need to prove some elementary but helpful lemmas.

Lemma 2.1. If M is a QTAG-module without elements of infinite height such that every

basic submodule of M is both an upper and lower basic submodule of M , and such that

fin g(M) = g(M). Then M cannot be decomposed as M = M1 ⊕M2, where M2 is a direct

sum of uniserial modules, and g(M1) < g(M).

Proof. Suppose such a decomposition of M does exist, and let B be a basic submodule

of M1. Now B ⊕M2 is a basic submodule of M and

g(M/(B ⊕M2)) = g(M1/B) + g(M2/M2) = g(M1/B) ≤ g(M1) < g(M).

Since fin g(M) = g(M) there exists a basic submodule B′ of M such that g(M/B′) = g(M).

But these two facts contradict the hypothesis that every basic submodule of M is both an

upper and lower basic submodule of M .

Lemma 2.2. Let M be a QTAG-module without elements of infinite height. Suppose M =

M1 ⊕ M2, where M2 is a direct sum of uniserial modules, and suppose that every basic

submodule of M1 is both an upper and lower basic submodule of M1. If fin g(M1) = g(M1),
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g(M2) < g(M1), and B is a basic submodule of M1, then B⊕M2 is an upper basic submodule

of M .

Proof. Suppose that B ⊕M2 is not an upper basic submodule of M , and let Bu

be an upper basic submodule of M . Let M = S ⊕ P1 and Bu = P1 ⊕ P2 where g(S) =

max{ℵ0, g(M/Bu)}. If g(S) ≤ ℵ0 then we get that M is a direct sum of uniserial modules,

and therefore M1 is a direct sum of uniserial modules. Thus M1 must be bounded since each

of its basic submodules is both an upper and lower basic submodule. Therefore B = M1

and so B ⊕ M2 = M1 ⊕ M2 is an upper basic submodule of M . Now we assume that

ℵ0 < g(S) = g(M/Bu) < g(M/(B ⊕ M2)) ≤ g(M1). Now we write M = S ⊕ Q1 ⊕ Q2

where P1 = Q1 ⊕Q2, and S ⊕Q1 contains M2 and g(S ⊕Q1) < g(M1). But we know that

M1
∼= M/M2

∼= [(S ⊕ Q1)/M2] ⊕ Q2 which contradicts Lemma 2.1 when applied to M1,

therefore B ⊕M2 must be an upper basic submodule of M .

Lemma 2.3. Let M be a QTAG-module without elements of infinite height such that M =

M1 ⊕M2, where M2 is a direct sum of uniserial modules, fin g(M1) = g(M2), and every

basic submodule of M1 is both an upper and lower basic submodule of M1. If B is a basic

submodule of M1, then B ⊕M2 is an upper basic submodule of M .

Proof. Suppose that B ⊕M2 is not an upper basic submodule of M , and let Bu

be an upper basic submodule of M . As in Lemma 2.2 we can assume that g(M/Bu) > ℵ0.

Write M = S ⊕ P1 and Bu = P1 ⊕ P2 where g(S) = g(M/Bu) < g(M/(B ⊕M2)) ≤ g(M1).

Now we can write M = M1 ⊕ R1 ⊕ R2 where M2 = R1 ⊕ R2 and M1 ⊕ R1 contains S and

g(R1 + S) < g(M2). Consider the module M1 ⊕ R1. By Lemma 2.2 we know that B ⊕ R1

is an upper basic submodule of M1 ⊕ R1. But M1 ⊕ R1 contains S which is a summand of

M so that we can write M1 ⊕ R1 = S ⊕ [(M1 ⊕ R1) ∩ P1]. Let T = (M1 ⊕ R1) ∩ P1. Now

observe that g((M1 ⊕ R1)/(P2 ⊕ T )) = g(S/P2) ≤ g(S) < g(M1). Since fin g(M1) = g(M1),

and every basic submodule of M1 is both an upper and lower basic submodule of M1 with

g(M1/B) = g(M1) which contradicts B ⊕ R1 being an upper basic submodule of M1 ⊕ R1.

Thus B ⊕M2 must be an upper basic submodule of M .

Lemma 2.4. Let M be an h-reduced QTAG-module such that every basic submodule of M

is an upper and lower basic submodule of M . Suppose M = M1 ⊕M2, where M2 is a direct

sum of uniserial modules. Then M1 has the property that each of its basic submodules is both

an upper and lower basic submodule of M1.
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Proof. Suppose there exists two basic submodules B1 and B2 of M1 such that

g(M1/B1) 6= g(M1/B2). Then B1 ⊕M2 and B2 ⊕M2 are basic submodules of M such that

g(M/(B1 ⊕M2)) = g(M1/B1) 6= g(M1/B2) = g(M/(B2 ⊕M2)), and this contradicts the

hypothesis on M .

Lemma 2.5. Let M be a QTAG-module without elements of infinite height. Suppose that

M = M1 ⊕M2, where fin g(M) = g(M), fin g(M1) = g(M1), fin g(M2) = g(M2), and M1

and M2 have the property that every basic submodule is an upper and lower basic submodule.

If M = M3 ⊕M4 where g(M3) < g(M), and M4 is a direct sum of uniserial modules, then

g(M) = g(M1) = g(M2).

Proof. Suppose that g(M1) < g(M), then g(M2) = g(M). Now we write M =

M3 ⊕ T1 ⊕ T2 where M3 ⊕ T1 contains M1, and g(M3 ⊕ T1) < g(M). This is possible since

g(M3) < g(M), and g(M1) < g(M). Now notice that M2
∼= M/M1

∼= [(M3 ⊕ T1)/M1]⊕ T2,

and g((M3⊕T1)/M1) ≤ g(M3⊕T1) < g(M) = g(M2). But this contradicts Lemma 2.1 when

applied to M2, therefore we have g(M) = g(M1) = g(M2).

Lemma 2.6. Let M be a QTAG-module without elements of infinite height and suppose

that M = M1 ⊕M2, where fin g(M1) = g(M1), and fin g(M2) = g(M2), fin g(M) = g(M),

and every basic submodule of M1 or M2 is both an upper and lower basic submodule. Let

B1 and B2 be basic submodules of M1 and M2 respectively. If either g(M1) < g(M) or

g(M2) < g(M), then B1 ⊕B2 is an upper basic submodule of M .

Proof. Assume that B1 ⊕ B2 is not an upper basic submodule of M . Let Bu be an

upper basic submodule of M . Write M = M3 ⊕M4 where M4 is a direct sum of uniserial

modules, and g(M3) = max(ℵ0, g(M/Bu)). If g(M3) ≤ ℵ0, then M is a direct sum of uniserial

modules. But this means that M1 and M2 are bounded since the bounded direct sum of

uniserial modules are the only direct sums of uniserial modules which have the property that

every basic submodule is both an upper and lower basic submodule. Thus M is a bounded

module and hence only basic submodule which contradicts the assumption that B1 ⊕ B2 is

not an upper basic submodule of M . Therefore ℵ0 < g(M/Bu), and g(M3) = g(M/Bu).

Since B1⊕B2 is not an upper basic submodule of M , we get that g(M/Bu) < g(M), but

this contradicts Lemma 2.5. Thus B1 ⊕B2 must be an upper basic submodule of M .
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3. Main results

Through the proceeding series of lemmas, we are in a position to proceed by proving the

following.

Theorem 3.1. Let M be a QTAG-module without elements of infinite height such that

M = M1 ⊕M2, where M2 is a direct sum of uniserial modules. If Bu is an upper basic

submodule of M1, then Bu ⊕M2 is an upper basic submodule of M .

Proof. If M1 is a finitely generated, module then Bu ⊕ M2 = M since Bu is

basic submodule in M1, thus Bu ⊕ M2 is upper basic submodule. Since Bu is an upper

basic submodule of M1, we can write, M1 = S1 ⊕ T1 and Bu = T1 ⊕ T2 where g(S1) =

max(ℵ0, g(M1/B
u)), and every basic submodule of S1 is both an upper and lower basic

submodule of S1. As in Lemma 2.2, we assume that g(M1/B
u) > ℵ0. Now if fin g(S1) < g(S1)

then we write S1 = S2 ⊕ S3 and T1 = K ⊕ S3 where fin g(S2) < g(S2). By Lemma 2.4

every basic submodule of S2 is both an upper and lower basic submodule of S2. Thus

M = S2 ⊕ S3 ⊕ T2 ⊕ M2 where S3 ⊕ T2 ⊕ M2 is a direct sum of uniserial modules, and

hence, by Lemma 2.3 we have that K⊕S3⊕T2⊕M2 is an upper basic submodule of M , but

K ⊕ S3 ⊕ T2 ⊕M2 = Bu ⊕M2.

With the last statement in hand, we establish the following corollaries about decomposi-

tion of QTAG-modules.

Corollary 3.1. Let M be a QTAG-module without elements of infinite height such that

M = M1 ⊕M2 = M3 ⊕M4, where fin g(M1) = g(M1) and fin g(M3) = g(M3). Suppose that

M2 and M4 are direct sums of uniserial modules, and every basic submodule of M1 and M3

is an upper and lower basic submodule. Then fin g(M1) = fin g(M3).

Proof. Let B1 and B2 be basic submodule of M1 and M3 respectively. Now we have

fin g(M1) = g(M1/B1) = g(M/(B1 ⊕M2)) = g(M/(B2 ⊕M4)) = fin g(M3), since B1 ⊕M2

and B2 ⊕M4 are upper basic submodules of M by Theorem 3.1.

Corollary 3.2. Let M be a QTAG-module without elements of infinite height. Suppose that

M = M1⊕M2, where fin g(M1) = g(M1) and g(M2) < g(M1), and every basic submodule of

M1 is both an upper and lower basic submodule of M1. If Bu is an upper basic submodule of

M2, and B is a basic submodule of M1, then B ⊕Bu is an upper basic submodule of M .

Proof. If M is finitely generated, the proof is trivial. Now we write M2 = S⊕T1 and

Bu = T1⊕T2 where every basic submodule of S is both an upper and lower basic submodule



DECOMPOSITION ON QTAG-MODULES WITH CERTAIN SUBMODULES 213

of S. We can also assume that fin g(S) = g(S). Consider the module M1 ⊕ S satisfies the

hypothesis of Lemma 2.6, and so B ⊕ T2 is an upper basic submodule of M1 ⊕ S. Now by

Theorem 3.1, we have B ⊕ T1 ⊕ T2 = B ⊕Bu is an upper basic submodule of M .

And so, we are ready to prove the following.

Proposition 3.1. Let M be a QTAG-module without elements of infinite height. Suppose

that M = M1 ⊕M2, where fin g(M1) = g(M1) and fin g(M2) = g(M2), fin g(M) = g(M),

and every basic submodule of M1 and M2 is both an upper and lower basic submodule. If

B1 and B2 are basic submodules of M1 and M2 respectively, then B1 ⊕B2 is an upper basic

submodule of M .

Proof. By Lemma 2.6 we assume that g(M1) = g(M2) = g(M). Suppose that B1⊕B2

is not upper basic submodule of M , and let Bu be an upper basic submodule of M . Now we

write M = S ⊕Q1 and Bu = Q1⊕Q2 where S has the property that every basic submodule

of S is both an upper and a lower basic submodule of S, and g(S) = max(ℵ0, g(M/Bu)). As

in the proof of Lemma 2.6 we can assume that ℵ0 < g(S) = g(M/Bu) < g(M). We may

also assume that fin g(S) = g(S). Consider the module M1 + S. Since M1 + S contains the

modules M1 and S, both of which are summands of M , we have M1+S = M1⊕[(M1+S)∩T ],

and M1 + S = S ⊕ [(M1 + S) ∩ Q1]. Let U = (M1 + S) ∩ T , and let Bu
1 be an upper basic

submodule of U . Observing that

g(S) = g(S/Q2),

= g((S +M1)/(Q2 ⊕ [(M1 + S) ∩Q1])),

= g((M1 + S)/(B1 ⊕Bu
1 )),

= g(M1/B1) + g(U/Bu
1 )

Now g(S) = g(M1/B1) + g(U/Bu
1 ) = g(M1) = g(U/Bu

1 ), since fin g(M1) = g(M1), and every

basic submodule of M1 is both an upper and a lower basic submodule of M1. Thus we have

that g(M1) ≤ g(S), but this a contradiction since g(S) < g(M) = g(M1). Therefore B1⊕B2

must be an upper basic submodule of M .

Theorem 3.2. Let M be a QTAG-module without elements of infinite height. Suppose that

M = M1 ⊕M2, and let Bu
1 and Bu

2 be upper basic submodules of M1 and M2 respectively.

Then Bu
1 ⊕Bu

2 is an upper basic submodule of M .
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Proof. If either M1 or M2 is finitely generated, then by Theorem 3.1, Bu
1 ⊕ Bu

2 is

an upper basic submodule in M . Now we write M1 = S1 ⊕ P1 and Bu
1 = P1 ⊕ P2 where

every basic submodule of S1 is both an upper and a lower basic submodule of S1. Similarly

we can write U = V1 ⊕ T1 and Bu
2 = T1 ⊕ T2 where every basic submodule of V1 is both an

upper and a lower submodule of V1. Now we have S1 = S2 ⊕ P3 and P2 = P3 ⊕W1 where

fin g(S2) = g(S2). Similarly we have V1 = V2⊕T3 and T2 = T3⊕W2 where fin g(V2) = g(V2).

Therefore by Lemma 2.4 we get that S2 and V2 have the property that every basic submodule

is both an upper and a lower basic submodule. Thus M = (S2 ⊕ V2)⊕ (P1 ⊕ P3 ⊕ T1 ⊕ T3)

and by applying Theorem 3.1 and Proposition 3.1 the proof is completed.

For freely use in the sequel, we state the following.

Corollary 3.3. Let M be a QTAG-module without elements of infinite height. Suppose that

M = M1 ⊕M2, where every basic submodule of M1 or M2 is both an upper and a lower

basic submodule, and suppose that fin g(M) = g(M). Then every basic submodule of M is

an upper and lower basic submodule of M .

Proof. Let Bu
1 and Bu

2 be upper basic submodules of M1 and M2 respectively. By

Theorem 3.2, we have Bu
1 ⊕ Bu

2 is an upper basic submodule of M . Notice that fin g(M) =

fin g(M1) + fin g(M2) = g(M1/B
u
1 ) + g(M2/B

u
2 ) = g(M/(Bu

1 ⊕Bu
2 )), and we are done.

Now we are able to prove the following.

Theorem 3.3. Let M be an h-reduced QTAG-module, and let N be a high submodule of M .

If Bu is an upper basic submodule of N , then Bu is an upper basic submodule of M .

Proof. Suppose that Bu is not upper basic submodule in M , and let Bu
1 be an upper

basic submodule of M and K a high submodule of M containing Bu
1 with g(M/Bu

1 ) < g(M).

We have two cases to consider.

Case (i). Suppose that g(K/Bu
1 ) ≤ ℵ0, then M is a Σ-module and g(M/N) = g(M/K).

Since Bu is an upper basic submodule of N and M is a Σ-module, then Bu = N , and thus

Bu is an upper basic submodule of M .

Case (ii). Suppose that g(K/Bu
1 ) > ℵ0, then g(M/Bu) > ℵ0 and we have M = S⊕P1 and

Bu
1 = P1⊕P2 where g(S) = g(M/Bu

1 ). Now K contains P1 and hence K = P1⊕T where T =

S ∩K. Let φ : M → M/M1 be the natural quotient map such that N ∼= φ(N), K ∼= φ(K),

Bu
1
∼= φ(Bu

1 ), and Soc(φ(N)) = Soc(φ(K)). Since K = P1⊕T we have φ(K) = φ(Bu
1 )⊕φ(T ).

Now Soc(φ(Bu
1 )) = ∪∞i=1Qi where Qi is a submodule of elements of bounded height in φ(M)
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and consequently in φ(N) and φ(K) since both are h-pure in φ(M). Therefore there exists a

basic submodule B1 of φ(N) such that B1 ⊃ Soc(φ(Bu
1 )). Let B2 = φ−1(B1) ∩N , since φ is

an isomorphism between N and φ(N) and B2 is a basic submodule of N . If g(N/B2) ≤ ℵ0

an argument as in Case (i) would complete the proof. Thus assume that g(N/B2) > ℵ0 and

consider

g(N/B2) = g(φ(N)/B1)

= g(Soc(φ(N)/B1))

= g(Soc(φ(N))/Soc(B1))

= g(Soc(φ(K))/Soc(B1))

= g(Soc(φ(P1))⊕ Soc(φ(T ))/Soc(B1)),

but Soc(B1) contains Soc(φ(P1)). Hence g(N/B2) ≤ g(Soc(T )) ≤ g(Soc(S)) = g(M/Bu
1 ).

Notice that M/B2
∼= N/B2 ⊕M/N , and hence

g(M/B2) = g(N/B2) + g(M/N) ≤ g(M/Bu
1 ) + g(M/N) = g(M/Bu

1 ) + g(M/K),

and since g(M/K) ≤ g(M/Bu
1 ), we have g(M/B2) ≤ g(M/Bu

1 ) + g(M/Bu
1 ) = g(M/Bu

1 ).

Therefore B2 is an upper basic submodule of M . We assume that Bu is not upper basic

submodule of M , and so g(M/Bu) > g(M/B2). Notice that g(M/Bu) = g(M/N)+g(N/Bu),

and g(M/B2) = g(M/N)+g(N/B2), so that g(N/Bu) > g(N/B2) which contradictsBu being

an upper basic submodule of N . Therefore Bu is an upper basic submodule of M .

Corollary 3.4. Let M be a QTAG-module, and let N1 and N2 be high submodules of M ,

and let Bu
1 and Bu

2 be upper basic submodules of N1 and N2 respectively. Then g(N1/B
u
1 ) =

g(N2/B
u
2 ).

Proof. Follows easily from the proof of the last theorem.

4. Some extended results

The purpose of the present section is to extending the results of Theorems 3.1 and 3.2.

Several such structural consequences are now presented. In this view we first prove the

following.
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Theorem 4.1. Let M be an h-reduced QTAG-module such that M = M1⊕M2. Let Bu
1 and

Bu
2 be upper basic submodules of M1 and M2 respectively. Then Bu

1 ⊕ Bu
2 is an upper basic

submodule of M .

Proof. Let N1 and N2 be high submodules of M1 and M2 respectively, which contain

Bu
1 and Bu

2 respectively. Now suppose that Bu
3 and Bu

4 are upper basic submodules of N1

and N2 respectively. By Theorem 3.2 we know that Bu
3 ⊕ Bu

4 is an upper basic submodules

of N1 ⊕ N2, and hence by Theorem 3.3, Bu
3 ⊕ Bu

4 is an upper basic submodule of M . Now

g(M/(Bu
3 ⊕Bu

4 )) = g(M1/B
u
3 )+g(M2/B

u
4 ), and since Bu

3 and Bu
4 are upper basic submodules

of N1 and N2 respectively, we have by Theorem 3.3, they are basic submodules of M1 and

M2 respectively. Thus we know that g(M1/B
u
3 ) = g(M1/B

u
1 ), and g(M2/B

u
4 ) = g(M2/B

u
2 ).

Therefore g(M/(Bu
3⊕Bu

4 )) = g(M1/B
u
3 )+g(M2/B

u
4 ) = g(M1/B

u
1 )+g(M2/B

u
2 ) = g(M/(Bu

1⊕

Bu
2 )), and hence Bu

1 ⊕Bu
2 is an upper basic submodule of M .

Theorem 4.2. Let M be an h-reduced QTAG-module such that M = M1 ⊕M2 where M2

is a direct sum of uniserial modules. Let Bu be an upper basic submodules of M1. Then

Bu ⊕M2 is an upper basic submodule of M .

Proof. The proof follows easily from Theorem 4.1.

Lemma 4.1. Let M be a QTAG-module such that M = M1⊕M2 be a direct sum of uniserial

modules, and suppose that g(M2) < g(M) and that ℵ0 < g(M2) is not a limit cardinal. Let

N be an h-pure submodule of M2, and let B1 ⊕ N be a basic submodule of M such that

g(M/(B1 ⊕ N)) > g(M2). Then there exists a basic submodule B2 ⊕ N such that B2 ⊕ N

contains B1 ⊕N , and g(M/(B2 ⊕N)) ≤ g(M2).

Proof. Consider M/B1 = M3/B1⊕M4/B1 where M4/B1 is an h-reduced and contain

(B1⊕N)/B1, and whereM3/B1 is h-divisible. Notice thatM3∩N = 0 sinceM3∩B1 = B1 and

B1∩N = 0. Thus M3+N = M3⊕N , and as a submodule of a direct sum of uniserial modules

is itself a direct sum of uniserial modules. To show that M3 ⊕ N is a basic submodule, we

need only prove that M3⊕N is h-pure, but (M3⊕N)/(B1⊕N) ∼= M3/B1 which is h-divisible

and hence M3 ⊕N is h-pure. Therefore M3 ⊕N is a basic submodule of M which contains

B1 ⊕N , and notice that g(M/(M3 ⊕N)) ≤ g(M/M3) = g(M4/B1), and g(M4/B1) ≤ g(M2)

since g(M2) is not a limit ordinal. This completes the proof.

Theorem 4.3. Let M be a QTAG-module without elements of infinite height, and let B

be a basic submodule of M . Let Bu be an upper basic submodules of M , and suppose that
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g(M/Bu) is not a limit cardinal larger than ℵ0. Then B is contained in an upper basic

submodule of M .

Proof. If g(M/Bu) ≤ ℵ0, then M is a direct sum of uniserial modules and hence

B is contained in an upper basic submodule of M , namely, M itself. Thus we may assume

that ℵ0 < g(S) = g(M/Bu), M = S ⊕ P1 where Bu = P1 ⊕ P2 and g(S) = g(M/Bu).

Let S be the homomorphic image of the free module T with h-pure kernel K and we can

assume g(T ) = g(S). Now (P1 ⊕ T )/K ∼= S ⊕ P1, and suppose (Q1 ⊕ K)/K ∼= B. If

g(M/B) = g(M/Bu) we know that B is already an upper basic submodule of M and we are

done, so that we can assume that g(M/B) > g(M/Bu) = g(S). Thus g[(T⊕P1)/(Q1⊕K)] >

g(S) = g(T ), and by Lemma 4.1 there exists a basic submodule Q2 ⊕K containing Q1 ⊕K

and such that g[(T ⊕ P1)/(Q2 ⊕ K)] = g(T ). Let R ∼= (Q2 ⊕ K)/K. We know that R

is a basic submodule of M which contains B and R is upper basic submodule of M since

g(M/R) = g[(T ⊕ P1)/(Q2 ⊕K)] = g(S) = g(M/Bu).

Theorem 4.4. Let M be an h-reduced QTAG-module and let B be a basic submodule of M .

If there exists a high submodule N of M whcih contains B, and an upper basic submodule

Bu of N containing B, then B is contained in an upper basic submodule of M .

Proof. If Bu is an upper basic submodule of N , then Bu is an upper basic submodule

of M by Theorem 3.3.

Let B be the class of QTAG-modules which have the property that every basic submodule

is contained in an upper basic submodule.

Theorem 4.5. The class B contains all QTAG-modules which are direct sum of an h-

divisible and a bounded module.

Proof. This follows immediately from the fact that such modules have only basic

submodule, and it is by necessity an upper basic submodule.

Recall that a module M is a Σ-module (see [4]) if some its high submodule is a direct sum

of uniserial modules.

Theorem 4.6. The class B contains all Σ-modules.

Proof. Let M be Σ-module, and B be a basic submodule of M . Now B can be

embedded in a high submodule of N of M , and since M is a Σ-module we get that N is an

upper basic submodule of M .
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Theorem 4.7. Let M be a QTAG-module without elements of infinite height. Suppose that

fin g(M) is equal to its cardinality, and that B is a basic submodule of M . If g(M/B) is

equal to the cardinality of M , the closure of M , then M ∈ B.

Proof. This follows from Theorem 4.3.

Corollary 4.1. The class B contains all closed modules.

5. Open problems

In closing, we pose the following questions of interest:

Problem 5.1. If M is an h-reduced QTAG-module such that M =
∑
α∈I

Mα, and Bα is an

upper basic submodule of Mα, then is it true that
∑
α∈I

Bα is upeer basic submodule of M?

Problem 5.2. Does the class B defined above indeed contains all h-reduced QTAG-modules?
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