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SYMPLECTOSUBMERSIONS

BAYRAM ŞAHIN∗

Abstract. In this paper, we introduce a new submersion between almost symplectic man-

ifolds, give examples and investigate the geometry of the base manifold when the total

manifold has some special cases.

1. Introduction

In Riemannian geometry, there are two basic maps; isometric immersions and Riemannian

submersions. Isometric immersions (Riemannian submanifolds) are basic such maps between

Riemannian manifolds and they are characterized by their Riemannian metrics and Jacobian

matrices. More precisely, a smooth map F : (M, gM ) −→ (N, gN ) between Riemannian man-

ifolds (M, gM ) and (N, gN ) is called an isometric immersion (submanifold) if F∗ is injective

and

gN (F∗X,F∗Y ) = gM (X,Y )

for vector fields X,Y tangent to M ; here F∗ denotes the derivative map. A smooth map

F : (M1, g1) −→ (M2, g2) is called a Riemannian submersion if F∗ is onto and it
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satisfies the above equation for vector fields tangent to the horizontal space (kerF∗)
⊥. Rie-

mannian submersions between Riemannian manifolds were first studied by O’Neill [8] and

Gray [6]; see also [4].

Submanifolds of complex manifolds ( holomorphic, totally real, CR-submanifold, etc..)

and Riemannian submersions (holomorphic, anti-invariant, semi-invariant etc...) between

complex manifolds have been studied widely, see for instance [11], [4] and [9]. On the other

hand, submanifolds of symplectic manifolds have been also studied by many authors and

this research area is an active research area. But as far as we know, a submersion ana-

log with Riemannian submersion (or holomorphic submersion) has been not studied. By

considering applications of symplectic manifolds and Riemannian submersions [7] in mathe-

matical physics, it would be interesting to consider as analog of holomorphic submersion for

symplectic manifolds.

In this paper, we introduce a new submersion, namely symplectosubmersion, between al-

most symplectic manifolds. We provide examples and check the existence of symplectic con-

nection on the base manifold. We note that, in [3], the authors have considered a submersion

f from an open manifold with a symplectic form Ω to a manifold N with dimN < dimM ,

and they proved that such submersion with symplectic fibres satisfy the h− principle.

2. Preliminaries

A differentiable manifold M is said to be an almost complex manifold if there exists a

linear map J : TM −→ TM satisfying J2 = −id and J is said to be an almost complex

structure of M . The tensor field N of type (1, 2) defined by

NJ (X, Y ) = [JX, JY ]− [X, Y ]− J([X, JY ] + [JX, Y ]), (2.1)

for any X,Y ∈ Γ(TM), is called Nijenhuis tensor field of J . Then, J defines a complex

structure [11] on M if and only if N vanishes on M . Now consider a Riemannian metric g

on an almost complex manifold (M, J). We say that the pair (J, g) is an almost Hermitian

structure on M , and M is an almost Hermitian manifold if

g(J X, J Y ) = g(X, Y ), ∀X,Y ∈ Γ(M). (2.2)

Moreover, if J defines a complex structure on M , then (J, g) and M are called Hermitian

structure and Hermitian manifold, respectively. The fundamental 2-form Ω of an almost
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Hermitian manifold is defined by

Ω(X, Y ) = g(X, JY ), ∀X,Y ∈ Γ(M). (2.3)

A Hermitian metric on an almost complex M is called a Kähler metric and then M is called

a Kähler manifold if Ω is closed, i.e.,

dΩ(X, Y, Z) = 0, ∀X,Y ∈ Γ(M). (2.4)

It is known (see [11]) that the Kählerian condition (2.4) is equivalent to

(∇XJ)Y = 0,∀X,Y ∈ Γ(M), (2.5)

where ∇ is the Riemannian connection of g. We note that submanifolds of an almost Hermit-

ian manifolds are defined with respect to behaviour of the almost complex structure J . We

will not give details of these submanifolds here, we refer the book [2] for various submanifolds

in complex geometry.

Riemannian submersions as a dual notion of isometric immersions have been studied in

complex settings in the early 1970s. As an analogue of holomorphic submanifolds, Watson [10]

defined almost Hermitian submersions between almost Hermitian manifolds and he showed

that the base manifold and each fiber have the same kind of structure as the total space, in

most cases.

A symplectic manifold is an even dimensional differentiable manifold M with a global

2−form Ω which is closed dΩ = 0 and of maximal rank Ωn 6= 0. A Kähler manifold M with

its fundamental 2−form is a symplectic manifold. However, there are symplectic manifolds

that do not admit any complex structures. A pair of a manifold M and non-degenerate form

Ω, not necessarily closed is called an almost symplectic manifold. Given a linear subspace

W of a symplectic vector space (V,Ω), its symplectic orthogonal WΩ is the linear subspace

defined by WΩ = {v ∈ V | Ω(u, v) = 0,∀u ∈ W}. Now, Let (N,Ω) be a 2n-dimensional

symplectic manifold and I : M → N an immersed submanifold of N . Then M is called a

symplectic submanifold if I∗Ω is symplectic, i.e. the induced bilinear form Ω is nondegenerate

and closed on the tangent bundle of the submanifold. M is called an isotropic submanifold

if I∗Ω = 0. M is a Lagrangian submanifold if I∗Ω = 0 and dimM = 1
2N . We note that

since I∗Ω = 0, there is no induced structure. Finally M is called a coisotropic submanifold

if (TpM)Ω ⊆ TpM for every p ∈M , for more information see:[1]
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3. A submersion between almost symplectic manifolds

By inspiring Riemannian submersions, we present the following notion.

Definition 3.1. Let (M,ωM ) and (N,ωN ) be almost symplectic manifolds and F a sub-

mersion. If the following two conditions are satisfied, then F is called symplectosubmersion

between symplectic manifolds;

(S1). The fibers F−1 (q) , q ∈ N, are symplectic submanifolds of M .

(S2). ωN (F∗X,F∗Y ) = ωM (X,Y ) for X,Y ∈ Γ
(
(KerF∗)

⊥).
We first note that, since the fibers are symplectic submanifolds it follows that (KerF∗)

⊥

is a symplectic distribution on M , i.e. (KerF∗)
⊥ ∩KerF∗ = {0}.

We now give two examples of symplectic submersions. But we first recall the notion of

holomorphic submersions [4]. Let (M1, J1, g1) and (M2, J2, g2) be almost Hermition mani-

folds. A surjective map Π : M1 →M2 is called almost Hermitian ( holomorphic) submersion

and an almost complex map; i.e.

Π∗J1 = J2Π∗. (3.6)

Example 3.1. Let (M1, J1, g1) and (M2, J2, g2) be Kähler manifolds and Π : M1 → M2 an

almost Hermitian submersion. Then (M1, J1, g1) and (M2, J2, g2) are symplectic manifolds

with symplectic forms Ω1 = g1 (X, J1Y ) and Ω2 = g2 (U, J2V ) for X,Y ∈ T (M1) and U, V ∈

T (M2). Since Π is an almost complex map, we get

Ω2 (F∗X,F∗Y ) = g2 (F∗X, J2F∗Y )

and

Ω2 (F∗X,F∗Y ) = g2 (F∗X,F∗J1Y ) .

Then Riemannian submersion Π implies that

Ω2 (F∗X,F∗Y ) = g1 (X, J1Y ) .

Hence, we get

Ω2 (F∗X,F∗Y ) = Ω1 (X,Y ) .

On the other hand, since g1 is a Riemannian metric, (KerF∗) is a symplectic distribution.

Example 3.2. Consider the following submersion defined by

F :
(
R4,Ω4

)
→

(
R2,Ω2

)
(x1, x2, x3, x4) →

(
x1 + x2√

2
,
x3 + x4√

2

)
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where Ω4 and Ω2 are canonical symplectic structure of R4 and R2. By direct computation we

have

KerF∗ = Sp

{
X1 =

∂

∂x1
− ∂

∂x2
, X2 =

∂

∂x3
− ∂

∂x4

}
and

(KerF∗)
(Ω4)⊥ = Sp

{
X3 =

∂

∂x1
+

∂

∂x2
, X4 =

∂

∂x3
+

∂

∂x4

}
,

where (Ω4)⊥ denotes the orthogonality with respect to the symplectic form of Euclidean 4−

space. It is easy to see that (KerF∗) and (KerF∗)
⊥ are symplectic subspace of

(
R4,Ω4

)
. On

the other hand, we have

F∗X3 =
√

2
∂

∂y1
, F∗X4 =

√
2

∂

∂y2
.

Then we get

Ω4 (X3, X4) = Ω2 (F∗X3, F∗X4) = 2.

This shows that F is a symplectosubmersion.

It is known that symplectic connection of a symplectic manifold is not unique. In the

sequel we show that if the total manifold of a symplectosubmersion has a unique symplectic

connection, then, the base manifold has also a unique symplectic connection. A symplectic

connection∇ is a connection that is both torsion free and∇ω = 0. We recall that a symplectic

manifold with a fixed symplectic connection is called a Fedosov manifold [5].

Theorem 3.1. Let M1 be a Fedosov manifold and M2 a symplectic manifold. If F : M1 →

M2 is a symplectosubmersion then M2 is also a Fedosov manifold.

Proof. Since M1 is a Fedosov manifold then it has a unique symplectic connection.

Thus we have(
1
∇Xw1

)
(Y, Z) = Xw1 (Y, Z)− w1

(
H

1
∇XY, Z

)
− w1

(
Y,H

1
∇XZ

)
= 0

for X,Y, Z ∈ Γ((KerF∗)
⊥), where H is the projection morphism from TM1 to (KerF∗)

⊥.

Since F is a symplectosubmersion, we obtain

Xw2 (F∗Y, F∗Z)− w2

(
F∗H

1
∇XY, F∗Z

)
− w2

(
F∗Y, F∗H

1
∇XZ

)
=

(
2
∇Xw2

)
(F∗Y, F∗Z) .

Thus, since
1
∇ is unique symplectic connection, it follows that

2
∇ is also a unique symplectic

connection on M2.

We also have the following theorem.
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Theorem 3.2. Let F be a symplectosubmersion from symplectic manifold M1 to an almost

symplectic manifold M2. Then M2 is a symplectic manifold.

Proof. Let X̃, Ỹ and Z̃ be vector fields on an open subset of M2, and X, Y and

Z be their horizontal lifts to M1. Since M1 is a symplectic manifold then there is a closed

nondegenerate 2−form w1 on M1. Thus we get

3dw1 (X,Y, Z) = Xw1 (Y, Z) + Y w1 (Z,X) + Zw2 (X,Y )− w1 ([X,Y ] , Z)

−w1 ([Y,Z] , X)− w1 ([Z,X] , Y ) .

Then symplectosubmersion F implies that

3dw1 (X,Y, Z) = X̃w2

(
Ỹ , Z̃

)
+ Ỹ w2

(
Z̃, X̃

)
+ F∗Zw2

(
X̃, Ỹ

)
−w2

([
X̃, Ỹ

]
, Z̃
)
− w2

([
Ỹ , Z̃

]
, X̃
)
− w2

([
Z̃, X̃

]
, Ỹ
)

= 3dw2

(
X̃, Ỹ , Z̃

)
.

which proves the theorem.

It is known that, if M1 is a Kähler manifold with the Riemannian metric gM1 and complex

structure J . Then (M1,Ω1) is a symplectic manifold with Ω1 = (X,Y ) = g1 (X, JY ). Since

g1 is a Riemannian metric it follows that the Levi-Civita connection ∇ is a unique symplectic

connection. As a result, (M1,Ω) is a Fedosov manifold.

Theorem 3.3. Let (M1, g1) be a Kähler manifold and (M2,Ω2) a symplectic manifold. If F

is a symplectosubmersion from (M1,Ω1) to (M2,Ω2), then (M2,Ω2) is a Fedosov manifold,

where Ω1(X,Y ) = g1 (X, J1Y ) for almost complex structure J1 and vector fields X,Y ∈

Γ(TM1).
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[9] Şahin, B., Riemannian Submersions, Riemannian Maps in Hermitian Geometry and Their Applications,

Elsevier, 2017.

[10] B. Watson, Almost Hermitian submersions. J. Differential Geometry, 11(1)(1976), 147-165.

[11] Yano, K., Kon, M., Structures on Manifolds, World Scientific, 1984.

Department of Mathematics,Faculty of Science, Ege University, 35100, Izmir, Turkey

Email address: bayram.sahin@ymail.com


	1. Introduction
	2. Preliminaries
	3. A submersion between almost symplectic manifolds 
	References

