CERTAIN CURVATURE CONDITIONS IN LORENTZIAN PARA-SASAKIAN MANIFOLDS WITH RESPECT TO THE SEMI-SYMMETRIC METRIC CONNECTION

ABDUL HASEEE (D) AND RAJENDRA PRASAD (D)

Abstract

The object of the present paper is to characterize Lorentzian para-Sasakian manifolds with respect to the semi-symmetric metric connection satisfying certain curvature conditions.

1. Introduction

In 1989, K. Matsumoto [12] introduced the notion of Lorentzian para-Sasakian manifolds. Again the same notion was studied by I. Mihai and R. Rosca [13] and obtained many results on this manifold. Lorentzian para-Sasakian manifolds have also been studied by K. Matsumoto and I. Mihai [11], U. C. De et al. [2] and many others such as ([14], [16], [18]).

A linear connection $\bar{\nabla}$ in a Riemannian manifold M is said to be a semi-symmetric connection [4] if the torsion tensor T of the connection $\bar{\nabla}$ defined by

$$
T(X, Y)=\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X-[X, Y]
$$

2010 Mathematics Subject Classification. 53B05, 53C25.
Key words: Lorentzian para-Sasakian manifolds, semi-symmetric metric connection, concircular curvature tensor

* Corresponding author
satisfies

$$
\begin{equation*}
T(X, Y)=\eta(Y) X-\eta(X) Y \tag{1.1}
\end{equation*}
$$

where η is a 1-form. If moreover, the connection $\bar{\nabla}$ satisfies the condition

$$
\begin{equation*}
\left(\bar{\nabla}_{X} g\right)(Y, Z)=0 \tag{1.2}
\end{equation*}
$$

for all $X, Y, Z \in \chi(M)$, where $\chi(M)$ is the Lie algebra of vector fields of the manifold M, then $\bar{\nabla}$ is said to be a semi-symmetric metric connection, otherwise it is said to be a semisymmetric non-metric connection. In 1932, H. A. Hayden [7] defined a semi-symmetric metric connection on a Riemannian manifold and this was further developed by K. Yano [21]. A semi-symmetric metric connection have been studied by many authors ([1], [5], [6], [17], [20]) in several ways to a different extent.

A relation between the semi-symmetric metric connection $\bar{\nabla}$ and the Levi-Civita connection ∇ in Lorentzian para-Sasakian manifold M is given by [17, 21]

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) X-g(X, Y) \xi . \tag{1.3}
\end{equation*}
$$

The notion of semisymmetric manifold, a proper generalization of locally symmetric manifold, is defined by $R(X, Y) \cdot R=0$, where $R(X, Y)$ acts on R as a derivation of the tensor algebra at each point of the manifold for tangent vector fields X, Y. A complete intrinsic classification of these manifolds was given by Z. I. Szabó in [19]. Also in [9], O. Kowalski classified 3-dimensional Riemannian spaces satisfying $R(X, Y) \cdot R=0$. A Riemannian manifold is said to be Ricci semisymmetric if $R(X, Y) \cdot S=0$, where S denotes the Ricci tensor of type $(0,2)$. A general classification of these manifolds has been worked out by V. A. Mirzoyan [15].

We define endomorphisms $R(X, Y)$ and $X \wedge_{A} Y$ for an arbitrary vector field Z by

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(X \wedge_{A} Y\right) Z=A(Y, Z) X-A(X, Z) Y \tag{1.5}
\end{equation*}
$$

respectively, where $X, Y, Z \in \chi(M)$ and A is the symmetric (0,2)-tensor, R is the Riemannian curvature tensor of type $(1,3)$.

Furthermore, the tensors $R \cdot R$ and $R \cdot S$ on (M, g) are defined by

$$
\begin{gather*}
(R(X, Y) \cdot R)(U, V) W=R(X, Y) R(U, V) W-R(R(X, Y) U, V) W \tag{1.6}\\
-R(U, R(X, Y) V) W-R(U, V) R(X, Y) W
\end{gather*}
$$

and

$$
\begin{equation*}
(R(X, Y) \cdot S)(U, V)=-S(R(X, Y) U, V)-S(U, R(X, Y) V) \tag{1.7}
\end{equation*}
$$

respectively.
Recently, D. Kowalczyk [8] studied semi-Riemannian manifolds satisfying $Q(Q, R)=0$ and $Q(S, g)=0$, where S, R are the Ricci tensor and curvature tensor, respectively. For detailed study of semisymmetric manifolds we refer the readers to see ([3], [10]).

The paper is organized as follows: Section 2 is concerned with preliminaries. In Section 3, we obtain the expressions of the curvature tensor \bar{R} and the Ricci tensor \bar{S} with respect to the semi-symmetric metric connection. In Section 4, we prove that $R \cdot \bar{S}=0$ if and only if the manifold is an Einstein manifold with respect to $\bar{\nabla}$. Next in Section 5 (resp., 6), we prove that if the manifold satisfies the curvature condition $\bar{S} \cdot R=0$ (resp., $R \cdot \bar{R}=0$), then it is an η-Einstein (resp., Einstein) manifold with respect to $\bar{\nabla}$. Section 7, deals with the study of Ricci semisymmetric Lorentzian para-Sasakian manifolds and prove that Ricci semisymmetries with respect to ∇ and $\bar{\nabla}$ are equivalent if the manifold is a generalized η-Einstein manifold. In Section 8, we prove that if $C(\xi, X) \cdot \bar{S}=0$, then either the scalar curvature is constant or the manifold is an Einstein manifold with respect to $\bar{\nabla}$. In the last Section, it is shown that if $\bar{Q} \cdot C=0$ (where C is the concircular curvature tensor with respect to ∇ and \bar{Q} is the Ricci operator with respect to $\bar{\nabla}$), then either the scalar curvature is constant or the manifold is a special type of η-Einstein manifold with respect to $\bar{\nabla}$. Finally, we construct an example of 5-dimensional Lorentzian para-Sasakian manifold.

2. Preliminaries

A differentiable manifold M of dimension n is called a Lorentzian para-Sasakian manifold, if it admits a (1,1)-tensor field ϕ, a contravariant vector field ξ, a 1-form η and a Lorentzian metric g which satisfy

$$
\begin{gather*}
\phi^{2} X=X+\eta(X) \xi, \eta(\xi)=-1, \tag{2.1}\\
g(X, \xi)=\eta(X), \phi \xi=0, \eta(\phi X)=0 \tag{2.2}\\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y), \tag{2.3}\\
\left(\nabla_{X} \phi\right)(Y)=g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi, \tag{2.4}\\
\nabla_{X} \xi=\phi X \tag{2.5}
\end{gather*}
$$

where ∇ denotes the covariant differentiation with respect to the Lorentzian metric g. If we put

$$
\begin{equation*}
\Phi(X, Y)=g(\phi X, Y) \tag{2.6}
\end{equation*}
$$

for all vector fields X and Y, then $\Phi(X, Y)$ is a symmetric $(0,2)$ tensor field. Also since the 1-form η is closed in a Lorentzian para-Sasakian manifold, so we have

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\Phi(X, Y), \Phi(X, \xi)=0 \tag{2.7}
\end{equation*}
$$

for all vector fields $X, Y \in \chi(M)$.
Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in a Lorentzian para-Sasakian manifold with respect to the Levi-Civita connection satisfy the following equations [2, 11]:

$$
\begin{gather*}
\eta(R(X, Y) Z)=g(Y, Z) \eta(X)-g(X, Z) \eta(Y), \tag{2.8}\\
R(\xi, X) Y=-R(X, \xi) Y=g(X, Y) \xi-\eta(Y) X, \tag{2.9}\\
R(X, Y) \xi=\eta(Y) X-\eta(X) Y, \tag{2.10}\\
R(\xi, X) \xi=-R(X, \xi) \xi=X+\eta(X) \xi, \tag{2.11}\\
S(X, \xi)=(n-1) \eta(X), Q \xi=(n-1) \xi, \tag{2.12}\\
S(\phi X, \phi Y)=S(X, Y)+(n-1) \eta(X) \eta(Y) \tag{2.13}
\end{gather*}
$$

for all $X, Y, Z \in \chi(M)$, where S and Q are related by $g(Q X, Y)=S(X, Y)$.

Definition 2.1. A Lorentzian para-Sasakian manifold M is said to be a generalized η Einstein manifold if its Ricci tensor S is of the form [23]

$$
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y)+c \Omega(X, Y)
$$

where a, b, c are smooth functions on M and $\Omega(X, Y)=g(\phi X, Y)$. If $c=0($ resp., $b=c=0)$, then the manifold reduces to an η-Einstein (resp., an Einstein) manifold.

Definition 2.2. The concircular curvature tensor C in an n-dimensional Lorentzian paraSasakian manifold M is defined by [22]

$$
\begin{equation*}
C(X, Y) Z=R(X, Y) Z-\frac{r}{n(n-1)}[g(Y, Z) X-g(X, Z) Y] \tag{2.14}
\end{equation*}
$$

for all $X, Y, Z \in \chi(M)$, where R is the Riemannian curvature tensor and r is the scalar curvature of the manifold.

3. Curvature tensor of a Lorentzian para-Sasakian manifold with respect to

THE SEMI-SYMMETRIC METRIC CONNECTION

Let M be an n-dimensional Lorentzian para-Sasakian manifold. The curvature tensor \bar{R} with respect to $\bar{\nabla}$ is defined by

$$
\begin{equation*}
\bar{R}(X, Y) Z=\bar{\nabla}_{X} \bar{\nabla}_{Y} Z-\bar{\nabla}_{Y} \bar{\nabla}_{X} Z-\bar{\nabla}_{[X, Y]} Z . \tag{3.1}
\end{equation*}
$$

By using (1.2), (1.3), (2.1), (2.2), (2.5) and (2.7) in (3.1), we get

$$
\begin{align*}
\bar{R}(X, Y) Z= & R(X, Y) Z+g(X, \phi Z) Y-g(Y, \phi Z) X-g(Y, Z) \phi X+g(X, Z) \phi Y \tag{3.2}\\
& +(g(Y, Z) \eta(X)-g(X, Z) \eta(Y)) \xi+g(Y, Z) X-g(X, Z) Y \\
& +(\eta(Y) X-\eta(X) Y) \eta(Z)
\end{align*}
$$

where

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

is the Riemannian curvature tensor with respect to ∇. By contracting (3.2) over X, we obtain

$$
\begin{equation*}
\bar{S}(Y, Z)=S(Y, Z)-(n-2) g(Y, \phi Z)+(n-2-\psi) g(Y, Z)+(n-2) \eta(Y) \eta(Z) \tag{3.3}
\end{equation*}
$$

where \bar{S} and S are the Ricci tensors of the connections $\bar{\nabla}$ and ∇, respectively and $\psi=$ trace ϕ. The equation (3.3) yields

$$
\begin{equation*}
\bar{Q} Y=Q Y-(n-2) \phi Y+(n-2-\psi) Y+(n-2) \eta(Y) \xi \tag{3.4}
\end{equation*}
$$

where \bar{Q} and Q are the Ricci operators of the connections $\bar{\nabla}$ and ∇, respectively. Contracting again Y and Z in (3.3), it follows that

$$
\begin{equation*}
\bar{r}=r+(n-1)(n-2-2 \psi), \tag{3.5}
\end{equation*}
$$

where \bar{r} and r are the scalar curvatures of the connections $\bar{\nabla}$ and ∇, respectively.
Lemma 3.1. Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the semi-symmetric metric connection. Then

$$
\begin{gather*}
\bar{R}(X, Y) \xi=\eta(Y)(X-\phi X)-\eta(X)(Y-\phi Y), \tag{3.6}\\
\bar{R}(\xi, X) Y=(g(X, Y)-g(X, \phi Y)) \xi-\eta(Y)(X-\phi X), \tag{3.7}\\
\bar{R}(\xi, X) \xi=X-\phi X+\eta(X) \xi \tag{3.8}\\
\bar{S}(X, \xi)=(n-1-\psi) \eta(X), \quad \bar{Q} \xi=(n-1-\psi) \xi, \tag{3.9}
\end{gather*}
$$

$$
\begin{equation*}
\bar{S}(\phi X, \phi Y)=\bar{S}(X, Y)+(n-1-\psi) \eta(X) \eta(Y) . \tag{3.10}
\end{equation*}
$$

Proof. By taking $Z=\xi$ in (3.2) and using (2.1), (2.2), (2.10), we get (3.6). (3.7) follows from (2.1), (2.2), (2.9) and (3.6). By taking $Y=\xi$ in (3.7) and using (2.1), (2.2) we obtain (3.8). From (3.3), (2.1), (2.2) and (2.12) we find (3.9). By replacing $Y=\phi X$ and $Z=\phi Y$ in (3.3) and then using (2.1)-(2.3) and (2.13) we get (3.10).

4. LORENTZIAN PARA-SASAKIAN MANIFOLDS WITH RESPECT TO THE SEMI-SYMMETRIC

$$
\text { METRIC CONNECTION SATISFYING } R(X, Y) \cdot \bar{S}=0
$$

Suppose that a Lorentzian para-Sasakian manifold with respect to the semi-symmetric metric connection $\bar{\nabla}$ satisfies the condition

$$
\begin{equation*}
R(X, Y) \cdot \bar{S}=0 \tag{4.1}
\end{equation*}
$$

Then in view of (1.7), it follows that

$$
\bar{S}(R(X, Y) U, V)+\bar{S}(U, R(X, Y) V)=0
$$

which by putting $X=\xi$ and using (2.9) takes the form

$$
\begin{equation*}
g(Y, U) \bar{S}(\xi, V)-\eta(U) \bar{S}(Y, V)+g(Y, V) \bar{S}(U, \xi)-\eta(V) \bar{S}(U, Y)=0 \tag{4.2}
\end{equation*}
$$

By taking $U=\xi$ in (4.2) and using (2.1), (2.2) and (3.9), we obtain

$$
\begin{equation*}
\bar{S}(Y, V)=(n-1-\psi) g(Y, V) . \tag{4.3}
\end{equation*}
$$

From which we have

$$
\begin{equation*}
\bar{Q} V=(n-1-\psi) V . \tag{4.4}
\end{equation*}
$$

Conversely, if (4.3) satisfies, then by using (4.4) in the expression $(R(X, Y) \cdot \bar{S})(U, V)=$ $-\bar{S}(R(X, Y) U, V)-\bar{S}(U, R(X, Y) V)=-g(R(X, Y) U, \bar{Q} V)-g(\bar{Q} U, R(X, Y) V)$, we find

$$
\begin{equation*}
(R(X, Y) \cdot \bar{S})(U, V)=-(n-1-\psi)(g(R(X, Y) U, V)+g(U, R(X, Y) V)) \tag{4.5}
\end{equation*}
$$

which by using the fact that $g(R(X, Y) U, V)+g(U, R(X, Y) V))=0$ reduces to $(R(X, Y)$. $\bar{S})(U, V)=0$. Thus we can state the following theorem:

Theorem 4.1. If an n-dimensional Lorentzian para-Sasakian manifold with respect to semisymmetric metric connection satisfies the condition $R \cdot \bar{S}=0$, then the manifold is an Einstein manifold of the form (4.3) and the converse is also true.
5. Lorentzian para-Sasakian manifolds with respect to the semi-symmetric METRIC CONNECTION SATISFYING $\bar{S} \cdot R=0$

Suppose that a Lorentzian para-Sasakian manifold with respect to the semi-symmetric metric connection satisfies $(\bar{S}(X, Y) \cdot R)(U, V) Z=0$. Then we have [8]

$$
\begin{gather*}
\left(X \wedge_{\bar{S}} Y\right) R(U, V) Z+R\left(\left(X \wedge_{\bar{S}} Y\right) U, V\right) Z+R\left(U,\left(X \wedge_{\bar{S}} Y\right) V\right) Z \tag{5.1}\\
+R(U, V)\left(X \wedge_{\bar{S}} Y\right) Z=0
\end{gather*}
$$

for any $X, Y, Z, U, V \in \chi(M)$. Taking $Y=\xi$ in (5.1), we have

$$
\begin{gather*}
\left(X \wedge_{\bar{S}} \xi\right) R(U, V) Z+R\left(\left(X \wedge_{\bar{S}} \xi\right) U, V\right) Z+R\left(U,\left(X \wedge_{\bar{S}} \xi\right) V\right) Z \tag{5.2}\\
+R(U, V)\left(X \wedge_{\bar{S}} \xi\right) Z=0
\end{gather*}
$$

which in view of (1.5) takes the form

$$
\begin{align*}
& \bar{S}(\xi, R(U, V) Z) X-\bar{S}(X, R(U, V) Z) \xi+R(\bar{S}(\xi, U) X-\bar{S}(X, U) \xi, V) Z \tag{5.3}\\
& +R(U, \bar{S}(\xi, V) X-\bar{S}(X, V) \xi) Z+R(U, V)(\bar{S}(\xi, Z) X-\bar{S}(X, Z) \xi)=0
\end{align*}
$$

By using (3.9) in (5.3), we find

$$
\begin{align*}
& (n-1-\psi)[\eta(R(U, V) Z) X+\eta(U) R(X, V) Z+\eta(V) R(U, X) Z+\eta(Z) R(U, V) X] \tag{5.4}\\
& -\bar{S}(X, R(U, V) Z) \xi-\bar{S}(X, U) R(\xi, V) Z-\bar{S}(X, V) R(U, \xi) Z-\bar{S}(X, Z) R(U, V) \xi=0
\end{align*}
$$

Now taking inner product of (5.4) with ξ, we get

$$
\begin{gathered}
(n-1-\psi)[\eta(R(U, V) Z) \eta(X)+\eta(U) \eta(R(X, V) Z)+\eta(V) \eta(R(U, X) Z) \\
+\eta(Z) \eta(R(U, V) X)]+\bar{S}(X, R(U, V) Z)-\bar{S}(X, U) \eta(R(\xi, V) Z) \\
-\bar{S}(X, V) \eta(R(U, \xi) Z)-\bar{S}(X, Z) \eta(R(U, V) \xi)=0
\end{gathered}
$$

which by putting $U=Z=\xi$ and using (3.6)-(3.8) reduces to

$$
(n-1-\psi)(g(X, V)+\eta(X) \eta(V))+\bar{S}(X, V+\eta(V) \xi)=0
$$

from which it follows that

$$
\begin{equation*}
\bar{S}(X, V)=-(n-1-\psi) g(X, V)-2(n-1-\psi) \eta(X) \eta(V) \tag{5.5}
\end{equation*}
$$

Thus we can state the following theorem:

Theorem 5.1. If an n-dimensional Lorentzian para-Sasakian manifold with respect to the semi-symmetric metric connection satisfies the condition $\bar{S} \cdot R=0$, then the manifold is an η-Einstein manifold of the form (5.5).

6. LORENTZIAN PARA-SASAKIAN MANIFOLDS WITH RESPECT TO THE SEMI-SYMMETRIC METRIC CONNECTION SATISFYING $R \cdot \bar{R}=0$

Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the semisymmetric metric connection satisfies $(R(X, Y) \cdot \bar{R})(U, V) W=0$. Then in view of (1.6), it follows that

$$
\begin{gather*}
R(X, Y) \bar{R}(U, V) W-\bar{R}(R(X, Y) U, V) W-\bar{R}(U, R(X, Y) V) W \tag{6.1}\\
-\bar{R}(U, V) R(X, Y) W=0
\end{gather*}
$$

By substituting $X=U=\xi$ in (6.1) and using (2.2), (2.9), (2.11) and (3.7), we find

$$
\begin{align*}
& g(V, W) Y-g(V, \phi W) Y-\bar{R}(Y, V) W-\eta(V) g(Y, \phi W) \xi \tag{6.2}\\
& \quad+\eta(V) \eta(W) \phi Y-g(Y, W) V+g(Y, W) \phi V=0
\end{align*}
$$

Taking inner product of (6.2) with Z, we have

$$
\begin{align*}
& g(V, W) g(Y, Z)-g(V, \phi W) g(Y, Z)-g(\bar{R}(Y, V) W, Z)-\eta(V) \eta(Z) g(Y, \phi W) \tag{6.3}\\
& \quad+\eta(V) \eta(W) g(\phi Y, Z)-g(Y, W) g(V, Z)+g(Y, W) g(\phi V, Z)=0
\end{align*}
$$

Let $\left\{e_{1}, e_{2}, e_{3} \ldots \ldots, e_{n-1}, e_{n}=\xi\right\}$ be a frame of orthonormal basis of the tangent space at any point of the manifold. If we put $V=W=e_{i}$ in (6.3) and summing up with respect to $i(1 \leq i \leq n)$, then we obtain

$$
\begin{equation*}
\bar{S}(Y, Z)=(n-1-\psi) g(Y, Z) \tag{6.4}
\end{equation*}
$$

Thus we can state the following theorem:

Theorem 6.1. If an n-dimensional Lorentzian para-Sasakian manifold with respect to the semi-symmetric metric connection satisfies the condition $R \cdot \bar{R}=0$, then the manifold is an Einstein manifold of the form (6.4).
7. Ricci semisymmetries in Lorentzian para-Sasakian manifolds with respect TO THE CONNECTIONS $\bar{\nabla}$ AND ∇

Assuming that the manifold is Ricci symmetric with respect to the semi-symmetric metric connection $\bar{\nabla}$, therefore we have

$$
\begin{equation*}
(\bar{R}(X, Y) \cdot \bar{S})(U, V)=-\bar{S}(\bar{R}(X, Y) U, V)-\bar{S}(U, \bar{R}(X, Y) V) \tag{7.1}
\end{equation*}
$$

for all $X, Y, U, V \in \chi(M)$. In view of (3.2) and (3.3), (7.1) takes the form

$$
\begin{gathered}
(\bar{R}(X, Y) \cdot \bar{S})(U, V)=(R(X, Y) \cdot S)(U, V)-(n-2-\psi)[R(X, Y, U, V) \\
+R(X, Y, V, U)]+(n-2)[g(R(X, Y) U, \phi V)+g(R(X, Y) V, \phi U)] \\
\quad-(n-2)[\eta(R(X, Y) U) \eta(V)+\eta(R(X, Y) V) \eta(U)] \\
-g(X, \phi U) \bar{S}(Y, V)-g(X, \phi V) \bar{S}(U, Y)+g(Y, \phi U) \bar{S}(X, V) \\
+g(Y, \phi V) \bar{S}(X, U)+g(Y, U) \bar{S}(\phi X, V)+g(Y, V) \bar{S}(U, \phi X) \\
-g(X, U) \bar{S}(\phi Y, V)-g(X, V) \bar{S}(U, \phi Y)-g(Y, U) \eta(X) \bar{S}(\xi, V) \\
-g(Y, V) \eta(X) \bar{S}(U, \xi)+g(X, U) \eta(Y) \bar{S}(\xi, V)+g(X, V) \eta(Y) \bar{S}(\xi, U) \\
\quad-g(Y, U) \bar{S}(X, V)-g(Y, V) \bar{S}(X, U)+g(X, U) \bar{S}(Y, V) \\
+g(X, V) \bar{S}(U, Y)-\eta(Y) \eta(U) \bar{S}(X, V)-\eta(Y) \eta(V) \bar{S}(X, U) \\
+\eta(X) \eta(U) \bar{S}(Y, V)+\eta(X) \eta(V) \bar{S}(Y, U)
\end{gathered}
$$

which by using (2.8) and the fact that $R(X, Y, U, V)+R(X, Y, V, U)=0$ turns to

$$
\begin{gather*}
(\bar{R}(X, Y) \cdot \bar{S})(U, V)=(R(X, Y) \cdot S)(U, V)+(n-2)[g(R(X, Y) U, \phi V) \tag{7.2}\\
+g(R(X, Y) V, \phi U)]-(2 n-3-\psi)[g(Y, U) \eta(X) \eta(V)-g(X, U) \eta(Y) \eta(V) \\
+ \\
+g(Y, V) \eta(X) \eta(U)-g(X, V) \eta(Y) \eta(U)]-g(X, \phi U) \bar{S}(Y, V) \\
\quad-g(X, \phi V) \bar{S}(U, Y)+g(Y, \phi U) \bar{S}(X, V)+g(Y, \phi V) \bar{S}(X, U) \\
+ \\
\quad-g(Y, U) \bar{S}(\phi X, V)+g(Y, V) \bar{S}(U, \phi X)-g(X, U) \bar{S}(\phi Y, V) \\
\quad+g(X, V) \bar{S}(U, \phi Y)-g(Y, U) \bar{S}(X, V)-g(Y, V) \bar{S}(X, U) \\
- \\
\quad \eta(Y) \eta(V) \bar{S}(X, U)+\eta(X) \eta(U) \bar{S}(Y, V)+\eta(X) \eta(V) \bar{S}(Y, U)
\end{gather*}
$$

Suppose that $(\bar{R}(X, Y) \cdot \bar{S})(U, V)=(R(X, Y) \cdot S)(U, V)$, then from (7.2), it follows that

$$
(n-2)[g(R(X, Y) U, \phi V)+g(R(X, Y) V, \phi U)]
$$

$$
\begin{gathered}
-(2 n-3-\psi)[g(Y, U) \eta(X) \eta(V)-g(X, U) \eta(Y) \eta(V) \\
+g(Y, V) \eta(X) \eta(U)-g(X, V) \eta(Y) \eta(U)]-g(X, \phi U) \bar{S}(Y, V) \\
-g(X, \phi V) \bar{S}(U, Y)+g(Y, \phi U) \bar{S}(X, V)+g(Y, \phi V) \bar{S}(X, U) \\
+g(Y, U) \bar{S}(\phi X, V)+g(Y, V) \bar{S}(U, \phi X)-g(X, U) \bar{S}(\phi Y, V) \\
-g(X, V) \bar{S}(U, \phi Y)-g(Y, U) \bar{S}(X, V)-g(Y, V) \bar{S}(X, U) \\
+g(X, U) \bar{S}(Y, V)+g(X, V) \bar{S}(U, Y)-\eta(Y) \eta(U) \bar{S}(X, V) \\
-\eta(Y) \eta(V) \bar{S}(X, U)+\eta(X) \eta(U) \bar{S}(Y, V)+\eta(X) \eta(V) \bar{S}(Y, U)=0
\end{gathered}
$$

which by taking $X=U=\xi$ and then using (2.1), (2.2) and (2.8) reduces to

$$
\begin{equation*}
\bar{S}(\phi Y, V)=(n-2) g(Y, V)+(n-2) \eta(Y) \eta(V)-(\psi-1) g(Y, \phi V) . \tag{7.3}
\end{equation*}
$$

Now replacing V by ϕV in (7.3) and using (2.1), (2.2) and (3.10), we obtain

$$
\begin{equation*}
\bar{S}(Y, V)=(1-\psi) g(Y, V)+(n-2) g(Y, \phi V)-(n-2) \eta(Y) \eta(V) . \tag{7.4}
\end{equation*}
$$

Thus we can state the following theorem:

Theorem 7.1. Ricci semisymmetries with respect to $\bar{\nabla}$ and ∇ are equivalent if the manifold is a generalized η-Einstein manifold with respect to the semi-symmetric metric connection.

8. Lorentzian para-Sasakian manifolds with respect to the semi-symmetric metric connection satisfying $C(\xi, X) \cdot \bar{S}=0$

We consider that an n-dimensional Lorentzian para-Sasakian manifold with respect to the semi-symmetric metric connection satisfies $C(\xi, X) \cdot \bar{S}=0$. Then we have

$$
\begin{equation*}
\bar{S}(C(\xi, X) Y, Z)+\bar{S}(Y, C(\xi, X) Z)=0 . \tag{8.1}
\end{equation*}
$$

From (2.14), we find

$$
\begin{equation*}
C(\xi, X) Y=\left[1-\frac{r}{n(n-1)}\right](g(X, Y) \xi-\eta(Y) X) . \tag{8.2}
\end{equation*}
$$

By virtue of (8.2), (8.1) takes the form

$$
\left[1-\frac{r}{n(n-1)}\right](g(X, Y) \bar{S}(\xi, Z)-\eta(Y) \bar{S}(X, Z)+g(X, Z) \bar{S}(Y, \xi)-\eta(Z) \bar{S}(X, Y))=0
$$

which by taking $Z=\xi$ and using (2.1), (2.2) and (3.9) gives

$$
\begin{equation*}
\left[1-\frac{r}{n(n-1)}\right](\bar{S}(X, Y)-(n-1-\psi) g(X, Y))=0 \tag{8.3}
\end{equation*}
$$

Thus we have either $r=n(n-1)$, or

$$
\begin{equation*}
\bar{S}(X, Y)=(n-1-\psi) g(X, Y) \tag{8.4}
\end{equation*}
$$

Thus we can state the following theorem:

Theorem 8.1. If an n-dimensional Lorentzian para-Sasakian manifold with respect to the semi-symmetric metric connection satisfies the condition $C(\xi, X) \cdot \bar{S}=0$, then either the scalar curvature is constant or the manifold is an Einstein manifold of the form (8.4).

9. Lorentzian para-Sasakian manifolds with respect to the semi-symmetric METRIC CONNECTION SATISFYING $\bar{Q} \cdot C=0$

In this section we suppose that an n-dimensional Lorentzian para-Sasakian manifold with respect to the semi-symmetric metric connection satisfies $\bar{Q} \cdot C=0$. Then we have

$$
\begin{equation*}
\bar{Q}(C(X, Y) Z)-C(\bar{Q} X, Y) Z-C(X, \bar{Q} Y) Z-C(X, Y) \bar{Q} Z=0 \tag{9.1}
\end{equation*}
$$

for all $X, Y, Z \in \chi(M)$. In view of (2.14), it follows from (9.1) that

$$
\begin{gathered}
\bar{Q}(R(X, Y) Z)-R(\bar{Q} X, Y) Z-R(X, \bar{Q} Y) Z-R(X, Y) \bar{Q} Z \\
+\frac{2 r}{n(n-1)}(\bar{S}(Y, Z) X-\bar{S}(X, Z) Y)=0
\end{gathered}
$$

which by taking inner product with ξ yields

$$
\begin{gather*}
\eta(\bar{Q}(R(X, Y) Z))-\eta(R(\bar{Q} X, Y) Z)-\eta(R(X, \bar{Q} Y) Z)-\eta(R(X, Y) \bar{Q} Z) \tag{9.2}\\
+\frac{2 r}{n(n-1)}(S(Y, Z) \eta(X)-S(X, Z) \eta(Y))=0
\end{gather*}
$$

Putting $Y=\xi$ in (9.2), we have

$$
\begin{gather*}
\eta(\bar{Q}(R(X, \xi) Z))-\eta(R(\bar{Q} X, \xi) Z)-\eta(R(X, \bar{Q} \xi) Z)-\eta(R(X, \xi) \bar{Q} Z) \tag{9.3}\\
+\frac{2 r}{n(n-1)}(S(\xi, Z) \eta(X)-S(X, Z) \eta(\xi))=0
\end{gather*}
$$

From (2.9), we can easily find

$$
\begin{align*}
\eta(\bar{Q}(R(X, \xi) Z)) & =\eta(R(X, \bar{Q} \xi) Z)=(n-1-\psi)(g(X, Z)+\eta(X) \eta(Z)) \tag{9.4}\\
\eta(R(\bar{Q} X, \xi) Z) & =\eta(R(X, \xi) \bar{Q} Z)=(n-1-\psi) \eta(X) \eta(Z)+\bar{S}(X, Z)
\end{align*}
$$

By making use of (2.1), (3.9) and (9.4), (9.3) reduces to

$$
\left[\frac{r}{n(n-1)}-1\right](\bar{S}(X, Z)+(n-1-\psi) \eta(X) \eta(Z))=0
$$

Thus we have either $r=n(n-1)$, or

$$
\begin{equation*}
\bar{S}(X, Z)=-(n-1-\psi) \eta(X) \eta(Z) \tag{9.5}
\end{equation*}
$$

Thus we can state the following theorem:

Theorem 9.1. If an n-dimensional Lorentzian para-Sasakian manifold with respect to the semi-symmetric metric connection satisfies the condition $\bar{Q} \cdot C=0$, then either the scalar curvature is constant or the manifold is a special type of η-Einstein manifold of the form (9.5).

Example. We consider the 5 -dimensional manifold $M=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in R^{5}\right\}$, where $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ are the standard coordinates in R^{5}. Let $e_{1}, e_{2}, e_{3}, e_{4}$ and e_{5} be the vector fields on M given by

$$
\begin{gathered}
e_{1}=\cosh x_{5} \frac{\partial}{\partial x_{1}}+\sinh x_{5} \frac{\partial}{\partial x_{2}}, e_{2}=\sinh x_{5} \frac{\partial}{\partial x_{1}}+\cosh x_{5} \frac{\partial}{\partial x_{2}} \\
e_{3}=\cosh x_{5} \frac{\partial}{\partial x_{3}}+\sinh x_{5} \frac{\partial}{\partial x_{4}}, e_{4}=\sinh x_{5} \frac{\partial}{\partial x_{3}}+\cosh x_{5} \frac{\partial}{\partial x_{4}}, e_{5}=\frac{\partial}{\partial x_{5}}=\xi
\end{gathered}
$$

which are linearly independent at each point of M and hence form a basis of $T_{p} M$. Let g be the Lorentzian metric on M defined by

$$
\begin{gathered}
g\left(e_{i}, e_{i}\right)=1, \text { for } 1 \leq i \leq 4 \text { and } g\left(e_{5}, e_{5}\right)=-1 \\
g\left(e_{i}, e_{j}\right)=0, \text { for } i \neq j, 1 \leq i \leq 5 \text { and } 1 \leq j \leq 5
\end{gathered}
$$

Let η be the 1-form defined by $\eta(X)=g\left(X, e_{5}\right)=g(X, \xi)$ for all $X \in \chi(M)$, and let ϕ be the $(1,1)$-tensor field defined by

$$
\phi e_{1}=-e_{2}, \phi e_{2}=-e_{1}, \phi e_{3}=-e_{4}, \phi e_{4}=-e_{3}, \phi e_{5}=0
$$

By applying linearity of ϕ and g, we have

$$
\eta(\xi)=g(\xi, \xi)=-1, \phi^{2} X=X+\eta(X) \xi \text { and } g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y)
$$

for all $X, Y \in \chi(M)$. Thus for $e_{5}=\xi$, the structure (ϕ, ξ, η, g) defines a Lorentzian almost paracontact metric structure on M. Then we have

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=\left[e_{1}, e_{3}\right]=\left[e_{1}, e_{4}\right]=\left[e_{2}, e_{3}\right]=\left[e_{2}, e_{4}\right]=\left[e_{3}, e_{4}\right]=0} \\
& {\left[e_{1}, e_{5}\right]=-e_{2},\left[e_{2}, e_{5}\right]=-e_{1},\left[e_{3}, e_{5}\right]=-e_{4},\left[e_{4}, e_{5}\right]=-e_{3}}
\end{aligned}
$$

The Levi-Civita connection ∇ of the Lorentzian metric g is given by
$2 g\left(\nabla_{X} Y, Z\right)=X g(Y, Z)+Y g(Z, X)-Z g(X, Y)-g(X,[Y, Z])+g(Y,[Z, X])+g(Z,[X, Y])$,
which is known as Koszul's formula. Using Koszul's formula, we find

$$
\begin{gathered}
\nabla_{e_{1}} e_{1}=0, \nabla_{e_{1}} e_{2}=-e_{5}, \nabla_{e_{1}} e_{3}=0, \nabla_{e_{1}} e_{4}=0, \nabla_{e_{1}} e_{5}=-e_{2}, \\
\nabla_{e_{2}} e_{1}=-e_{5}, \nabla_{e_{2}} e_{2}=0, \nabla_{e_{2}} e_{3}=0, \nabla_{e_{2}} e_{4}=0, \nabla_{e_{2}} e_{5}=-e_{1}, \\
\nabla_{e_{3}} e_{1}=0, \nabla_{e_{3} e_{2}}=0, \nabla_{e_{3} e_{3}}=\nabla_{e_{3}} e_{4}=-e_{5}, \nabla_{e_{3}} e_{5}=-e_{4}, \\
\nabla_{e_{4}} e_{1}=0, \nabla_{e_{4}} e_{2}=0, \nabla_{e_{4} e_{3}}=-e_{5}, \nabla_{e_{4}} e_{4}=0, \nabla_{e_{4}} e_{5}=-e_{3}, \\
\nabla_{e_{5}} e_{1}=0, \nabla_{e_{5}} e_{2}=0, \nabla_{e_{5}} e_{3}=0, \nabla_{e_{5}} e_{4}=0, \nabla_{e_{5}} e_{5}=0 .
\end{gathered}
$$

Also one can easily verify that

$$
\nabla_{X} \xi=\phi X \quad \text { and } \quad\left(\nabla_{X} \phi\right) Y=g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi
$$

Therefore, the manifold is a Lorentzian para-Sasakian manifold. By using (1.3), we find

$$
\begin{gathered}
\bar{\nabla}_{e_{1}} e_{1}=-e_{5}, \bar{\nabla}_{e_{1}} e_{2}=-e_{5}, \bar{\nabla}_{e_{1}} e_{3}=0, \bar{\nabla}_{e_{1}} e_{4}=0, \bar{\nabla}_{e_{1}} e_{5}=-e_{1}-e_{2}, \\
\bar{\nabla}_{e_{2}} e_{1}=-e_{5}, \bar{\nabla}_{e_{2}} e_{2}=-e_{5}, \bar{\nabla}_{e_{2}} e_{3}=0, \bar{\nabla}_{e_{2}} e_{4}=0, \bar{\nabla}_{e_{2}} e_{5}=-e_{1}-e_{2}, \\
\bar{\nabla}_{e_{3}} e_{1}=0, \bar{\nabla}_{e_{3} e_{2}}=0, \bar{\nabla}_{e_{3} e_{3}}=-e_{5}, \bar{\nabla}_{e_{3} e_{4}}=-e_{5}, \bar{\nabla}_{e_{3}} e_{5}=-e_{3}-e_{4}, \\
\bar{\nabla}_{e_{4}} e_{1}=0, \bar{\nabla}_{e_{4} e_{2}=0,}^{\nabla_{e_{4}} e_{3}=-e_{5}, \bar{\nabla}_{e_{4} e_{4}}=-e_{5}, \bar{\nabla}_{e_{4} e_{5}}=-e_{3}-e_{4},} \\
\bar{\nabla}_{e_{5} e_{1}}=0, \bar{\nabla}_{e_{5} e_{2}}=0, \bar{\nabla}_{e_{5}} e_{3}=0, \bar{\nabla}_{e_{5} e_{4}}=0, \bar{\nabla}_{e_{5}} e_{5}=0 .
\end{gathered}
$$

From the above results, we can easily obtain the components of the curvature tensor as follows:

$$
\begin{gathered}
R\left(e_{1}, e_{2}\right) e_{1}=e_{2}, R\left(e_{1}, e_{2}\right) e_{2}=-e_{1}, R\left(e_{1}, e_{3}\right) e_{1}=0, R\left(e_{1}, e_{3}\right) e_{3}=0, \\
R\left(e_{1}, e_{4}\right) e_{1}=0, R\left(e_{1}, e_{4}\right) e_{4}=0, R\left(e_{1}, e_{5}\right) e_{1}=-e_{5}, R\left(e_{1}, e_{5}\right) e_{5}=-e_{1}, \\
R\left(e_{2}, e_{3}\right) e_{2}=0, R\left(e_{2}, e_{3}\right) e_{3}=0, R\left(e_{2}, e_{4}\right) e_{2}=0, R\left(e_{2}, e_{4}\right) e_{4}=0, \\
R\left(e_{2}, e_{5}\right) e_{2}=-e_{5}, R\left(e_{2}, e_{5}\right) e_{5}=-e_{2}, R\left(e_{3}, e_{4}\right) e_{3}=e_{4}, R\left(e_{3}, e_{4}\right) e_{4}=-e_{3}, \\
R\left(e_{3}, e_{5}\right) e_{3}=-e_{5}, R\left(e_{3}, e_{5}\right) e_{5}=-e_{3}, R\left(e_{4}, e_{5}\right) e_{4}=-e_{5}, R\left(e_{4}, e_{5}\right) e_{5}=-e_{4},
\end{gathered}
$$

and

$$
\begin{gathered}
\bar{R}\left(e_{1}, e_{2}\right) e_{1}=0, \bar{R}\left(e_{1}, e_{2}\right) e_{2}=0, \bar{R}\left(e_{1}, e_{3}\right) e_{1}=-e_{3}-e_{4}, \bar{R}\left(e_{1}, e_{3}\right) e_{3}=e_{1}+e_{2}, \\
\bar{R}\left(e_{1}, e_{4}\right) e_{1}=-e_{3}-e_{4}, \bar{R}\left(e_{1}, e_{4}\right) e_{4}=e_{1}+e_{2}, \bar{R}\left(e_{1}, e_{5}\right) e_{1}=-e_{5}, \bar{R}\left(e_{1}, e_{5}\right) e_{5}=-e_{1}-e_{2}, \\
\bar{R}\left(e_{2}, e_{3}\right) e_{2}=-e_{3}-e_{4}, \bar{R}\left(e_{2}, e_{3}\right) e_{3}=-e_{1}-e_{2}, \bar{R}\left(e_{2}, e_{4}\right) e_{2}=-e_{3}-e_{4}, \bar{R}\left(e_{2}, e_{4}\right) e_{4}=e_{1}+e_{2}, \\
\bar{R}\left(e_{2}, e_{5}\right) e_{2}=-e_{5}, \bar{R}\left(e_{2}, e_{5}\right) e_{5}=-e_{1}-e_{2}, \bar{R}\left(e_{3}, e_{4}\right) e_{3}=0, \bar{R}\left(e_{3}, e_{4}\right) e_{4}=0, \\
\bar{R}\left(e_{3}, e_{5}\right) e_{3}=-e_{5}, \bar{R}\left(e_{3}, e_{5}\right) e_{5}=-e_{3}-e_{4}, \bar{R}\left(e_{4}, e_{5}\right) e_{4}=-e_{5}, \bar{R}\left(e_{4}, e_{5}\right) e_{5}=-e_{3}-e_{4} .
\end{gathered}
$$

From these curvature tensors, we calculate

$$
\begin{gather*}
S\left(e_{1}, e_{1}\right)=S\left(e_{2}, e_{2}\right)=S\left(e_{3}, e_{3}\right)=S\left(e_{4}, e_{4}\right)=0, S\left(e_{5}, e_{5}\right)=-4, \tag{9.6}\\
\bar{S}\left(e_{1}, e_{1}\right)=\bar{S}\left(e_{2}, e_{2}\right)=\bar{S}\left(e_{3}, e_{3}\right)=\bar{S}\left(e_{4}, e_{4}\right)=3, \bar{S}\left(e_{5}, e_{5}\right)=-4 . \tag{9.7}
\end{gather*}
$$

Therefore, from (9.6) and (9.7) we obtain $r=4$ and $\bar{r}=16$, respectively. Thus it can be seen that the equation (3.5) is satisfied, where $\psi=\sum_{i=1}^{5} \epsilon_{i} g\left(\phi e_{i}, e_{i}\right)=0$.

From (1.1), we calculate the components of torsion tensor as follows:

$$
\begin{equation*}
T\left(e_{i}, e_{j}\right)=0, \text { for } 1 \leq i, j \leq 5, \quad T\left(e_{i}, e_{5}\right)=-e_{i}, \text { for } i=1,2,3,4 \tag{9.8}
\end{equation*}
$$

From (1.2), it can be easily seen that

$$
\begin{equation*}
\left(\bar{\nabla}_{e_{i}} g\right)\left(e_{j}, e_{k}\right)=0, \text { for any } 1 \leq i, j, k \leq 5 \tag{9.9}
\end{equation*}
$$

Thus by virtue of (9.8) and (9.9), we say that the linear connection $\bar{\nabla}$ defined by (1.3) on the manifold M is a semi-symmetric metric connection.

Acknowledgement. The authors are thankful to the referees for their valuable suggestions towards the improvement of the paper.

References

[1] De, U. C and Biswas, S. C., On a type of semi-symmetric metric connection on a Riemannian manifold, Publ. Inst. Math. (Beogran) (N. S.), 61(75) (1997), 90-96.
[2] De, U. C., Matsumoto, K. and Shaikh, A. A., On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario Matematico di Messina, Serie II, 3(1999), 149-158.
[3] Deszcz, R., On pseudosymmetric spaces, Bull. Soc. Belg. Math., Ser A., 44(1992), 1-34.
[4] Friedmann, A. and Schouten, J. A., Uber die Geometric der holbsymmetrischen Ubertragurgen, Math. Z., 21(1924), 211-233.
[5] Haseeb, A., Khan, M. A. and Siddiqi, M. D., Some more results on an ϵ-Kenmotsu manifold with a semi-symmetric metric connection, Acta Math. Univ. Comenian., 85(2016), 9-20.
[6] Haseeb, A. and Prasad, R., Certain curvature conditions in Kenmotsu manifolds with respect to the semi-symmetric metric connection, Comm. Korean Math. Soc., 32(2017), 1033-1045.
[7] Hayden, H. A., Subspaces of space with torsion, Proc. London Math. Soc., 34(1932), 27-50.
[8] Kowalczyk, D., On some subclass of semisymmetric manifolds, Soochow J. Math., 27(2001), 445-461.
[9] Kowalski, O., An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X, Y) \cdot R=0$, Czech. Math. J., 46(1996), 427-474.
[10] Malekzadeh, N., Abedi, E. and De, U. C., Pseudosymmetric and Weyl-pseudosymmetric (k, μ)-contact metric manifolds, Archivum Mathematicum (BRNO), Tomus 52(2016), 1-12.
[11] Matsumoto, K. and Mihai, I., On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor (N. S.), 47(1988), 189-197.
[12] Matsumoto, K., On Lorentzian paracontact manifolds, Bull. Yamagata Univ. nat. Sci., 12(1989), 151-156.
[13] Mihai, I. and Rosca, R., On Lorentzian P-Sasakian manifolds. Classical Analysis, World Scientific Publi., Singapore, (1992), 155-169.
[14] Mihai, I., Shaikh, A. A. and De, U. C., On Lorentzian para-Sasakian manifolds, Korean J. Math. Sci., 6(1999), 1-13.
[15] Mirzoyan, V. A., Structure theorems on Riemannian Ricci semisymmetic spaces (Russian), Izv. Vyssh. Uchebn. Zaved. Mat., 6(1992), 80-89.
[16] Prasad, R. and Haseeb, A., On a Lorentzian para-Sasakian manifold with respect to the quartersymmetric metric connection, Novi Sad J. Math., 46(2016), 103-116.
[17] Sharfuddin, S. and Husain, S. I., Semi-symmetric metric connexions in almost contact manifolds, Tensor (N. S.), 30(1976), 133-139.
[18] Singh, R. N. and Pandey, S. K., On a quarter-symmetric metric connection in an $L P$-Sasakian manifold, Thai J. Math., 12(2014), 357-371.
[19] Szabó, Z. I., Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0$ I, the local version. J. Differ. Geometry, 17(1982), 531-582.
[20] Yadav, S., Narain, D. and Suthar, D. L., On the concircular curvature tensor of a semi-symmetric metric connection, Diff. Geom. and Dyn. Syst., 20(2018), 170-181.
[21] Yano, K., On semi-symmetric connection, Rev. Roum. Math. Pures Appl., 15(1970),1570-1586.
[22] Yano, K. and Kon, M., Structures on Manifolds, Series in Pure Math., Vol. 3, World Sci., 1984.
[23] Yildiz, A., De, U. C. and Ata, E., On a type of Lorentzain para-Sasakian Manifolds, Math. Reports, 16(66), 1(2014), 61-67.

Department of Mathematics, Faculty of Science, Jazan University, Jazan-2097, Kingdom of Saudi Arabia.

Email address: malikhaseeb80@gmail.com, haseeb@jazanu.edu.sa

Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226007, India.
Email address: rp.manpur@rediffmail.com

