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FABER POLYNOMIAL COEFFICIENTS ESTIMATES OF BI-UNIVALENT

FUNCTIONS

MUHAMMAD NAEEM1, SHAHID KHAN2, AND F. MÜGE SAKAR3,∗

Abstract. In our present investigation, we use the Faber polynomial expansions to find

upper bounds for the n− th (n ≥ 4) coefficients of general subclass of analytic bi-univalent

functions. In certain cases, our estimates improve some of those existing coefficient bounds.

1. Introduction

Let A denote the class of all function f(z) which are analytic in the open unit disk

E = {z : |z| < 1} and has the Taylor-Maclaurin series expansion of the form:

f(z) = z +
∞∑
n=2

anz
n. (1)

By S we mean the subclass A consisting of univalent functions. The every univalent function

f ∈ S has an inverse f−1 which is defined as:

f−1(f(z)) = z, z ∈ E,

and

f(f−1(w)) = w, |w| < r0(f), r0(f) ≥ 1

4
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where

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + ....

= w +

∞∑
n=2

Anw
n. (2)

A function f ∈ A is said to be bi-univalent in E if both f and f−1 are univalent in E. Let

Σ denote the class of analytic and bi-univalent functions in E given by the Taylor-Maclaurin

series expansion (1). Some examples of functions in the class Σ are given below:

h1(z) =
z

1− z
, h2(z) = − log(1− z), h3(z) =

1

2
log

(
1 + z

1− z

)
, z ∈ E.

However, the famous Koebe function k(z) = z
(1−z)2 is not in Σ, for more details we refer

[32]. For f ∈ Σ, Levin [22] showed that |a2| < 1.51 and Brannan and Clunie [6] proved

that |a2| ≤
√

2. Netanyahu [27] showed that max |a2| = 4
3 . Brannan and Taha [7] introduced

certain subclass of the bi-univalent functions. For a brief history and interesting examples of

bi-univalent functions we refer, [5, 12, 13, 18, 21, 22, 23, 24, 25, 26, 28, 32].

Not much is known about the bounds on the general coefficient |an| for n ≥ 4. Here, in

this paper, we use the Faber polynomial expansions for a subclass of analytic bi-univalent

functions to determine estimates for the general coefficient bounds |an| for n ≥ 4.

The Faber polynomials introduced by Faber [11] play an important role in various areas of

mathematical sciences, especially in geometric function theory. In the literature, there are

only a few works determining the general coefficient bounds |an| for the analytic bi-univalent

functions given by (1) using Faber polynomial expansions see [16, 15, 19]. A very little is

known about the bounds of Maclaurin’s series coefficient |an| for n ≥ 4 by using a Faber

polynomials we refer [4, 2, 8, 9, 14, 17, 31, 30, 34].

Firstly, we consider class of analytic bi-univalent functions defined by Bulut [8] and class

of analytic bi-univalent functions defined by Jahangiri and Hamidi [20]. The purpose of

this article is to extend the work of [8, 20] by using well known Faber polynomials. In this

paper, we use the Faber polynomial expansions to obtain bounds for the general coefficients

|an| of bi-univalent functions in Nµ
Σ(δ, λ, α, β) as well as providing estimates for the initial

coefficients of these functions.

2. The class Nµ
Σ(δ, λ, α, β)
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Definition 1.1. A function f ∈ Σ, 0 ≤ δ ≤ 1, λ ≥ 1, µ ≥ 0, and 0 ≤ β ≤ 1 we introduce a

new class of bi-univalent functions Nµ
Σ(δ, λ, α, β) as f ∈ Nµ

Σ(δ, λ, α, β) if and only if

Re

[
(1− δ)

{
(1− λ)

(
f(z)

z

)µ
+ λf

′
(z)

(
f(z)

z

)µ−1
}

+ δ

(
zf
′
(z)

f(z)

)(
f(z)

z

)β]
> α, (3)

and

Re

[
(1− δ)

{
(1− λ)

(
g(w)

w

)µ
+ λg

′
(w)

(
g(w)

w

)µ−1
}

+ δ

(
wf

′
(w)

f(w)

)(
f(w)

w

)β]
> α,

(4)

where 0 ≤ α < 1, z, w ∈ E, g(w) = f−1(w) is defined by

Remark 1.1. In the following special cases of Definition 1 we show how the class of analytic

bi-univalent functions Nµ
Σ(δ, λ, α, β) for suitable choices of λ, δ, β and µ lead to certain new

as well as known classes of analytic bi-univalent functions studied earlier in the literature.

(i) For δ = 0, we obtain the class of bi-univalent functions introduced by Bulut [8].

(ii) For δ = 1, we obtain the class of bi-univalent functions introduced by Jahangiri and

Hamidi [20].

(iii) For δ = 0 and µ = 1 we obtain the class of bi-univalent function introduced by Frasin

and Aouf [13].

(iv) For δ = 0, λ = 1 and µ = 1 we obtain class of bi-univalent function introduced by

Srivastava et al [33].

(v) For δ = 0, and λ = 1 we have the bi-Bazilevic function class introduced by Prema and

Keerthi [29].

(vi) For δ = 1, and β = 1 we get the class which is consists of functions f ∈ Σ, satisfying

Re
(

(f
′
(z)
)
> α and Re

(
(g
′
(w)
)
> α, where 0 ≤ α < 1, and z, w ∈ E and g = f−1.

2. Main Results

Using the Faber polynomial expansion of functions f ∈ A of the form (1), the coefficients

of its inverse map g = f−1 are given by,

g(w) = f−1(w) = w +

∞∑
n=2

1

n
K−nn−1(a2, a3, ...)w

n,
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where

K−nn−1 =
(−n)!

(−2n+ 1)!(n− 5)!
an−1

2 +
(−n)!

[2(−n+ 1)]!(n− 3)!
an−3

2 a3

+
(−n)!

(−2n+ 3)!(n− 4)!
an−4

2 a4

+
(−n)!

[2(−n+ 2)]!(n− 5)!
an−5

2

[
a5 + (−n+ 2)a2

3

]
+

(−n)!

(−2n+ 5)!(n− 6)!
an−6

2 [a6 + (−2n+ 5)a3a4]

+
∑
j≥7

an−j2 Vj , (4)

such that Vj with 7 ≤ j ≤ n is a homogeneous polynomial in the variables | a2 |, | a3 |, ..... |an| ,

[1]. In particular, the first three terms of K−nn−1 are

1

2
K−2

1 = −a2,

1

3
K−3

2 = 2a2
2 − a3,

1

4
K−4

3 = −(5a3
2 − 5a2a3 + a4). (5)

In general, for any p ∈ N and n ≥ 2, an expansion of Kp
n−1 is as, [2],

Kp
n−1 = pan +

p(p− 1)

2
E2
n−1 +

p!

(p− 3)!3!
E3
n−1 + ...+

p!

(p− n+ 1)!(n− 1)!
En−1
n−1 , (6)

where Epn−1 = Epn−1(a2, a3....) and by [3],

Emn−1(a2, ..., an) =
∞∑
n=2

m!(a2)µ1 ...(an)µn−1

µ1!, ..., µn−1!
, for m ≤ n.

While a1 = 1, and the sum is taken over all nonnegative integer µ1, ..., µn satisfying

µ1 + µ2 + ...+ µn = m,

µ1 + 2µ2 + ...+ (n− 1)µn−1 = n− 1.

Evidently, En−1
n−1(a2, ..., an) = an−1

2 , [4]; or equivalently,

Emn (a1,a2, ..., an) =

∞∑
n=1

m!(a1)µ1 ...(an)µn

µ1!, ..., µn!
, for m ≤ n,
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while a1 = 1, and the sum is taken over all nonnegative integer µ1, ..., µn satisfying:

µ1 + µ2 + ...+ µn = m,

µ1 + 2µ2 + ...+ (n)µn = n.

It is clear that Enn(a1, ..., an) = En1 the first and last polynomials are:

Enn = an1 , E1
n = an.

Theorem 2.1. For 1 ≤ δ ≤ 0, λ ≥ 1, µ ≥ 0, 0 ≤ β ≤ 1 and 0 ≤ α < 1. Let f ∈

Nµ
Σ(δ, λ, α, β), if am = 0; 2 ≤ m ≤ n− 1, then

|an| ≤
2(1− α)

(1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)}
; n ≥ 4. (7)

Proof. For the function f ∈ Nµ
Σ(δ, λ, α, β) of the form (1), we have

(1− δ)

{
(1− λ)

(
f(z)

z

)µ
+ λf

′
(z)

(
f(z)

z

)µ−1
}

+ δ

(
zf
′
(z)

f(z)

)(
f(z)

z

)β

= 1 +
∞∑
n=2

Fn−1(a2, a3...., an)zn−1, (8)

and for its inverse map g = f−1, we have

(1− δ)

{
(1− λ)

(
g(w)

w

)µ
+ λf

′
(w)

(
g(w)

w

)µ−1
}

+ δ

(
wg
′
(w)

g(w)

)(
g(w)

w

)β
= 1 +

∞∑
n=2

Fn−1(A2, A3...., An)wn−1, (9)

where, An = 1
nK
−n
n−1(a2, a3, ...).

F1 = {(1− δ)(µ+ λ) + δ(β + 1)} a2,

F2 = {(1− δ)(µ+ 2λ) + δ(β + 2)}
[

(µ− 1) + (β − 1)

2
a2

2 + a3

]
,

F3 = {(1− δ)(µ+ 3λ) + δ(β + 3)}

 (µ−1)(µ−2)+(β−1)(β−2)
3! a3

2

−{(µ− 1) + (β − 1)} a2a3 + a4

 .
In general

Fn−1(a2, a3...., an) =

 (1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)}

×{(µ− 1)! + (β − 1)!}

×G
 ,

where

G =
∑

i1+2i2+...(n−1)in−1=n−1

(a2)i1ai23 ...(an)in−1

i1!i2!..., in! [{µ− (i1 + i2 + ...in−1)}! + {β − (i1 + i2 + ...in−1)}!]
.
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On the other hand, since f ∈ Nµ
Σ(δ, λ, α, β) and g = f−1 ∈ Nµ

Σ(δ, λ, α, β) by definition, there

exist two positive real-part functions p(z) = 1 +
∞∑
n=1

cnz
n and q(w) = 1 +

∞∑
n=1

cnw
n ∈ A where

Re(p(z)) > 0 and Re(q(w)) > 0 in E, such that

(1− δ)

{
(1− λ)

(
f(z)

z

)µ
+ λf

′
(z)

(
f(z)

z

)µ−1
}

+ δ

(
zf
′
(z)

f(z)

)(
f(z)

z

)β
= α+ (1− α)p(z)

= 1 + (1− α)
∞∑
n=1

K1
n(c1,c2, ..., cn)zn (10)

and

(1− δ)

{
(1− λ)

(
g(w)

w

)µ
+ λf

′
(w)

(
g(w)

w

)µ−1
}

+ δ

(
wg
′
(w)

g(w)

)(
g(w)

w

)β
= α+ (1− α)q(w)

= 1 + (1− α)
∞∑
n=1

K1
n(d1,d2, ..., dn)wn. (11)

Note that, by the Caratheodory lemma [10], |cn| ≤ 2 and |dn| ≤ 2, (n ∈ N). Comparing the

corresponding coefficients of (8) and (10) for any n ≥ 2, we have

Fn−1(a2, a3...., an) = (1− α)K1
n−1(c1,c2, ..., cn−1), n ≥ 2. (12)

Which under the assumption am = 0; 2 ≤ m ≤ n− 1, we have

(1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)} an = (1− α)cn−1, n ≥ 2.

Similarly corresponding coefficients of (9) and (11) we have

Fn−1(A2, A3...., An) = (1− α)K1
n−1(d1,d2, ..., dn−1), n ≥ 2. (13)

Which by the hypothesis, we obtain

(1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)}An = (1− α)dn−1. (14)

Note that for am = 0; 2 ≤ m ≤ n− 1 we have An = −an, and so

(1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)} an = (1− α)cn−1,

−(1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)} an = (1− α)dn−1. (15)
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Now taking the absolute values of equation (14) and (15) and using the fact that |cn−1| ≤ 2

and |dn−1| ≤ 2, we obtain

|an| =
|(1− α)cn−1|

(1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)}

=
|(1− α)dn−1|

(1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)}

≤ 2(1− α)

(1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)}

which completes the proof of Theorem 2.1.

Remark 2.1. (i) For δ = 1 in Theorem 2.1 we obtain the estimates |an|, proved by Jahangiri

and Hamidi in [20].

(ii) For δ = 0 in Theorem 2.1 we obtain the estimates |an|, proved by Bulut in [8].

(iii) For δ = 0, µ = 1 in Theorem 1 we obtain the Corollary 1, proved by Bulut in [8].

Theorem 2.2. For 1 ≤ δ ≤ 0, λ ≥ 1, µ ≥ 0, 0 ≤ β ≤ 1 and 0 ≤ α < 1. Let f ∈ Nµ
Σ(δ, λ, α, β).

Then

|a2| ≤
2(1− α)

{(1− δ)(µ+ λ) + δ(β + 1)}
, (1a)

|a3| ≤
4(1− α)2

{(1− δ)(µ+ λ) + δ(β + 1)}2
+

2(1− α)

{(1− δ)(µ+ 2λ) + δ(β + 2)}
, (1b)

∣∣a3 − a2
2

∣∣ ≤ 2(1− α)

{(1− δ)(µ+ 2λ) + δ(β + 2)}
. (1c)

Proof. Replacing n by 2 and 3 in (12) and (13), respectively, we find that

{(1− δ)(µ+ λ) + δ(β + 1)} a2 = (1− α)c1, (16)

{(1− δ)(µ+ 2λ) + δ(β + 2)}
[

(µ− 1) + (β − 1)

2
a2

2 + a3

]
= (1− α)c2, (17)

−{(1− δ)(µ+ 2λ) + δ(β + 2)} a2 = (1− α)d1, (18)

{(1− δ)(µ+ 2λ) + δ(β + 2)}
[

(µ+ 1) + (β + 1)

2
a2

2 − a3

]
= (1− α)d2. (19)
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From (16) and (18) we obtain

|a2| =
∣∣∣∣ (1− α)c1

{(1− δ)(µ+ λ) + δ(β + 1)}

∣∣∣∣ =

∣∣∣∣ (1− α)d1

−{(1− δ)(µ+ λ) + δ(β + 1)}

∣∣∣∣

≤ 2(1− α)

{(1− δ)(µ+ λ) + δ(β + 1)}
. (20)

Adding (17) and (19) we have

[{(1− δ)(µ+ 2λ) + δ(β + 2)} (µ+ β)] a2
2 = (1− α)(c2 + d2). (21)

Using the Caratheodory lemma, we have

|a2| ≤

√
4(1− α)

{(1− δ)(µ+ 2λ) + δ(β + 2)} (µ+ β)
. (22)

Combining inequality (20 ) and (22) we obtain required result (i). Next in order to find the

bound on the coefficient |a3| , we subtract (19) from (17) we thus obtain,

2 {(1− δ)(µ+ 2λ) + δ(β + 2)} (a3 − a2
2) = (1− α)(c2 − d2), (23)

or

a3 = a2
2 +

|(1− α)(c2 − d2)|
2 {(1− δ)(µ+ 2λ) + δ(β + 2)}

. (24)

Substituting the value of a2
2 from (20) into (24), we obtain

a3 =
(1− α)2c2

1

{(1− δ)(µ+ λ) + δ(β + 1)}2
+

(1− α)(c2 − d2)

2 {(1− δ)(µ+ 2λ) + δ(β + 2)}
. (25)

Taking the absolute of (25) and using the Caratheodory lemma we have

|a3| ≤
4(1− α)2

{(1− δ)(µ+ λ) + δ(β + 1)}2
+

2(1− α)

{(1− δ)(µ+ 2λ) + δ(β + 2)}
. (26)

Again substituting the value of a2
2 from (21) into (24), we obtain

a3 =
(1− α)(c2 + d2)

{(1− δ)(µ+ 2λ) + δ(β + 2)} (µ+ β)
+

(1− α)(c2 − d2)

2 {(1− δ)(µ+ 2λ) + δ(β + 2)}
. (27)

Again taking the absolute of (27) and using the Caratheodory lemma we have

|a3| ≤
4(1− α)

{(1− δ)(µ+ 2λ) + δ(β + 2)} (µ+ β)
. (28)

From (26) and (28) we obtain required result (1b). Taking the absolute values of both sides

of the equation (23), we obtain∣∣a3 − a2
2

∣∣ =

∣∣∣∣ 2(1− α)

{(1− δ)(µ+ 2λ) + δ(β + 2)}

∣∣∣∣ ≤ 2(1− α)

{(1− δ)(µ+ 2λ) + δ(β + 2)}
. (29)
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Which is the desired inequality(1c).

Remark 2.2. (i) For δ = 1, µ = 1 in Theorem 2.2 we obtained the estimates |a2| ,
∣∣a3 − a2

2

∣∣
proved by Jahangiri and Hamidi in [20].

(ii) For δ = 0 and β = 1 in Theorem 2.2 we obtain the estimates |a2| and |a3| , proved by

Bulut in [8].

(iii) For δ = 0, β = 1 and µ = 1 in Theorem 2.2 we obtain the estimates |a2| and |a3| of

Corollary 2 proved by Bulut in [8].

(iv) For δ = 0, λ = 1, and β = 1 in Theorem 2.2 we obtain the Corollary 3, proved by Bulut

in [8].

(v) For δ = 1, µ = 1 and β = 1 in Theorem 2.2 we obtain the Corollary 2.2, proved by

Jahangiri and Hamidi in [20].

Letting δ = 1, λ = 1, µ = 1 and β = 0 in Theorem 2.2 we obtain the following corollary for

analytic bi-Starlike functions of order α, 0 ≤ α < 1.

Corollary 2.1. Let f ∈ N1
Σ(1, 1, α, 0) be bi-Starlike of order α in E. Then

|a2| ≤ 2(1− α),

|a3| ≤ 3(1− α),∣∣a3 − a2
2

∣∣ ≤ 1− α.
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[5] Altınkaya Ş, Yalçın S. Initial coefficient bounds for a general class of bi-univalent functions, Int J Anal

2014; 867871.

[6] Brannan DA, Clunie J. Aspects of contemporary complex analysis, in: proceedings of the NATO Advanced

study Institute Held at University of Durham, Academic Press, New York, 1979.

[7] Brannan DA, Taha TS. On some classes of bi-univalent function, Study Univ Babes Bolyai Math 1986;

31(2): 70-77.



66 MUHAMMAD NAEEM1, SHAHID KHAN2, AND F. MÜGE SAKAR3,∗
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