FABER POLYNOMIAL COEFFICIENTS ESTIMATES OF BI-UNIVALENT FUNCTIONS

MUHAMMAD NAEEM ${ }^{1}$, SHAHID KHAN ${ }^{2}$, AND F. MÜGE SAKAR ${ }^{3, *}$

Abstract. In our present investigation, we use the Faber polynomial expansions to find upper bounds for the $n-t h(n \geq 4)$ coefficients of general subclass of analytic bi-univalent functions. In certain cases, our estimates improve some of those existing coefficient bounds.

1. Introduction

Let A denote the class of all function $f(z)$ which are analytic in the open unit disk $E=\{z:|z|<1\}$ and has the Taylor-Maclaurin series expansion of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

By S we mean the subclass A consisting of univalent functions. The every univalent function $f \in S$ has an inverse f^{-1} which is defined as:

$$
f^{-1}(f(z))=z, \quad z \in E,
$$

and

$$
f\left(f^{-1}(w)\right)=w,|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}
$$

Key words:Faber polynomials, Bi-univalent functions, Coefficients Estimates

[^0]where
\[

$$
\begin{align*}
g(w) & =f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \\
& =w+\sum_{n=2}^{\infty} A_{n} w^{n} . \tag{2}
\end{align*}
$$
\]

A function $f \in A$ is said to be bi-univalent in E if both f and f^{-1} are univalent in E. Let Σ denote the class of analytic and bi-univalent functions in E given by the Taylor-Maclaurin series expansion (1). Some examples of functions in the class Σ are given below:

$$
h_{1}(z)=\frac{z}{1-z}, h_{2}(z)=-\log (1-z), h_{3}(z)=\frac{1}{2} \log \left(\frac{1+z}{1-z}\right), \quad z \in E .
$$

However, the famous Koebe function $k(z)=\frac{z}{(1-z)^{2}}$ is not in Σ, for more details we refer [32]. For $f \in \Sigma$, Levin [22] showed that $\left|a_{2}\right|<1.51$ and Brannan and Clunie [6] proved that $\left|a_{2}\right| \leq \sqrt{2}$. Netanyahu [27] showed that $\max \left|a_{2}\right|=\frac{4}{3}$. Brannan and Taha [7] introduced certain subclass of the bi-univalent functions. For a brief history and interesting examples of bi-univalent functions we refer, [5, 12, 13, 18, 21, 22, 23, 24, 25, 26, 28, 32 .

Not much is known about the bounds on the general coefficient $\left|a_{n}\right|$ for $n \geq 4$. Here, in this paper, we use the Faber polynomial expansions for a subclass of analytic bi-univalent functions to determine estimates for the general coefficient bounds $\left|a_{n}\right|$ for $n \geq 4$.

The Faber polynomials introduced by Faber [11] play an important role in various areas of mathematical sciences, especially in geometric function theory. In the literature, there are only a few works determining the general coefficient bounds $\left|a_{n}\right|$ for the analytic bi-univalent functions given by (1) using Faber polynomial expansions see [16, 15, 19]. A very little is known about the bounds of Maclaurin's series coefficient $\left|a_{n}\right|$ for $n \geq 4$ by using a Faber polynomials we refer [4, 2, 8, 9, 14, 17, 31, 30, 34].

Firstly, we consider class of analytic bi-univalent functions defined by Bulut [8 and class of analytic bi-univalent functions defined by Jahangiri and Hamidi [20]. The purpose of this article is to extend the work of [8, 20] by using well known Faber polynomials. In this paper, we use the Faber polynomial expansions to obtain bounds for the general coefficients $\left|a_{n}\right|$ of bi-univalent functions in $N_{\Sigma}^{\mu}(\delta, \lambda, \alpha, \beta)$ as well as providing estimates for the initial coefficients of these functions.
2. The class $\mathbf{N}_{\Sigma}^{\mu}(\delta, \lambda, \alpha, \beta)$

Definition 1.1. A function $f \in \Sigma, 0 \leq \delta \leq 1, \lambda \geq 1, \mu \geq 0$, and $0 \leq \beta \leq 1$ we introduce a new class of bi-univalent functions $N_{\Sigma}^{\mu}(\delta, \lambda, \alpha, \beta)$ as $f \in N_{\Sigma}^{\mu}(\delta, \lambda, \alpha, \beta)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left[(1-\delta)\left\{(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right\}+\delta\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(\frac{f(z)}{z}\right)^{\beta}\right]>\alpha \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left[(1-\delta)\left\{(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right\}+\delta\left(\frac{w f^{\prime}(w)}{f(w)}\right)\left(\frac{f(w)}{w}\right)^{\beta}\right]>\alpha, \tag{4}
\end{equation*}
$$

where $0 \leq \alpha<1, z, w \in E, g(w)=f^{-1}(w)$ is defined by

Remark 1.1. In the following special cases of Definition 1 we show how the class of analytic bi-univalent functions $N_{\Sigma}^{\mu}(\delta, \lambda, \alpha, \beta)$ for suitable choices of λ, δ, β and μ lead to certain new as well as known classes of analytic bi-univalent functions studied earlier in the literature.
(i) For $\delta=0$, we obtain the class of bi-univalent functions introduced by Bulut [8].
(ii) For $\delta=1$, we obtain the class of bi-univalent functions introduced by Jahangiri and Hamidi [20].
(iii) For $\delta=0$ and $\mu=1$ we obtain the class of bi-univalent function introduced by Frasin and Aouf [13].
(iv) For $\delta=0, \lambda=1$ and $\mu=1$ we obtain class of bi-univalent function introduced by Srivastava et al 33 .
(v) For $\delta=0$, and $\lambda=1$ we have the bi-Bazilevic function class introduced by Prema and Keerthi [29].
(vi) For $\delta=1$, and $\beta=1$ we get the class which is consists of functions $f \in \Sigma$, satisfying $\operatorname{Re}\left(\left(f^{\prime}(z)\right)>\alpha\right.$ and $\operatorname{Re}\left(\left(g^{\prime}(w)\right)>\alpha\right.$, where $0 \leq \alpha<1$, and $z, w \in E$ and $g=f^{-1}$.

2. Main Results

Using the Faber polynomial expansion of functions $f \in A$ of the form (1), the coefficients of its inverse map $g=f^{-1}$ are given by,

$$
g(w)=f^{-1}(w)=w+\sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots\right) w^{n},
$$

where

$$
\begin{align*}
K_{n-1}^{-n} & =\frac{(-n)!}{(-2 n+1)!(n-5)!} a_{2}^{n-1}+\frac{(-n)!}{[2(-n+1)]!(n-3)!} a_{2}^{n-3} a_{3} \\
& +\frac{(-n)!}{(-2 n+3)!(n-4)!} a_{2}^{n-4} a_{4} \\
& +\frac{(-n)!}{[2(-n+2))!(n-5)!} a_{2}^{n-5}\left[a_{5}+(-n+2) a_{3}^{2}\right] \\
& +\frac{(-n)!}{(-2 n+5)!(n-6)!} a_{2}^{n-6}\left[a_{6}+(-2 n+5) a_{3} a_{4}\right] \\
& +\sum_{j \geq 7} a_{2}^{n-j} V_{j}, \tag{4}
\end{align*}
$$

such that V_{j} with $7 \leq j \leq n$ is a homogeneous polynomial in the variables $\left|a_{2}\right|,\left|a_{3}\right|, \ldots . .\left|a_{n}\right|$, [1]. In particular, the first three terms of K_{n-1}^{-n} are

$$
\begin{align*}
& \frac{1}{2} K_{1}^{-2}=-a_{2}, \\
& \frac{1}{3} K_{2}^{-3}=2 a_{2}^{2}-a_{3}, \\
& \frac{1}{4} K_{3}^{-4}=-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) . \tag{5}
\end{align*}
$$

In general, for any $p \in N$ and $n \geq 2$, an expansion of K_{n-1}^{p} is as, [2],

$$
\begin{equation*}
K_{n-1}^{p}=p a_{n}+\frac{p(p-1)}{2} E_{n-1}^{2}+\frac{p!}{(p-3)!3!} E_{n-1}^{3}+\ldots+\frac{p!}{(p-n+1)!(n-1)!} E_{n-1}^{n-1}, \tag{6}
\end{equation*}
$$

where $E_{n-1}^{p}=E_{n-1}^{p}\left(a_{2}, a_{3} \ldots.\right)$ and by [3],

$$
E_{n-1}^{m}\left(a_{2}, \ldots, a_{n}\right)=\sum_{n=2}^{\infty} \frac{m!\left(a_{2}\right)^{\mu_{1}} \ldots\left(a_{n}\right)^{\mu_{n-1}}}{\mu_{1}!, \ldots, \mu_{n-1}!}, \quad \text { for } \quad m \leq n
$$

While $a_{1}=1$, and the sum is taken over all nonnegative integer μ_{1}, \ldots, μ_{n} satisfying

$$
\begin{aligned}
\mu_{1}+\mu_{2}+\ldots+\mu_{n} & =m \\
\mu_{1}+2 \mu_{2}+\ldots+(n-1) \mu_{n-1} & =n-1 .
\end{aligned}
$$

Evidently, $E_{n-1}^{n-1}\left(a_{2}, \ldots, a_{n}\right)=a_{2}^{n-1}$, [4]; or equivalently,

$$
E_{n}^{m}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{n=1}^{\infty} \frac{m!\left(a_{1}\right)^{\mu_{1}} \ldots\left(a_{n}\right)^{\mu_{n}}}{\mu_{1!}, \ldots, \mu_{n}!}, \quad \text { for } m \leq n
$$

while $a_{1}=1$, and the sum is taken over all nonnegative integer μ_{1}, \ldots, μ_{n} satisfying:

$$
\begin{aligned}
\mu_{1}+\mu_{2}+\ldots+\mu_{n} & =m, \\
\mu_{1}+2 \mu_{2}+\ldots+(n) \mu_{n} & =n .
\end{aligned}
$$

It is clear that $E_{n}^{n}\left(a_{1}, \ldots, a_{n}\right)=E_{1}^{n}$ the first and last polynomials are:

$$
E_{n}^{n}=a_{1}^{n}, \quad E_{n}^{1}=a_{n} .
$$

Theorem 2.1. For $1 \leq \delta \leq 0, \lambda \geq 1, \mu \geq 0,0 \leq \beta \leq 1$ and $0 \leq \alpha<1$. Let $f \in$ $N_{\Sigma}^{\mu}(\delta, \lambda, \alpha, \beta)$, if $a_{m}=0 ; 2 \leq m \leq n-1$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{2(1-\alpha)}{(1-\delta)\{\mu+(n-1) \lambda\}+\delta\{\beta+(n-1)\}} ; \quad n \geq 4 . \tag{7}
\end{equation*}
$$

Proof. For the function $f \in N_{\Sigma}^{\mu}(\delta, \lambda, \alpha, \beta)$ of the form (1), we have

$$
\begin{align*}
& (1-\delta)\left\{(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right\}+\delta\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(\frac{f(z)}{z}\right)^{\beta} \\
& =1+\sum_{n=2}^{\infty} F_{n-1}\left(a_{2}, a_{3} \ldots, a_{n}\right) z^{n-1} \tag{8}
\end{align*}
$$

and for its inverse map $g=f^{-1}$, we have

$$
\begin{align*}
& (1-\delta)\left\{(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda f^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right\}+\delta\left(\frac{w g^{\prime}(w)}{g(w)}\right)\left(\frac{g(w)}{w}\right)^{\beta} \\
& =1+\sum_{n=2}^{\infty} F_{n-1}\left(A_{2}, A_{3} \ldots, A_{n}\right) w^{n-1} \tag{9}
\end{align*}
$$

where, $A_{n}=\frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots\right)$.

$$
\begin{aligned}
& F_{1}=\{(1-\delta)(\mu+\lambda)+\delta(\beta+1)\} a_{2}, \\
& F_{2}=\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\}\left[\frac{(\mu-1)+(\beta-1)}{2} a_{2}^{2}+a_{3}\right], \\
& F_{3}=\{(1-\delta)(\mu+3 \lambda)+\delta(\beta+3)\}\left[\begin{array}{c}
\frac{(\mu-1)(\mu-2)+(\beta-1)(\beta-2)}{3!} a_{2}^{3} \\
-\{(\mu-1)+(\beta-1)\} a_{2} a_{3}+a_{4}
\end{array}\right] .
\end{aligned}
$$

In general

$$
F_{n-1}\left(a_{2}, a_{3} \ldots, a_{n}\right)=\left[\left\{\begin{array}{c}
(1-\delta)\{\mu+(n-1) \lambda\}+\delta\{\beta+(n-1)\} \\
\times\{(\mu-1)!+(\beta-1)!\}
\end{array}\right\} \times G\right],
$$

where

$$
G=\sum_{i_{1}+2 i_{2}+\ldots(n-1) i_{n-1}=n-1} \frac{\left(a_{2}\right)^{i_{1}} a_{3}^{i_{2}} \ldots\left(a_{n}\right)^{i_{n-1}}}{i_{1}!i_{2}!\ldots, i_{n}!\left[\left\{\mu-\left(i_{1}+i_{2}+\ldots i_{n-1}\right)\right\}!+\left\{\beta-\left(i_{1}+i_{2}+\ldots i_{n-1}\right)\right\}!\right]}
$$

On the other hand, since $f \in N_{\Sigma}^{\mu}(\delta, \lambda, \alpha, \beta)$ and $g=f^{-1} \in N_{\Sigma}^{\mu}(\delta, \lambda, \alpha, \beta)$ by definition, there exist two positive real-part functions $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ and $q(w)=1+\sum_{n=1}^{\infty} c_{n} w^{n} \in A$ where $\operatorname{Re}(p(z))>0$ and $\operatorname{Re}(q(w))>0$ in E, such that

$$
\begin{align*}
& (1-\delta)\left\{(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right\}+\delta\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(\frac{f(z)}{z}\right)^{\beta} \\
& =\alpha+(1-\alpha) p(z) \\
& =1+(1-\alpha) \sum_{n=1}^{\infty} K_{n}^{1}\left(c_{1}, c_{2}, \ldots, c_{n}\right) z^{n} \tag{10}
\end{align*}
$$

and

$$
\begin{align*}
& (1-\delta)\left\{(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda f^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right\}+\delta\left(\frac{w g^{\prime}(w)}{g(w)}\right)\left(\frac{g(w)}{w}\right)^{\beta} \\
& =\alpha+(1-\alpha) q(w) \\
& =1+(1-\alpha) \sum_{n=1}^{\infty} K_{n}^{1}\left(d_{1}, d_{2}, \ldots, d_{n}\right) w^{n} . \tag{11}
\end{align*}
$$

Note that, by the Caratheodory lemma [10], $\left|c_{n}\right| \leq 2$ and $\left|d_{n}\right| \leq 2,(n \in N)$. Comparing the corresponding coefficients of (8) and (10) for any $n \geq 2$, we have

$$
\begin{equation*}
F_{n-1}\left(a_{2}, a_{3} \ldots, a_{n}\right)=(1-\alpha) K_{n-1}^{1}\left(c_{1}, c_{2}, \ldots, c_{n-1}\right), \quad n \geq 2 \tag{12}
\end{equation*}
$$

Which under the assumption $a_{m}=0 ; 2 \leq m \leq n-1$, we have

$$
(1-\delta)\{\mu+(n-1) \lambda\}+\delta\{\beta+(n-1)\} a_{n}=(1-\alpha) c_{n-1}, \quad n \geq 2 .
$$

Similarly corresponding coefficients of (9) and (11) we have

$$
\begin{equation*}
F_{n-1}\left(A_{2}, A_{3} \ldots, A_{n}\right)=(1-\alpha) K_{n-1}^{1}\left(d_{1}, d_{2}, \ldots, d_{n-1}\right), \quad n \geq 2 . \tag{13}
\end{equation*}
$$

Which by the hypothesis, we obtain

$$
\begin{equation*}
(1-\delta)\{\mu+(n-1) \lambda\}+\delta\{\beta+(n-1)\} A_{n}=(1-\alpha) d_{n-1} . \tag{14}
\end{equation*}
$$

Note that for $a_{m}=0 ; 2 \leq m \leq n-1$ we have $A_{n}=-a_{n}$, and so

$$
\begin{align*}
(1-\delta)\{\mu+(n-1) \lambda\}+\delta\{\beta+(n-1)\} a_{n} & =(1-\alpha) c_{n-1} \\
-(1-\delta)\{\mu+(n-1) \lambda\}+\delta\{\beta+(n-1)\} a_{n} & =(1-\alpha) d_{n-1} \tag{15}
\end{align*}
$$

Now taking the absolute values of equation (14) and (15) and using the fact that $\left|c_{n-1}\right| \leq 2$ and $\left|d_{n-1}\right| \leq 2$, we obtain

$$
\begin{aligned}
\left|a_{n}\right| & =\frac{\left|(1-\alpha) c_{n-1}\right|}{(1-\delta)\{\mu+(n-1) \lambda\}+\delta\{\beta+(n-1)\}} \\
& =\frac{\left|(1-\alpha) d_{n-1}\right|}{(1-\delta)\{\mu+(n-1) \lambda\}+\delta\{\beta+(n-1)\}} \\
& \leq \frac{2(1-\alpha)}{(1-\delta)\{\mu+(n-1) \lambda\}+\delta\{\beta+(n-1)\}}
\end{aligned}
$$

which completes the proof of Theorem 2.1.

Remark 2.1. (i) For $\delta=1$ in Theorem 2.1 we obtain the estimates $\left|a_{n}\right|$, proved by Jahangiri and Hamidi in [20].
(ii) For $\delta=0$ in Theorem 2.1 we obtain the estimates $\left|a_{n}\right|$, proved by Bulut in [8].
(iii) For $\delta=0, \mu=1$ in Theorem 1 we obtain the Corollary 1, proved by Bulut in [8].

Theorem 2.2. For $1 \leq \delta \leq 0, \lambda \geq 1, \mu \geq 0,0 \leq \beta \leq 1$ and $0 \leq \alpha<1$. Let $f \in N_{\Sigma}^{\mu}(\delta, \lambda, \alpha, \beta)$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{2(1-\alpha)}{\{(1-\delta)(\mu+\lambda)+\delta(\beta+1)\}}, \tag{1a}\\
\left|a_{3}\right| \leq \frac{4(1-\alpha)^{2}}{\{(1-\delta)(\mu+\lambda)+\delta(\beta+1)\}^{2}}+\frac{2(1-\alpha)}{\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\}}, \tag{1b}\\
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2(1-\alpha)}{\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\}} . \tag{1c}
\end{gather*}
$$

Proof. \quad Replacing n by 2 and 3 in (12) and (13), respectively, we find that

$$
\begin{align*}
\{(1-\delta)(\mu+\lambda)+\delta(\beta+1)\} a_{2} & =(1-\alpha) c_{1} \tag{16}\\
\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\}\left[\frac{(\mu-1)+(\beta-1)}{2} a_{2}^{2}+a_{3}\right] & =(1-\alpha) c_{2} \tag{17}\\
-\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\} a_{2} & =(1-\alpha) d_{1}, \tag{18}\\
\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\}\left[\frac{(\mu+1)+(\beta+1)}{2} a_{2}^{2}-a_{3}\right] & =(1-\alpha) d_{2} . \tag{19}
\end{align*}
$$

From (16) and (18) we obtain

$$
\begin{align*}
\left|a_{2}\right| & =\left|\frac{(1-\alpha) c_{1}}{\{(1-\delta)(\mu+\lambda)+\delta(\beta+1)\}}\right|=\left|\frac{(1-\alpha) d_{1}}{-\{(1-\delta)(\mu+\lambda)+\delta(\beta+1)\}}\right| \\
& \leq \frac{2(1-\alpha)}{\{(1-\delta)(\mu+\lambda)+\delta(\beta+1)\}} \tag{20}
\end{align*}
$$

Adding (17) and (19) we have

$$
\begin{equation*}
[\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\}(\mu+\beta)] a_{2}^{2}=(1-\alpha)\left(c_{2}+d_{2}\right) . \tag{21}
\end{equation*}
$$

Using the Caratheodory lemma, we have

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{4(1-\alpha)}{\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\}(\mu+\beta)}} \tag{22}
\end{equation*}
$$

Combining inequality (20) and (22) we obtain required result (i). Next in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (19) from (17) we thus obtain,

$$
\begin{equation*}
2\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\}\left(a_{3}-a_{2}^{2}\right)=(1-\alpha)\left(c_{2}-d_{2}\right), \tag{23}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{\left|(1-\alpha)\left(c_{2}-d_{2}\right)\right|}{2\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\}} . \tag{24}
\end{equation*}
$$

Substituting the value of a_{2}^{2} from (20) into (24), we obtain

$$
\begin{equation*}
a_{3}=\frac{(1-\alpha)^{2} c_{1}^{2}}{\{(1-\delta)(\mu+\lambda)+\delta(\beta+1)\}^{2}}+\frac{(1-\alpha)\left(c_{2}-d_{2}\right)}{2\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\}} \tag{25}
\end{equation*}
$$

Taking the absolute of (25) and using the Caratheodory lemma we have

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4(1-\alpha)^{2}}{\{(1-\delta)(\mu+\lambda)+\delta(\beta+1)\}^{2}}+\frac{2(1-\alpha)}{\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\}} \tag{26}
\end{equation*}
$$

Again substituting the value of a_{2}^{2} from (21) into (24), we obtain

$$
\begin{equation*}
a_{3}=\frac{(1-\alpha)\left(c_{2}+d_{2}\right)}{\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\}(\mu+\beta)}+\frac{(1-\alpha)\left(c_{2}-d_{2}\right)}{2\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\}} . \tag{27}
\end{equation*}
$$

Again taking the absolute of (27) and using the Caratheodory lemma we have

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4(1-\alpha)}{\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\}(\mu+\beta)} \tag{28}
\end{equation*}
$$

From (26) and (28) we obtain required result (1b). Taking the absolute values of both sides of the equation (23), we obtain

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right|=\left|\frac{2(1-\alpha)}{\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\}}\right| \leq \frac{2(1-\alpha)}{\{(1-\delta)(\mu+2 \lambda)+\delta(\beta+2)\}} . \tag{29}
\end{equation*}
$$

Which is the desired inequality $(1 c)$.

Remark 2.2. (i) For $\delta=1, \mu=1$ in Theorem 2.2 we obtained the estimates $\left|a_{2}\right|,\left|a_{3}-a_{2}^{2}\right|$ proved by Jahangiri and Hamidi in [20].
(ii) For $\delta=0$ and $\beta=1$ in Theorem 2.2 we obtain the estimates $\left|a_{2}\right|$ and $\left|a_{3}\right|$, proved by Bulut in [8].
(iii) For $\delta=0, \beta=1$ and $\mu=1$ in Theorem 2.2 we obtain the estimates $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of Corollary 2 proved by Bulut in [8].
(iv) For $\delta=0, \lambda=1$, and $\beta=1$ in Theorem 2.2 we obtain the Corollary 3, proved by Bulut in 8 .
(v) For $\delta=1, \mu=1$ and $\beta=1$ in Theorem 2.2 we obtain the Corollary 2.2, proved by Jahangiri and Hamidi in [20].

Letting $\delta=1, \lambda=1, \mu=1$ and $\beta=0$ in Theorem 2.2 we obtain the following corollary for analytic bi-Starlike functions of order $\alpha, 0 \leq \alpha<1$.

Corollary 2.1. Let $f \in N_{\Sigma}^{1}(1,1, \alpha, 0)$ be bi-Starlike of order α in E. Then

$$
\begin{gathered}
\left|a_{2}\right| \leq 2(1-\alpha) \\
\left|a_{3}\right| \leq 3(1-\alpha) \\
\left|a_{3}-a_{2}^{2}\right| \leq 1-\alpha
\end{gathered}
$$

References

[1] Airault H, Ren J. An algebra of Differential operators and generating functions on the set of univalent functions, Bull Sci Math 2002; 126(5): 343-367.
[2] Airault H, Bouali H. Differential calculus on the Faber polynomials, Bull Sci Math 2006; 130(3): 179-222.
[3] Airault H. Symmetric sums associated to the factorizations of Grunsky coefficients, in: Conference, Groups and Symmetries. Montreal. Canada. April 2007.
[4] Airault H. Remarks on Faber polynomials, Int Math Forum 2008; 3(9): 449-456.
[5] Altınkaya Ş, Yalçın S. Initial coefficient bounds for a general class of bi-univalent functions, Int J Anal 2014; 867871.
[6] Brannan DA, Clunie J. Aspects of contemporary complex analysis, in: proceedings of the NATO Advanced study Institute Held at University of Durham, Academic Press, New York, 1979.
[7] Brannan DA, Taha TS. On some classes of bi-univalent function, Study Univ Babes Bolyai Math 1986; 31(2): 70-77.
[8] Bulut S. Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C R Acad Sci Paris Ser I 2014; 352: 479-484.
[9] Çağlar M, Halit O, Nihat Y. Coefficient bounds for new subclasses of bi-univalent functions, Filomat 2013; 27(7): 1165-1171.
[10] Duren PL. Univalent Functions, Grundlehren Math Wiss, vol. 259, Springer, New York, 1983.
[11] Faber G. Uber polynomische Entwickelungen, Math Ann 1903; 57(3): 1569-1573.
[12] Fan LL, Wang ZG, Khan S, Hussain S, Naeem M, Mahmood T. Coefficient Bounds for Certain Subclasses of q-Starlike Functions, Mathematics 2019; 7(10): 969.
[13] Frasin BA, Aouf MK. New subclasses of bi-univalent functions, Appl Math Lett 2011; 24: 1569-1573.
[14] S. Hamidi G, Halim SA, Jahangiri JM. Faber polynomials coefficient estimates for meromorphic biStarlike functions, Int J Math Math Sci 2013; 2013.
[15] Hamidi SG, Jahangiri JM. Coefficient estimates for certain classes of bi-univalent functions, Int J Math Sci 2013; 2013.
[16] Hamidi SG, Jahangiri JM. Faber polynomials coefficient estimates for analytic bi-close-to-convex functions, C R Acad Sci paris Ser I 2014; 352(1): 17-20.
[17] Hamidi SG, Jahangiri Jay. Faber polynomial coefficients of bi-subordinate functions, C R Acad Sci Paris Ser I 2016; 354: 365-570.
[18] Khan Q, Abdullah L, Mahmood T, Naeem M, Rashid S. MADM Based on Generalized Interval Neutrosophic Schweizer-Sklar Prioritized Aggregation Operators, Symmetry 2019; 11(10): 1187.
[19] Jahangiri JM, Hamidi SG, Halim SA. Coefficients of bi-univalent functions with positive real part derivatives, Bull Malays Math Soc 2013; (2)37(3): 633-640.
[20] Jahangiri JM, Hamidi SG. Faber polynomial coefficient estimates for analytic bi-Bazilevic functions, Matematicki Vesnik 2015; 67(2): 123-129.
[21] Keerthi BS, Raja B. Coefficient inequality for certain new subclasses analytic bi-univalent functions, Theory Math Appl 2013; 3(1): 1-10.
[22] Lewin M. On a coefficient problem for bi-univalent functions, Proc Amer Math Soc 1967; 18: 63-68.
[23] Li XF, Wing AP. Two new subclasses of bi-univalent functions, In Math Forum 2012; 7: 1495-1504.
[24] Magesh N, Yamini J. Coefficient bounds for certain subclass of bi-univalent functions, In Math Forum 2013; 8(27): 1337-1344.
[25] Naeem M, Hussain S, Sakar FM, Mahmood T, Rasheed A. Subclasses of uniformly convex and starlike functions associated with Bessel functions, Turkish Journal of Mathematics 2019; 43(5): 2433-2443.
[26] Naeem M, Hussain S, Mahmood T, Khan S, Darus M. A new subclass of analytic functions defined by using Salagean q-differential operator, Mathematics 2019; 7(5): 458.
[27] Netanyahu E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch Ration March Anal 1967; 32: 100-112.
[28] Porwal S, Darus M. On a new subclass of bi-univalent functions, J Egypt Math Soc 2013; 21(3): 190-193.
[29] Prema S, Keerthi BS, Coefficient bounds for certain subclasses of analytic functions, J Math Anal 2013; $4(1): 22-27$.
[30] Schiffer M. A method of variation within the family of simple functions, Proc Lond Math Soc 1938; 44(2): 432-449.
[31] Schiffer AC, Spencer DC. The coefficient of Schlicht functions, Duke Math J 1943; 10: 611-635.
[32] Srivastava HM, Mishra AK, Gochayat P. Certain Subclasses of analytic and bi-univalent functions, Apl Math Lett 2010; 23(10): 1188-1192.
[33] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions, Appl Math Lett 2010; 23: 1188-1192.
[34] Srivastava HM, Bulut S, Çağlar M, Yağmur N. Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 2013; 27(5): 831-842.
${ }^{1}$ Department of Mathematics and Statistic, International Islamic University Islamabad, Pakistan

Email address: naeem.phdma75@iiu.edu.pk
${ }^{2}$ Department of Mathematics Riphah International University Islamabad, Pakistan
Email address: shahidmath761@gmail.com
${ }^{3}$ Department of Business Administration, Dicle University, Diyarbakir, Turkey
Email address: mugesakar@hotmail.com

[^0]: * Dedicated to Professor Sadık Keleş on the occasion of his retirement from Inonu University.

