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CONTRIBUTION TO NULL KILLING MAGNETIC TRAJECTORIES

GÖZDE ÖZKAN TÜKEL ID ∗ AND TUNAHAN TURHAN ID

Abstract. We analyze null magnetic trajectories of a magnetic field on a timelike surface

in Minkowski 3−space E3
1. We show that the Lorentz force can be written into the Darboux

frame field of a null trajectory on the surface. We give the necessary and sufficient condition

for writing a null curve as the magnetic trajectory of the magnetic field. After creating a

variation, we derive the Killing magnetic flow equations with regard to the geodesic curva-

ture, geodesic torsion and normal curvature of the curve γ on the timelike surface. Finally

we examine the geodesics of some timelike surfaces in E3
1.

1. Introduction

Any magnetic vector field is known divergence zero vector field in three- dimensional

spaces. A magnetic trajectory of a magnetic flow created by magnetic vector field is a curve

called as magnetic. Although the problem of investigating magnetic trajectories appears to

be physical problem, recent studies show that the characterization of magnetic flow in a mag-

netic field have brought variational perspective in more geometrical manner. In particular,

magnetic curves have been developed by techniques of differential geometry and methods of

Received: 2019-12-25 Revised: 2020-06-24 Accepted:2020-07-15

2010 Mathematics Subject Classification. 53A35, 53B30.

Key words: Null magnetic curve, Lorentz force equation, Timelike surface, Geodesic curvature

∗ Corresponding author

129

HTTPS://ORCID.ORG/0000-0003-1800-5718
HTTPS://ORCID.ORG/0000-0002-9632-2180


130 G. ÖZKAN TÜKEL AND T. TURHAN

calculus of variation from basic spaces to manifolds because the Lorentz force equation is

a minimizer of the functional L : Γ→ R defined by

L (γ) :
1

2

∫
γ

〈
γ′, γ

〉′
dt+ ω

(
γ′
)
dt,

where Γ is a family of smooth curves that connect two fixed point of U, γ is a curve choosing

from Γ and ω is a potential 1−form. The Euler-Lagrange equation of the functional L is

derived as

φ
(
γ′
)

= ∇γ′γ′, (1.1)

where φ is the skew-symmetric operator. The critical point of the functional L corresponds to

a solution of the Lorentz force equation. So the solutions of the equations could be interpreted

with a more geometric point of view [ 1, 3, 4, 5, 7, 10, 13 ].

In this work we consider null Killing magnetic trajectories on a timelike surface S in

Minkowski 3−space E3
1. Also, we get equation of the Lorentz force by using the Darboux

frame field of a null magnetic curve on the such surface and give equations of the Killing

magnetic flow by means of the structures of a magnetic vector field in E3
1. Then we apply

this formulation to give results about magnetic curves on the pseudo-sphere and the pseudo-

cylinder surfaces, so we show that geodesics of these surfaces are null magnetic curves.

2. Preliminaries

We consider that E3
1

denotes Minkowski 3−space with the inner product

〈u,w〉 = −u1w1 + u2w2 + u3w3

which is a non-degenerate, symmetric and bilinear form and the vector product

u× w = (−u2w3 + u3w2, u3w1 − u1w3, u1w2 − u2w2) ,

where u = (u1 , u2 , u3), w = (w1 , w2 , w3) ∈ E3
1
. A vector u in E3

1
is called a spacelike vector

if 〈u, u〉 > 0 or u = 0, a timelike vector if 〈u, u〉 < 0, or null (lightlike) vector if 〈u, u〉 = 0

and u 6= 0. A regular curve in E3
1

is called spacelike, timelike or null, if its velocity vector is

spacelike, timelike or null, respectively. A non-degenerate surface is named in terms of the

induced metric. If the induced metric is indefinite, a non-degenerate surface is called timelike

[9 12 ].

We can assign a frame to any point of a null curve since we investigate the geometry of

the curve. This frame is known as Cartan frame field along a null curve in E3
1. Let γ = γ(s)
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be a null curve in E3
1
. Let T denote a null vector field along γ. So, there exists a null vector

field B along γ satisfying 〈T,B〉 = 1. If we write N = B × T , then we can obtain a Cartan

frame field F = {T,N,B} along γ. A Cartan framed null curve (γ,F) is given by

T (s) = γ′(s), N(s) = γ′′(s), B(s) = −γ′′′(s)− 1

2
< γ′′′(s), γ′′′(s) > γ′(s)

at a point γ (s) , where

〈T, T 〉 = 〈B,B〉 = 〈T,N〉 = 〈N,B〉 = 0,

〈N,N〉 = 〈T,B〉 = 1.

We have the following derivative equations of the Cartan frame (generally knows as Frenet

equations) 
T ′

N ′

B′

 =


0 1 0

−κ 0 −1

0 κ 0




T

N

B

 ,

where

κ(s) =
1

2
< γ′′′(s), γ′′′(s) >,

[2, 8, 12].

In order to study the geometry of a null curve on a timelike surface, we can construct a

suitable frame, which is known the Darboux frame field, to any point of the curve. Let (γ,F)

be a null curve with frame F = {T,N,B} and S an oriented timelike surface in Minkowski

3−space. The Darboux frame at γ(s) of γ is the orthonormal basis {T,Q, n} of E3
1
, where Q

is the unique vector obtained by

Q =
1

〈V, T 〉
{V − 〈V, V 〉

2 〈V, T 〉
T}, V ∈ Tγ(s)M, 〈V, T 〉 6= 0,

and n is the spacelike unit normal of S which is defined by n = T ×Q. So, we have

〈T, T 〉 = 〈Q,Q〉 = 〈Q,n〉 = 〈T, n〉 = 0,

〈n, n〉 = 〈T,Q〉 = 1.

The first order variation of {T,Q, n} is expressed as follow
T ′

Q′

n′

 =


κg 0 κn

0 −κg τg

−τg −κn 0



T

Q

n

 , (2.2)
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where the functions κg, κn and τg are called the geodesic curvature, the normal curvature

and the geodesic torsion of the curve γ, respectively. From the comparison of Cartan and

Darboux frames, we have

κn = ±1 (2.3)

[6, 12].

3. Magnetic Vector Fields

The Lorentz force φ corresponding the magnetic field V is given by

φ
(
γ′
)

= V × γ′.

A curve γ in E3
1

is called magnetic curve of a magnetic field V if its tangent vector field

satisfies

∇γ′γ′ = φ
(
γ′
)

= V × γ′. (3.4)

The Lorentz force φ of a magnetic field F in E3
1

is defined to be skew symmetric operator

given by

< φ (X) , Y >= F (X,Y )

for vector fields X and Y . The mixed product of the vector fields X, Y and Z is given by

< X × Y,Z >= Ω (X,Y, Z) ,

where Ω a volume on E3
1
. So, the Lorentz force of the corresponding Killing magnetic force

is given as φ (X) = V ×X, where V is a Killing vector field [13].

Then we can give the following proposition for the Lorentz force.

Proposition 3.1. Let γ be a null magnetic curve on a timelike surface S ⊂ E3
1
and {T,Q, n}

is the Darboux frame field along γ. Then the Lorentz force in the Darboux frame {T,Q, n} is

written as follows

φ (T ) = κgT + κnn, (3.5)

φ (Q) = −κgQ+ ωn (3.6)

and

φ (n) = −ωT − κnQ, (3.7)

where the function ω (s) =< φ (Q (s)) , n (s) > associated with each magnetic curve is qua-

sislope measured with respect to the magnetic vector field V .
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Proof. The unit tangent vector to γ at a point γ(s) of γ is T (s) = γ′ (s) . Then from

(1.1), we have

φ (T ) = ∇TT = V × T.

By using the Darboux formulas (2.2), we get

φ (T ) = κgT + κnn

and

< φ (T ) , Q >= κg and < φ (T ) , n >= κn.

Similarly, we can write the linear expansion of φ (Q) , φ (n) ∈ S as follows

φ (Q) =< φ (Q) , Q > T+ < φ (Q) , T > Q+ < φ (Q) , n > n

and

φ (n) =< φ (n) , Q > T+ < φ (n) , T > Q+ < φ (n) , n > n,

respectively. Taking into consideration Eqs. (3.4) and (3.5), we get

< φ (Q) , T >=< V ×Q,T >= − < V × T,Q >= − < φ (T ) , Q >= −κg

and

< φ (n) , T >=< V × n, T >= − < V × T, n >= − < φ (T ) , n >= −κn.

Since φ is a skew-symmetric operator, we get < φ (Q) , Q >=< φ (n) , n >= 0.

Then by using Proposition 3.1 we can write the magnetic vector field according to Darboux

frame on a timelike surface S in the following.

Proposition 3.2. A null curve γ : I ⊂ R → S is a magnetic trajectory of a magnetic field

V if and only if V can be written along γ as

V = ωT − κnQ+ κgn. (3.8)

Proof. Suppose that γ is a null magnetic curve along a magnetic field V with the Dar-

boux frame field {T,Q, n}. Then, V can written as V =< V,Q > T+ < V, T > Q+ < V, n > n.

To find coefficient of V , we use the Lorentz force in Darboux frame equations (3.5−3.7):

ω = < φ (Q) , n >=< V,Q× n >=< V,Q >,

κn = < φ (T ) , n >= − < V, n× T >= − < V, T >
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and

κg =< φ (T ) , Q >=< V, T ×Q >=< V, n > .

4. Killing Magnetic Flow Equation for Null Magnetic Trajectories

Let γ : I → S be pseudo-parametrized null curve on a timelike surface in E3
1

and V a

magnetic vector field along that curve. One can take a variation of γ in the direction of V,

say a map

Γ : [0, 1]× (−ε, ε) → S

(s, t) → Γ(s, t)

which satisfies

Γ (s, 0) = γ (s) ,

(
∂Γ(s, t)

∂t

)
t=0

= V (s) and

(
∂Γ(s, t)

∂s

)
t=0

= γ′ (s) .

We recall that a spacelike or timelike curve in E3
1 can be reparametrize by an arclength.

However, there would be not sense reparametrize by the arclength for a null curve γ. However,

it has pseudo arc-length parametrized α(s) = γ(φ(s)), such that ‖α′′(s)‖ = 1, where φ is the

differential function in suitable interval. Thus, we have the following equations:

T (s, t) =
(
∂Γ(s,t)
∂s

)
t=0

= γ′ (s) ,

β(s, t) =
(
<
(
∂2Γ(s,t)
∂s2

)
t=0

,
(
∂2Γ(s,t)
∂s2

)
t=0

>
)1/4

,

( see [9, 12 ]) .

By using above variational formulas, we have the following equalities (by similar method

that of [3, 10] ).

Lemma 4.1. We consider that γ is a null curve on a timelike surface in E3
1

and a magnetic

vector field V is a variational vector field along the variation Γ. So we can give the following

expressions;

V (β) =
1

2β3
< ∇T∇TV,∇TT >, (4.9)

V (κ) =
1

2
V (< ∇T∇TT,∇T∇TT >) =< ∇3

TV,∇2
TT > . (4.10)

Proposition 4.1. (see [11]) . Let V (s) be the restriction to γ (s) of a Killing vector field,

then

V (β) = V (κ) = 0. (4.11)

Thus, Killing magnetic flow equations can be given the following theorem.
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Theorem 4.1. Let γ be a null curve on S in E3
1
. Suppose that V = ωT − κnQ + κgn is

a Killing vector field along γ. Then the magnetic trajectories are curves on S satisfying

following differential equations

bκg + cκn = 0 (4.12)

and

−a′ + 2cτg + b′κ′g − bκgκ′g − cκnκ′g + κ2
gb

′ − bκ3
g

− cκnκ2
g − κnτgb′ + 2bκgκnτg + c′κgκn = 0,

(4.13)

where

a = ω′′ + 2ω′κg + ωκ′g − 2κ′gτg − κgτ ′g + ωκ2
g − κ2

gτg

−ωκnτg + κnτ
2
g ,

b = −ω + τg − κ′gκn,

c = 2ω′κn + ωκgκn − κgκnτg − κnτ ′g + κ′′g .

Proof. Assume that V is a Killing vector field along γ on S. Along any magnetic

trajectory γ, we have V = ωT − κnQ+ κgn. Using (2.3), we get

∇TV =
(
ω′ + ωκg − κgτg

)
T +

(
ωκn − κnτg + κ′g

)
n. (4.14)

We calculate derivative of (4.14) as follows

∇2
TV =

(
ω′′ + 2ω′κg + ωκ′g − 2κ′gτg − κgτ ′g + ωκ2

g

−κ2
gτg − ωκnτg + κnτ

2
g

)
T +

(
−ω + τg − κ′gκn

)
Q(

2ω′κn + ωκgκn − κgκnτg − κnτ ′g + κ′′g
)
n

= aT + bQ+ cn.

(4.15)

Substituting (4.15) into (4.9), we derive

V (β) = bκg + cκn = 0.

For variation of κ, taking derivative of (4.15), we have,

∇3
TV = (a′ + aκg − cτg)T + (b′ − bκg − cκn)Q

+ (aκn + bτg + c′)n.
(4.16)

Substituting (4.16), (2.2) and (2.3) into (4.10), we obtain

V (κ) = −a′ + 2cτg + b′κ′g − bκgκ′g − cκnκ′g + κ2
gb

′ − bκ3
g

− cκnκ2
g − κnτgb′ + 2bκgκnτg + c′κgκn = 0.

Definition 4.1. Any null curve on a timelike surface S is called the null magnetic trajectory

of a magnetic field V if it satisfies the differential equation system (4.12) and (4.13).
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5. Applications

Magnetic trajectories on a timelike pseudo-sphere: We consider the timelike pseudo-

sphere with radius r,

S2
1 (r) =

{
(x1, x2, x3) ∈ E3

1
: x2

1 + x2
2 + x2

3 = r2
}
.

The geodesic torsion τg vanishes for all curves on S2
1 (r) and the normal curvature κ2

n = 1

[12]. Then any null geodesic curve γ on S2
1 (r) is a magnetic trajectory of a magnetic field V

if and only if V can be written along γ as

V = ωT ±Q,

where ω is a constant.

Magnetic trajectories on a pseudo-cylinder: The pseudo-cylinder

C2
1 (1) =

{
(x, y, z) ∈ E3

1

∣∣− x2 + y2 = 1, z ∈ R
}

is a timelike surface and parametrized by

X (u, v) = (sinh s, cosh s, s) ,

where r is radius of the circle. Then for a null geodesic

γ (s) = (sinh s, cosh s, s)

on C2
1 (1) , we have

κg = 0, κn = 1 and τg = −1

2
,

(see [6, 12]). So, the null geodesic γ on a pseudo-cylinder are magnetic trajectories of the

magnetic field

V = ωT −Q

where ω is a constant (see Fig (5.1)).
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Figure 1. A null magnetic trajectory on the pseudo-cylinder
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[10] Özdemir, Z., Gök, İ., Yaylı, Y., Ekmekci, FN. Notes on magnetic curves in 3D semi-Riemannian manifolds,

Turkish Journal of Mathematics 2015; 39(3): 412 − 426.
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