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Abstract. In the current article we characterize φ-Ricci symmetric (φ-RS) and weakly

φ-Ricci symmetric (weakly φ-RS) LP-Kenmotsu m-manifolds ((LP-K)m). We also examine

the characteristic of an (LP-K)3 of scalar curvature 6. Moreover, we study (LP-K)m admit-

ting ω-parallel Ricci tensor. At last, we construct an example of φ-RS (LP-K)3 to verify

some of our results.
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1. Introduction

Approximately five decades ago, the notion of Kenmotsu manifold as a class of almost

contact metric manifolds was introduced by Kenmotsu [19]. Kenmotsu has proved that a

locally Kenmostu manifold is a warped product I×f ℵ of an interval I and a Kähler manifold

ℵ with warping function f(t) = ρet, where ρ (̸= 0) is a constant. In 1976, the idea of almost

para-contact Riemannian manifolds was proposed by Sato [20]. Then, as a class of almost

contact Riemannian manifolds, para-Sasakian and Special para-Sasakian manifolds have been
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defined and studied in [1] by Adati and Matsumoto. In 1989, Matsumoto [14] defined and

studied Lorentzian para-Sasakian manifolds. Later, Mihai and Rosca also contribured some

remarks on this manifold [16]. The authors Sinha and Prasad [22] studied para-Kenmotsu

manifolds. In 2018, the first and second authors proposed and investigated a new class

of Lorentzian almost para-contact metric manifolds namely LP-Kenmotsu manifolds [11].

Recently, numerous geometers studied LP-Kenmotsu manifolds in many ways to different

point of views such as [2, 17, 12, 9, 15] and many others. Several mathematicians have

studied the notion of weakly local symmetric Riemannian manifolds with different approaches

in various fields. In 1977, Takahashi [23] introduced the concept of locally φ-symmetric

Sasakian manifolds. The φ-symmetric notion in contact geometry was initiated and studied

by Vanhecke, Buecken and Boeckx [5]. About two decades ago, the authors De, Shaikh and

Biswas have studied φ-recurrent Sasakian manifolds [6] by generalizing the idea of locally φ-

symmetric manifolds. In [8], the author studied φ-symmetric Kenmotsu manifolds in which

he had given a number of examples. In 2008, De and Sarkar [7] studied φ-RS Sasakian

manifolds. Later in 2009, φ-RS Kenmotsu manifold was studied by Shukla and Shukla [21].

This paper is structured in the following manner: Section 2 contains preliminaries, where

some basic results are mentioned. In section 3, we study φ-RS (LP-K)m and prove that an

(LP-K)m is Einstein manifold, if it is φ-symmetric. In section 4, we study of φ-RS (LP-K)3,

here we proved that an (LP-K)3 is locally φ-RS, if and only if r
¯
is constant. Section 5 is

devoted to the study of weakly φ-RS (LP-K)m and it is proven that a weakly φ-RS (LP-K)m

is an ω-Einstein manifold. Section 6 deals with the study of (LP-K)m admitting ω-parallel

Ricci tensor. At last an example of (LP-K)3 is modeled to inquire some of our findings.

2. Preliminaries

Let Mm (φ, ζ, ω, g) be a Lorentzian metric manifold, where φ: (1, 1) tensor field, ζ: a

characteristic vector field, ω: a 1-form and g: the Lorentz metric. We are well acquainted

with the following results [3, 4, 18]:


φζ = 0,

ω(φU
¯
) = 0,

ω(ζ) + 1 = 0,

(2.1)
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φ2U

¯
−U

¯
− ω(U

¯
)ζ = 0,

g(U
¯
, ζ)− ω(U

¯
) = 0,

(2.2)

g(φU
¯
, φV

¯
)− g(U

¯
,V
¯
) = ω(U

¯
)ω(V

¯
), (2.3)

(∇̄U
¯
φ)V

¯
= −g(φU

¯
,V
¯
)ζ − ω(V

¯
)φU

¯
, (2.4)

∇̄U
¯
ζ = −U

¯
− ω(U

¯
)ζ, (2.5)

for all vector fields U
¯
,V
¯
on Mm and ∇̄ represents the Levi-Civita connection of g, then Mm

(φ, ζ, ω, g) is said to be an (LP-K)m [11, 10].

In (LP-K)m, the following results hold:

(∇̄U
¯
ω)V

¯
= −ω(U

¯
)ω(V

¯
)− g(U

¯
,V
¯
), (2.6)

ω(R
¯
(U
¯
,V
¯
)Z
¯
) = g(V

¯
,Z
¯
)ω(U

¯
)− g(U

¯
,Z
¯
)ω(V

¯
), (2.7)

R
¯
(U
¯
,V
¯
)ζ = ω(V

¯
)U
¯
− ω(U

¯
)V
¯
, (2.8)

R
¯
(ζ,U

¯
)V
¯
= g(U

¯
,V
¯
)ζ − ω(V

¯
)U
¯
, (2.9)

S(U
¯
, ζ) = (m− 1)ω(U

¯
), Q̧ζ = (m− 1)ζ, (2.10)

(∇̄Z
¯
R
¯
)(U
¯
,V
¯
)ζ = g(U

¯
,Z
¯
)V
¯
g(V

¯
,Z
¯
)U
¯
+ R

¯
(U
¯
,V
¯
)Z
¯
, (2.11)

S(φU
¯
, φV

¯
) = S(U

¯
,V
¯
) + (m− 1)ω(U

¯
)ω(V

¯
) (2.12)

for all vector fields U
¯
,V
¯
,Z
¯
on (LP-K)m, where R

¯
is the Riemannian curvature tensor, S is

the Ricci tensor and Q̧ indicates the Ricci operator such that S(U
¯
,V
¯
) = g(Q̧U

¯
,V
¯
).

Remark 2.1. [13] If an (LP-K)m possesses the constant scalar curvature, then r = m(m−1).

3. φ-RS (LP-K)m

We start this section with the following definitions:

Definition 3.1. An (LP-K)m is called

(i) φ-RS if

φ2((∇̄U
¯
Q̧)(V

¯
)) = 0, (3.13)

(ii) φ-symmetric if

φ2((∇̄K
¯
R
¯
)(U
¯
,V
¯
)Z
¯
) = 0 (3.14)

for any vector fields U
¯
, V
¯
, Z
¯
, K
¯

on (LP-K)m. In case, U
¯
,V
¯

are orthogonal to ζ, then φ-RS

(LP-K)m is named locally φ-RS.
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Definition 3.2. An (LP-K)m is called Einstein manifold, if its S is of the form

S(U
¯
,V
¯
) = λg(U

¯
,V
¯
),

where λ is a constant.

Theorem 3.1. An (LP-K)m is φ-RS, iff it is Einstein manifold.

Proof. Let an (LP-K)m be φ-RS. Then we have

φ2((∇̄U
¯
Q̧)(V

¯
)) = 0,

which by using (2.2) becomes

(∇̄U
¯
Q̧)V

¯
+ ω((∇̄U

¯
Q̧)V

¯
)ζ = 0. (3.15)

The inner product of (3.15) with Z
¯
lead to

g((∇̄U
¯
Q̧)V

¯
,Z
¯
) + ω((∇̄U

¯
Q̧)V

¯
)ω(Z

¯
) = 0,

which after simplification takes the form

g(∇̄U
¯
(Q̧V

¯
),Z
¯
)− S(∇̄U

¯
V
¯
,Z
¯
) + ω((∇̄U

¯
Q̧)V

¯
)ω(Z

¯
) = 0. (3.16)

By taking V
¯
= ζ in (3.16), then using (2.5) and (2.10), we have

(m− 1)g(∇̄U
¯
ζ,Z

¯
) + S(U

¯
,Z
¯
) + ω(U

¯
)S(ζ,Z

¯
) + ω((∇̄U

¯
Q̧)ζ)ω(Z

¯
) = 0. (3.17)

Now by virtue of (2.5) and (2.10), (3.17) turns to

S(U
¯
,Z
¯
)− (m− 1)g(U

¯
,Z
¯
) + ω((∇̄U

¯
Q̧)ζ)ω(Z

¯
) = 0. (3.18)

Substituting U
¯
→ φU

¯
as well as Z

¯
→ φZ

¯
in (3.18), we find

S(φU
¯
, φZ

¯
) = (m− 1)g(φU

¯
, φZ

¯
). (3.19)

Keeping in mind (2.3) and (2.12), (3.19) leads to

S(U
¯
,Z
¯
) = (m− 1)g(U

¯
,Z
¯
). (3.20)

Conversely, we assume that (LP-K)m is an Einstein manifold. Therefore, by the Definition

3.2, we have Q̧U
¯
= λU

¯
, from which we conclude

φ2((∇̄U
¯
Q̧)(V

¯
)) = 0.

This completes the proof. □

Corollary 3.1. An (LP-K)m is Einstein manifold, if it is φ-symmetric.
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Proof. Let an (LP-K)m be φ-symmetric manifold. Then we have

φ2((∇̄K
¯
R
¯
)(U
¯
,V
¯
)Z
¯
) = 0 (3.21)

for any vector fields U
¯
, V
¯
, Z
¯
, K
¯
on (LP-K)m.

By using (2.2) in (3.21), it yields

(∇̄K
¯
R
¯
)(U
¯
,V
¯
)Z
¯
− g((∇̄K

¯
R
¯
)(U
¯
,V
¯
)ζ,Z

¯
)ζ = 0. (3.22)

Now in view of (2.11), (3.22) takes the form

(∇̄K
¯
R
¯
)(U
¯
,V
¯
)Z
¯
− g(U

¯
,K
¯
)g(V

¯
,Z
¯
)ζ (3.23)

+g(V
¯
,K
¯
)g(U

¯
,Z
¯
)ζ − g(R

¯
(U
¯
,V
¯
)K
¯
,Z
¯
)ζ = 0.

On contracting (3.23), we obtain

(∇̄K
¯
S)(V

¯
,Z
¯
)− g(V

¯
,Z
¯
)ω(K

¯
) + g(V

¯
,K
¯
)ω(Z

¯
) + ω(R

¯
(K
¯
,Z
¯
)V
¯
) = 0. (3.24)

By virtue of (2.7), equation (3.24) reduces to

(∇̄K
¯
S)(V

¯
,Z
¯
) = 0. (3.25)

Consequenty, we obtain

φ2((∇̄K
¯
S)(V

¯
,Z
¯
)) = 0. (3.26)

Thus φ-symmetric (LP-K)m is φ-RS. And hence Corollary 3.1 follows from Theorem 3.1. □

4. φ-RS (LP-K)3

Theorem 4.1. In case, the scalar curvature r
¯
of an (LP-K)3 is 6, then (LP-K)3 is φ-RS.

Proof. In an (LP-K)3, the curvature tensor R
¯
is given by [11, 24]

R
¯
(U
¯
,V
¯
)Z
¯

= (
r
¯
2
− 2)[g(V

¯
,Z
¯
)U
¯
− g(U

¯
,Z
¯
)V
¯
] (4.27)

+(
r
¯
2
− 3)[g(V

¯
,Z
¯
)ω(U

¯
)ζ − g(U

¯
,Z
¯
)ω(V

¯
)ζ]

+(
r
¯
2
− 3)[ω(V

¯
)ω(Z

¯
)U
¯
− ω(U

¯
)ω(Z

¯
)V
¯
]

for all vector fields U
¯
,V
¯
,Z
¯
on (LP-K)3.

The inner product of (4.27) with K
¯
leads to

g(R
¯
(U
¯
,V
¯
)Z
¯
,K
¯
) = (

r
¯
2
− 2)[g(V

¯
,Z
¯
)g(U

¯
,K
¯
)− g(U

¯
,Z
¯
)g(V

¯
,K
¯
)] (4.28)

+(
r
¯
2
− 3)[g(V

¯
,Z
¯
)ω(U

¯
)ω(K

¯
)− g(U

¯
,Z
¯
)ω(V

¯
)ω(K

¯
)]

+(
r
¯
2
− 3)[ω(V

¯
)ω(Z

¯
)g(U

¯
,K
¯
)− ω(U

¯
)ω(Z

¯
)g(V

¯
,K
¯
)].
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Let {l
¯1
, l
¯2
, l
¯3
} be the orthonormal basis of the tangent space at every point of (LP-K)3. Now

setting U
¯

= K
¯

= l
¯i

as well as proceeding for sum from i = 1 to 3 in equation (4.28), it

provides

S(V
¯
,Z
¯
) = (

r
¯
2
− 1)g(V

¯
,Z
¯
) + (

r
¯
2
− 3)ω(V

¯
)ω(Z

¯
). (4.29)

From (4.29) it follows that

Q̧V
¯
= (

r
¯
2
− 1)V

¯
+ (

r
¯
2
− 3)ω(V

¯
)ζ. (4.30)

Differentiating (4.30) covariantly along K
¯
, we have

(∇̄K
¯
Q̧)V

¯
+ Q̧(∇̄K

¯
V
¯
) = (

r
¯
2
− 1)∇̄K

¯
V
¯
+

dr
¯
(K
¯
)

2
V
¯
+

dr
¯
(K
¯
)

2
ω(V

¯
)ζ + (

r
¯
2
− 3)(∇̄K

¯
ω)(V

¯
)ζ

+(
r
¯
2
− 3)ω(∇̄K

¯
V
¯
)ζ + (

r
¯
2
− 3)ω(V

¯
)∇̄K

¯
ζ. (4.31)

By virtue of (4.30), (4.31) takes the form

(∇̄K
¯
Q̧)V

¯
=

dr
¯
(K
¯
)

2
V
¯
+

dr
¯
(K
¯
)

2
ω(V

¯
)ζ + (

r
¯
2
− 3)(∇̄K

¯
ω)(V

¯
)ζ (4.32)

+(
r
¯
2
− 3)ω(V

¯
)∇̄K

¯
ζ.

By using (2.5) and (2.6) in (4.32), we have

(∇̄K
¯
Q̧)V

¯
=

dr
¯
(K
¯
)

2
V
¯
+

dr
¯
(K
¯
)

2
ω(V

¯
)ζ − (

r
¯
2
− 3)g(V

¯
,K
¯
)ζ (4.33)

− (
r
¯
2
− 3)ω(V

¯
)ω(K

¯
)ζ − (

r
¯
2
− 3)[ω(V

¯
)K
¯
+ ω(V

¯
)ω(K

¯
)ζ].

By operating φ2 on both the sides of (4.33), then using (2.1) and (2.2), we arrive at

φ2((∇̄K
¯
Q̧)V

¯
) =

dr
¯
(K
¯
)

2
[V
¯
+ ω(V

¯
)ζ]− (

r
¯
2
− 3)[ω(V

¯
)(K
¯
+ ω(K

¯
)ζ)]. (4.34)

Since r
¯
= 6, therefore, from (4.34) it follows that

φ2((∇̄K
¯
Q̧)V

¯
) = 0. (4.35)

Hence, this completes the proof. □

Corollary 4.1. An (LP-K)3 is locally φ-RS, if and only if r
¯
is constant.

Proof. By taking V
¯
as orthogonal to ζ, then (4.34) provides

φ2((∇̄K
¯
Q̧)V

¯
) =

dr
¯
(K
¯
)

2
V
¯
. (4.36)

The result follows from (4.36) and Theorem 4.1. □



INT. J. MAPS MATH. (2024) 7(1):33–44 / A STUDY OF φ-RICCI SYMMETRIC LP-KENMOTSU MAN. 39

5. Weakly φ-RS (LP-K)m

Definition 5.1. An (LP-K)m is called weakly φ-RS if its Ricci operator Q̧ satisfies

φ2((∇̄U
¯
Q̧)(V

¯
)) = A(U

¯
)φ2(Q̧(V

¯
)) +B(V

¯
)φ2(Q̧(U

¯
)) + S(V

¯
,U
¯
)φ2(ρ), (5.37)

where U
¯
,V
¯

∈ (LP-K)m. A, B, D are 1-forms and ρ is a vector field associated with 1-form

D, i.e., g(ρ,Z
¯
) = D(Z

¯
).

If the 1-forms A = B = D = 0, then the relation (5.37) reduces to the concept of φ-RS

given by

φ2((∇U
¯
Q̧)(V

¯
)) = 0. (5.38)

This concept was initiated by Shukla and Shukla [21].

Now, we consider an (LP-K)m, which is weakly φ Ricci symmetric. Consequently, the

relation (5.37) together with (2.2) gives

(∇̄U
¯
Q̧)(V

¯
) + ω((∇̄U

¯
Q̧)(V

¯
))ζ = A(U

¯
)[Q̧V

¯
+ ω(Q̧V

¯
)ζ] +B(V

¯
)[Q̧U

¯
+ ω(Q̧U

¯
)ζ]

+S(V
¯
,U
¯
)[ρ+ ω(ρ)ζ],

which can be written as

∇̄U
¯
(Q̧V

¯
)− Q̧(∇̄U

¯
V
¯
) + ω(∇̄U

¯
(Q̧V

¯
)− Q̧(∇U

¯
V
¯
))ζ = A(U

¯
)Q̧V

¯

+A(U
¯
)ω(Q̧V

¯
)ζ +B(V

¯
)[Q̧U

¯
+ ω(Q̧U

¯
)ζ] + S(V

¯
,U
¯
)ρ+ S(V

¯
,U
¯
)ω(ρ)ζ. (5.39)

Taking the inner product of (5.39) with Z
¯
and using (2.2), we have

g(∇̄U
¯
(Q̧V

¯
),Z
¯
)− g(Q̧(∇U

¯
V
¯
),Z
¯
) + ω(∇̄U

¯
(Q̧V

¯
)− Q̧(∇U

¯
V
¯
))ω(Z

¯
) (5.40)

= A(U
¯
)g(Q̧V

¯
,Z
¯
) +A(U

¯
)ω(Q̧V

¯
)ω(Z

¯
) +B(V

¯
)[g(Q̧U

¯
,Z
¯
)

+ω(Q̧U
¯
)ω(Z

¯
)] + S(V

¯
,U
¯
)D(Z

¯
) + S(V

¯
,U
¯
)ω(ρ)ω(Z

¯
),

where g(ρ,Z
¯
) = D(Z

¯
).

Setting V
¯
= ζ in (5.40), it yields

g(∇̄U
¯
(Q̧ζ),Z

¯
)− g(Q̧(∇̄U

¯
ζ),Z

¯
) + ω(∇̄U

¯
(Q̧ζ)− (Q̧∇̄U

¯
ζ))ω(Z

¯
) (5.41)

= A(U
¯
)g(Q̧ζ,Z

¯
) +A(U

¯
)ω(Q̧ζ)ω(Z

¯
) +B(ζ)[g(Q̧U

¯
,Z
¯
)

+ω(Q̧U
¯
)ω(Z

¯
)] + S(ζ,U

¯
)D(Z

¯
) + S(ζ,U

¯
)ω(ρ)ω(Z

¯
).
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By using (2.5) and (2.10) in (5.41), it gives

S(U
¯
,Z
¯
)[1−B(ζ)] = (m− 1)[g(U

¯
,Z
¯
) + ω(U

¯
)D(Z

¯
)] (5.42)

+(m− 1)[B(ζ) + ω(ρ)]ω(U
¯
)ω(Z

¯
).

Applying U
¯
−→ φU

¯
and Z

¯
−→ φZ

¯
in (5.42), then using relation (2.1), (2.3) and (2.12), we

lead to

[1−B(ζ)]S(U
¯
,Z
¯
) + (m− 1)[1−B(ζ)]ω(U

¯
)ω(Z

¯
) = (m− 1)[g(U

¯
,Z
¯
) + ω(U

¯
)ω(Z

¯
)],

which is of the form

S(U
¯
,Z
¯
) = µg(U

¯
,Z
¯
) + νω(U

¯
)ω(Z

¯
), (5.43)

where µ =
(m− 1)

1−B(ζ)
and ν =

(m− 1)B(ζ)

1−B(ζ)
, provided, 1 − B(ζ) ̸= 0. Thus, we state the

following theorem:

Theorem 5.1. A weakly φ-RS (LP-K)m is an ω-Einstein manifold.

6. (LP-K)m admitting ω-Parallel Ricci tensor

Definition 6.1. The Ricci tensor of an (LP-K)m is said to be ω-parallel if it satisfies

(∇̄U
¯
S)(φV

¯
, φZ
¯
) = 0, (6.44)

for all vector fields U
¯
,V
¯
,Z
¯

on (LP-K)m.

Let the Ricci tensor of an (LP-K)m be ω-parallel, therefore (6.44) holds. By the covariant

differentiation of S(φV
¯
, φZ

¯
) along U

¯
, we have

(∇̄U
¯
S)(φV

¯
, φZ

¯
) = ∇̄U

¯
(S(φV

¯
, φZ

¯
))− S((∇̄U

¯
φ)V

¯
, φZ

¯
)

− S(φ(∇̄U
¯
V
¯
), φZ

¯
)− S(φV

¯
, (∇̄U

¯
φ)Z

¯
)− S(φV

¯
, φ(∇̄U

¯
Z
¯
)),

which by virtue of (2.12) takes the form

(∇̄U
¯
S)(φV

¯
, φZ

¯
) = (∇̄U

¯
S)(V

¯
,Z
¯
) + S(∇̄U

¯
V
¯
,Z
¯
) + S(V

¯
, ∇̄U

¯
Z
¯
)

+ (n− 1)[(∇̄U
¯
ω)(V

¯
)ω(Z

¯
) + ω(∇̄U

¯
V
¯
)ω(Z

¯
)

+ ω(V
¯
)(∇̄U

¯
ω)(Z

¯
) + ω(V

¯
)ω(∇̄U

¯
Z
¯
)]− S((∇̄U

¯
φ)V

¯
, φZ

¯
)

− S(φ(∇̄U
¯
V
¯
), φZ

¯
)− S(φV

¯
, (∇̄U

¯
φ)Z

¯
)− S(φV

¯
, φ(∇̄U

¯
Z
¯
)).
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In view of (2.4), (2.6), (2.10) and (2.12) the foregoing equation turns to

(∇̄U
¯
S)(φV

¯
, φZ

¯
) = (∇̄U

¯
S)(V

¯
,Z
¯
)− (n− 1)g(U

¯
,V
¯
)ω(Z

¯
)

− (n− 1)g(U
¯
,Z
¯
)ω(V

¯
) + S(U

¯
,Z
¯
)ω(V

¯
) + S(U

¯
,V
¯
)ω(Z

¯
),

which by virtue of (6.44) gives

(∇̄U
¯
S)(V

¯
,Z
¯
) = (n− 1)[g(U

¯
,V
¯
)ω(Z

¯
) + g(U

¯
,Z
¯
)ω(V

¯
)] (6.45)

−[S(U
¯
,Z
¯
)ω(V

¯
) + S(U

¯
,V
¯
)ω(Z

¯
)].

Let {l
¯1
, l
¯2
, l
¯3
......., l

¯m
} be the orthonormal basis of the tangent space at every point of (LP-

K)m. Now setting V
¯

= Z
¯
= l

¯i
as well as proceeding for sum from i = 1 to m in equation

(6.45), it provides

m∑
i=1

ϵi(∇̄U
¯
S)(l

¯i
, l
¯i
) = (n− 1)

m∑
i=1

ϵi[g(U
¯
, l
¯i
)g(l

¯i
, ζ) + g(U

¯
, l
¯i
)g(l

¯i
, ζ)] (6.46)

−
m∑
i=1

ϵi[g(Q̧U
¯
, l
¯i
)g(l

¯i
, ζ) + g(Q̧U

¯
, l
¯i
)g(l

¯i
, ζ)],

where ϵi = g(e1, ei). From (6.46) it follows that

dr(U
¯
) = 0. (6.47)

Thus, we conclude that dr = 0, i.e., r is constant and it is given by r = m(m−1). Moreover,

since S(U
¯
,V
¯
) = g(Q̧U

¯
,V
¯
), then we obtain

∇U |Q̧|2 = 2

n∑
i=1

ϵig((∇̄U
¯
Q̧)ei, Q̧ei). (6.48)

By using (6.45) in above equation, we find

∇U
¯
|Q̧|2 = 2

n∑
i=1

ϵig((∇̄U
¯
Q̧)ei, Q̧ei) = 0. (6.49)

This implies that

|Q̧|2 = constant, (6.50)

where Q̧ is the Ricci operator. Hence, the relations (6.47) and (6.50) lead to the following

result:

Theorem 6.1. The scalar curvature of an (LP-K)m>3 with the ω-parallel Ricci tensor is

constant. Moreover, the norm of the Ricci operator is also constant.
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7. Illustration

We take a 3-dimensional smooth manifold M3 = {(u
¯
, v
¯
,w
¯
) ∈ R3 : w

¯
> 0)}, where (u

¯
, v
¯
,w
¯
)

denotes the basic coordinates on a 3-dimensional real space R3. Consider the vector fields

{l
¯1
, l
¯2
, l
¯3
}, which is linearly independent on M3 and defined as

l
¯1

= (sinhw
¯
+ coshw

¯
)
∂

∂u
¯

, l
¯2

= (sinhw
¯
+ coshw

¯
)
∂

∂v
¯

, l
¯3

=
∂

∂w
¯

= ζ.

We define the Lorentz metric g on M3 as:

gpq = g(l
¯p
, l
¯q
) =


−1 for p = q = 3,

0 for p ̸= q,

1 p = q = 1, 2.

Assume ω be a 1-form corresponding to the Lorentz metric g such that

ω(U
¯
) = g(U

¯
, l
¯3
)

for any U
¯
∈ X(M3), where X(M3), denotes the collection of all smooth vector fields on M3.

We define φ as follows

φ(l
¯1
) = l

¯2
, φ(l

¯2
) = l

¯1
, φ(l

¯3
) = 0.

Since φ and g have linear nature, so it can be easily proved the following results:

ω(l
¯3
) + 1 = 0, φ2(U

¯
)−U

¯
− ω(U

¯
)l
¯3

= 0, g(φU
¯
, φV

¯
)− g(U

¯
,V
¯
)− ω(U

¯
)ω(V

¯
) = 0

for all U
¯
,V
¯

∈ X(M3). This implies that for l
¯3

= ζ, the structure (φ, ζ, ω, g) defines a

Lorentzian paracontact structure and (M3, φ, ζ, ω, g) is a Lorentzian paracontact manifold

of dimension 3. The non-zero constituents of the Lie bracket are given as

[l
¯3
, l
¯p
] =


l
¯p
, p = 1, 2,

0, otherwise.

The well-known Koszul’s formula provides

∇̄l
¯p
l
¯q

=


−l
¯3
, p = q = 1, 2,

−l
¯p
, p = 1, 2, q = 3,

0, otherwise.

From the above equations, it can be easily verified that ∇̄U
¯
l
¯3

= −{U
¯
+ ω(U

¯
)l
¯3
} and

(∇̄U
¯
φ)V

¯
= −g(φU

¯
,V
¯
)ζ − ω(V

¯
)φU

¯
holds for each U

¯
,V
¯

∈ X(M3). Hence the Lorentzian
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paracontact manifold is an (LP-K)3. From the above equations, the non-zero constituents of

R
¯
are evaluated as follows

R
¯
(l
¯2
, l
¯1
)l
¯2

= −l
¯1
, R

¯
(l
¯2
, l
¯3
)l
¯2

= −l
¯3
, R

¯
(l
¯3
, l
¯1
)l
¯3

= l
¯1
,

R
¯
(l
¯2
, l
¯3
)l
¯3

= −l
¯2
, R

¯
(l
¯2
, l
¯1
)l
¯1

= l
¯2
, R

¯
(l
¯1
, l
¯3
)l
¯1

= −l
¯3
.

Thus we have

R
¯
(U
¯
,V
¯
)Z
¯
= −g(U

¯
,Z
¯
)V
¯
+ g(V

¯
,Z
¯
)U
¯
, (7.51)

which is a space of constant curvature 1.

The matrix representation of S is given by

S =


2 0 0

0 2 0

0 0 −2

.
Thus we find r

¯
= 6. From (7.51) it follows that S(U

¯
,V
¯
) = 2g(U

¯
,V
¯
) =⇒ Q̧U

¯
= 2U

¯
, which

implies that φ2((∇̄W
¯
Q̧)U

¯
) = 0. As we see that M3 is φ-RS with the scalar curvature 6.

Thus this illustration proves Theorem 4.1. Since M3 is φ-RS and Einstein, this illustration

also admits Theorem 3.4 for three dimensional case.
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