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Abstract. In the current research, we quantify the almost generalized Ricci soliton (AGRS)

on the trans-para-Sasakian manifold (TPS-manifold) as well as the gradient almost gener-

alized Ricci soliton (GAGRS). Trans-para Sasakian manifolds that meet certain criteria are

also required to be Einstein manifolds. It is demonstrated that the almost generalized Ricci

soliton equation is also satisfied by some manifolds, notably β-para-Kenmotsu manifolds, α-

para-Sasakian. The fact that a compact trans-para-Sasakian admits both a convex Einstein

potential with non-negative scalar curvature and a gradient almost generalized Ricci soliton

with Hodge-de Rham potential has also been covered. Finally, we furnished an example

which illustrates our finding.
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1. Introduction

The most important geometrical tool to explain the geometric structures in Riemannian

geometry (semi-Riemannian) over the last two decades has been the theory of geometric

flows. Since they arise as potential models of discontinuities, the study of discontinuities
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(singularities) of the flows involves a special class of solutions where the metric changes

via dilations and diffeomorphisms. They are often called soliton solutions. In 1982, R. S.

Hamilton [10] developed the idea of Ricci flow such that

∂g

∂t
= −2Sric(g). (1.1)

On a Riemannian manifold (M, g), a Ricci soliton struture (g, V, λ) can be expressed by

Sric +
1

2
Lθg + Λg = 0, (1.2)

here Lθ is the Lie derivative along the vector field θ, Λ is a scalar, and Sric is the Ricci tensor.

Ricci soliton is defined as Λ < 0,Λ = 0, and Λ > 0, respectively. It can also be described as

expanding, stable, or shrinking.

Equation (1.2) takes on the form of a gradient Ricci soliton if the vector field θ = grad(ψ),

where ψ is potential function on manifold.

Hessψ = Sric + Λg. (1.3)

Pigola et al. [21] argue that if we consider Λ ∈ C∞(M), sometimes referred to as a soliton

function, so we could assert that (M, g) is almost generalized Ricci solitons (AGRS).

Plenty of mathematicians are drawn to this idea. Therefore, how self-similar solutions

are categorized to Ricci flows has received a lot of attention in recent years.This problem

has significant practical implications in fields such as thermodynamics, control theory, op-

tics, mechanics, phase space of dynamical systems, and many other departments of pure

mathematics.

Ricci solitons are significant because they are both logical generalizations of Einstein met-

rics. A few generalizations, for example quasi-Einstein manifolds [4], generalized quasi-

Einstein manifolds [5] and gradient Ricci solitons [3], are crucial in the solutions of some

manifolds have their local structure derived from Ricci flows.

Overarching in reference [19], Nurowski and Randall initially defined Ricci soliton as a

kind of over determined framework for equations.

1

2
Lθg − bSric − Λg + aU ♯ ⊗ U ♯ = 0, (1.4)
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where U ♯ denotes the canonical 1-from and a, b are real constants .

If U = ∇ψ , where ψ ∈ C∞(M), (M, g) is referred to as a gradient almost generalized

Ricci soliton (GAGRS) in that case. As a result, (1.4) becomes

∇2ψ − 2bSric − 2Λg + 2aU ♯ ⊗ U ♯ = 0. (1.5)

However, Kaneyuki and Konzai started researching an almost para-contact structure on

semi-Riemannian manifolds [12]. Zamkovoy has done extensive research on para contact

metric manifolds [35]. Furthermore, trans-para-Sasakian manifold geometry was given by

Zamkovoy in 2019 [37]. Siddiqi also has investigated lightlike hypersurfaces [27] and null

hypersurfaces of trans-para-Sasakian manifold [26].

Structures that are an almost contact manifold M are known as trans-Sasakian structures

[20], if M ×R, the product manifolds, are members of class W4 [9]. Marrero and Chinea are

fully characterized trans-Sasakian structures of type (α, β) in [16].

The trans-para-Sasakian manifolds are seen by Zamkovoy in [37] as an analogy of the

trans-Sasakian manifolds. A trans-para-Sasakian structure of type (α, β), where α and β

are smooth functions, is called a trans-para-Sasakian manifold [28]. The manifolds of type

(α, β) that are trans-para-Sasakian are the para-Sasakian manifolds in the case of α = 1,

the para-Kenmostu manifolds in the case of β = 1 [37], and the para-cosympletic manifolds

(α = β = 0) [13].

During last two decades, many geometers exclusively studied the Ricci solitons and an

extension [24] of Ricci solitons namely, η-Ricci solitons on different manifolds such as Rie-

mannian manifold [22], Kenmotsu manifold [18], K-contact manifolds and (k, µ)-contact

manifolds [29] and trans-Sasakian manifolds [31]. Following Siddiqi [25], who also discussed

generalized Ricci soliton. Mekki and Cherif studied another generic concept known as gener-

alized Ricci soliton on Sasakian manifolds [17]. In this research note, we studied the almost

generalized Ricci soliton and almost gradient generalized Ricci soliton in trans-para-Sasakian

manifolds as a result of the aforementioned sources and comments.

2. Preliminaries

If a (2n + 1)-dimensional smooth manifold Θ admits a vector field ζ, a 1-form γ, and

a tensor field Φ of type (1, 1), and a pseudo-Riemannian metric g then it has an almost
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paracontact structure (Φ, ζ, γ, g) such that [2]

Φ2p = p− γ(p)ζ, Φ(ζ) = 0, γ ◦ Φ = 0, γ(ζ) = 1. (2.6)

The definition of almost paracontact structure immediately leads to the rank 2n of the

endomorphism Φ.

g(Φp,Φq) = −g(p, q) + γ(p)γ(q), (2.7)

then g is said to be compatible with signature (n + 1, n) and Θ has an almost paracontact

metric structure.

Observe that when q = ζ is set, γ(p) = g(p, ζ). Moreover, a compatible metric admits any

almost paracontact structure. If

g(p,Φq) = dγ(p, q),

where dγ(p, q) = 1
2(pγ(q) − qγ(p) − γ([p, q]), then γ is a paracontact form and the almost

paracontact metric manifold (Θ,Φ, γ, ζ, g) is defined as a paracontact metric manifold.

An almost paracomplex structure on the product Θ(2n+1)×R easily arises from a paracon-

tact structure on a Θ(2n+1). The provided paracontact metric manifold is called para-Sasakian

if this almost paracomplex structure is integrable. Comparably, a paracontact metric mani-

fold is a para-Sasakian if and only if (see [36]).

(∇pΦ)q = −g(p, q)ζ + γ(q)p, (2.8)

the manifold (Θ,Φ, ζ, γ, g) of dimension (2n+1) is said to be trans-para-Sasakian manifolds

(TPS-manifolds) if and only if

(∇pΦ)Y = α(−g(p, q)ζ + γ(q)p) + β(g(p,Φq)ζ + γ(q)Φp), (2.9)

from (2.9), we also have

∇pζ = −αΦp− β(p− γ(p)ζ). (2.10)

The gradient of a smooth function ψ on Θ is defined as follows

g(gradψ, p) = p(ψ). (2.11)

The definition of ψ’s Hessian is

(HessΨ)(p, q) = g(∇pgradΨ, q), (2.12)
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where p, q ∈ Γ(TΘ).

We defined p ∈ Γ(TΘ). U ♯ ∈ Γ(T̄Θ) by

U ♯(q) = g(p, q). (2.13)

The AGRS equation in Riemannian manifold Θ is given by [19]

Lθg = −2aU ♯ ⊙ U ♯ + 2bSric + 2Λg, (2.14)

where p ∈ Γ(TΘ) and the Lie-derivative is defined as

(Lθg)(q, t) = g(∇qθ, t) + g(∇tθ, q) (2.15)

where q, t ∈ Γ(TΘ). Equation (1.4), furthermore, is refers to an expansion of

(1) If a = b = Λ = 0, then Killing’s equation.

(2) If a = b = 0, then equation for homotheties.

(3) If a = 0, b = −1,then Ricci soliton.

(4) If a = 1, b = −1
n−2 , then Einstein-Weyl geometry.

(5) If a = 1, b = −1
n−2 , λ = 0, then we have metric projective structures with skew-

symmetric Ricci tensor in projective class.

(6) If a = 1, b = 1
2 , then we have Vacuum near-horzion geometry equation ( for more

details see [7], [8], [11], [14]).

A generalization of Einstein manifolds [5] is given by equation (1.4). Observe that the

gradient AGRS equation is provided by: if p = gradψ, where ψ,Λ ∈ C∞(Θ)

Hessψ + adf ⊙ df = bSric + Λg. (2.16)

3. Gradient almost generalized Ricci soliton on trans para Sasakian

manifolds

The following relations hold in a (2n+ 1)-dimensional TPS manifold Θ [37]:

ℜ(p, q)ζ = −(α2 + β2)[γ(q)p− γ(p)q]− 2αβ[γ(q)Φp− γ(p)Φq] (3.17)

+[(qα)Φp− (pα)Φq + (qβ)Φ2p− (pβ)Φ2q].

Sric(p, ζ) = [(−2n(α2 + β2)− (ζβ)]γ(p) + ((Φp)α) + (n− 2)(pβ), (3.18)

Qζ = −2n(α2 + β2)− (ζβ))ζ +Φ(gradα)− (n− 2)(gradβ), (3.19)
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where Q is the Ricci operator provided by Sric(p, q) = g(Qp, q), and ℜ is the curvature tensor.

Furthermore, we have a TPS manifold

Φ(gradα) = −(2n− 1)(gradβ), (3.20)

2αβ − (ζα) = 0. (3.21)

Lemma [15] follows from combining (3.17) and (3.21) for constants α and β.

Lemma 3.1. [15] Let (Θ(2n+1),Φ, γ, ζ, g) be a TPS-manifold. Then we have

ℜ(p, q)ζ = −(α2 + β2)[γ(q)p− γ(p)q], (3.22)

ℜ(ζ, q)t = −(α2 + β2)[g(q, t)ζ − γ(t)q], (3.23)

Sric(p, ζ) = −2n(α2 + β2)γ(p), (3.24)

(∇pγ)q = αg(p,Φq)− β(g(p, q)− γ(p)γ(q)), (3.25)

Qζ = −[2n(α2 + β2)]ζ, (3.26)

where for all p, q, t ∈ T (Θ).

Example 3.1. Let (x, y, z) be the Cartesian coordinates in R3. Assume a 3-dimensional

manifold Θ = {(x, y, z) ∈ R3|z ̸= 0}. Let the linearly independent vector fields E1, E2, E3 are

linearly independent at each point of Θ defined as

E1 = ez(
∂

∂x
+ y

∂

∂z
), E2 = ez

∂

∂y
, E3 =

∂

∂z
.

Let g be the pseudo-Riemannian metric defined by

g(E1, E1) = −g(E2, E2) = g(E3, E3) = 1, g(E1, E2) = g(E2, E3) = g(E3, E1) = 0.

Moreover, the 1-form γ is given by ζ = E3 and γ(p) = g(p, E3). Let Φ be the (1,1) tensor

field defined by

Φ(E1) = E2, Φ(E2) = E1, Φ(E3) = 0,

for any vector field p on Θ. Using the linearity of Φ and g, we then obtain γ(E3) = 1,

ϕ2p = p− γ(p)ζ, with ζ = E3.
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Moreover, for all vector fields p and q on Θ, we have

g(Φp,Φq) = −g(p, q) + γ(p)γ(q).

Therefore, in R3, the structure (Φ, ζ, γ, g) defines a paracontact structure for E3 = ζ [36]. Let

ℜ be the curvature tensor of g and ∇ be the Levi-Civita connection with respect to metric

g. Next, we have

[E1, E2] = yezE2 − e2zE3[E1, E3] = −E3 [E2, E3] = −E2.

Now, we have Koszul’s formula

2g(∇pq, t) = pg(q, t) + qg(t, p)− tg(p, q)− g(p, [q, t])

−g(q, [p, t]) + g(t, [p, q]).

Therefore, in light of above formula, we turn up

∇E1E1 = E3, ∇E1E2 = −1

2
e2zE3, ∇E1E3 = −E1 −

1

2
e2zE2, (3.27)

∇E2E2 = −yezE1 − E3, ∇E2E1 = −yezE2 +
1

2
e2zE3,

∇E3E1 = −1

2
e2zE2, ∇E3E2 = −1

2
e2zE1, ∇E3E3 = 0.

The fact that (Φ, ζ, γ, g) is a TPS-structure on Θ is evident from the above. Thus, Θ3(Φ, ζ, γ, g),

with β = 1 and α = 1
2e

2z ̸= 0, is a TPS- manifold.

Theorem 3.1. If Θ(2n+1) be a TPS-manifolds, and satisfies the AGRS (1.4) with restriction

a[λ − 2nb(α2 + β2)] ̸= −1. Then ψ is a constant function. In addition, if b ̸= 0, then Θ is

an Einstein.

Lemma 3.1 gives us the following observations:

Corollary 3.1. If Θ(2n+1) be a TPS-manifolds, and satisfies the AGRS Hessψ+Sric = Λg,

then ψ is a constant function and Θ is an Einstein.

Corollary 3.2. In a TPS-manifolds Θ, there is no non-constant smooth function ψ, such

that Hessψ = Λg, for some constant Λ.

We must first show the following lemmas in order to proceed with the proof of the Theorem

(3.1).
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Lemma 3.2. Let Θ be a TPS-manifold. Then we have

(Lζ(Lpg))(q, ζ) = −(α2 + β2)g(p, q) + g(∇ζ∇ζp, q) + qg(∇ζp, ζ), (3.28)

where p, q ∈ Γ(TΘ) and q is orthogonal to ζ.

Proof. Based on the Lie-derivative property, we may observe that

(Lζ(Lpg))(q, ζ) = ζ((Lpg)(q, ζ))− (Lpg)(Lζq, ζ)− (Lpg)(q,Lζζ). (3.29)

Since Lζq = [ζ, q], Lζζ = [ζ, ζ], by adopting (2.16) and (4.51), we have

(Lζ(Lpg))(q, ζ) = ζg(∇qp, ζ) + ζg(∇ζp, q)− g(∇[ζ,q]p, ζ) (3.30)

−g(∇ζp, [ζ, q])

= g(∇ζ∇qp, ζ) + g(∇qp,∇ζζ) + g(∇ζ∇ζp, q)

+g(∇ζp,∇ζq)− g(∇ζp,∇ζq)− g(∇[ζ,q]p, ζ) + g(∇ζp,∇qζ).

By (1.4), we turn up ∇ζζ = Φζ = 0, therefore we gain

(Lζ(Lpg))(q, ζ) = g(∇ζ∇qp, ζ) + g(∇ζ∇ζp, q)− g(∇[ζ,q]p, ζ) (3.31)

+qg(∇ζp, ζ)− g(∇q∇ζp, ζ).

Utilizing (4.51) and (3.29), we turn up

(Lζ(Lpg))(q, ζ) = g(ℜ(ζ, q)p, ζ) + g(∇ζ∇ζp, q) + qg(∇ζp, ζ). (3.32)

When g(q, ζ) = 0 is taken from (4.51), we find

g(ℜ(ζ, q)p, ζ) = g(R(q, ζ)ζ, p) = (α2 + β2)g(p, q). (3.33)

(3.29) and (4.52) provide the Lemma. □

We now have another helpful Lemma.

Lemma 3.3. If Θ be a Riemannian manifold, and let ψ ∈ C∞(Θ). Then we have

(Lζ(df ⊙ df))(q, ζ) = q(ζ(ψ))ζ(ψ) + q(ψ)ζ(ξ(ψ)), (3.34)

where ζ, q ∈ Γ(TΘ).
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Proof. We compute

(Lζ(df ⊙ df))(q, ζ) = ζ(q(ψ)ζ(ψ)− [ζ, q](ψ)ζ(ψ)− q(ψ)[ζ, ζ](ψ)

= ζ(q(ψ))ζ(ψ) + q(ψ)ζ(ζ(ψ))− [ζ, q](ψ)ζ(ψ).

Since [ζ, q](ψ) = ζ(q(ψ))− q(ζ(ψ)), we gain

(Lζ(df ⊙ df))(q, ζ) = [ζ, q](ψ)ζ(ψ) + q(ζ(ψ))ζ(ψ) + q(ψ)ζ(ζ(ψ))− [ζ, q](ψ)ζ(ψ)

= q(ζ(ψ))ζ(ψ) + q(ψ)ζ(ζ(ψ)).

□

Lemma 3.4. If Θ2n+1 be a TPS-manifold and satisfies the AGRS equation (2.16). Then

we have

∇ζ gradψ = [Λ− 2nb(α2 + β2)]ζ − aζ(ψ)gradψ. (3.35)

Proof. Let q ∈ Γ(TΘ), adopting the definition of Ricci curvature Sric (1.4) , and the curvature

restriction (4.51), we gain

Sric(p, q) = g(ℜ(ζ, Ei)Ei, q)

= g(ℜ(Ei, q)ξ, Ei)

= −(α2 + β2)[γ(q)g(Ei, Ei)− γ(Ei)g(p, Ei)

= (α2 + β2)[(2n+ 1)γ(q)− γ(q)]

= −2n(α2 + β2)γ(q)

= −2n(α2 + β2)g(ζ, q),

where {E1, E2, · · · , Ei} , and 1 ≤ i ≤ n is an orthonormal frame of Θ, indicates that

Λg(ζ, q) + bSric(ζ, q) = Λg(ζ, q)− 2nb(α2 + β2)g(ζ, q) (3.36)

= [Λ− 2nb(α2 + β2)]g(ζ, q).

In light of (1.4) and (3.35), we turn up

(Hessψ)(ζ, q) = −aζ(ψ)(q)(ψ) + [Λ− 2nb(α2 + β2)]g(ζ, q) (3.37)

= −aζ(ψ)g(gradψ, q) + [Λ− 2nb(α2 + β2)]g(ζ, q).

Accordingly, Lemma is inferred from both equation (3.35) and Hessian Definition (1.5). □

We can now establish Theorem 3.1 with the aid of Lemma 3.2, Lemma 3.3, and Lemma

3.4.
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Proof. (Proof of Theorem 3.1) Consider q ∈ Γ(TΘ), such that g(ζ, q) = 0. Lemma 3.1 gives

us that, given X = grad ψ,

2(Lζ(Hessψ))(q, ζ) = q(ψ) + g(∇ζ∇ζ gradψ, q) + qg(∇ζ gradψ, ζ). (3.38)

Using equation (3.37) and Lemma 3.1, we obtain

2(Lζ(Hessψ))(q, ζ) = q(ψ) + [Λ + b(n− 1)(α2 + β2)]g(∇ζ , q)− ag(∇ζ(ζ(ψ)grad ψ), q)

+[Λ + b(n− 1)(α2 + β2)]qg(ζ, ζ)− aq(ζ(ψ)2). (3.39)

Since ∇ζζ = 0 and g(ζ, ζ) = 1, in view of equation (3.38), we get

2(Lζ(Hessψ))(q, ζ) = q(ψ)− aζ(ζ(ψ))q(ψ)− aζ(ψ)g(∇ζ gradψ, q) (3.40)

−2aζ(ψ)q(ζ(ψ)).

Given g(ξ, Y ) = 0 and Lemma 3.1 and equation (3.39), we have

2(Lζ(Hessψ))(q, ζ) = q(ψ)− aζ(ζ(ψ))q(ψ) + a2ζ(ψ)2q(ψ) (3.41)

−2aζ(ψ)q(ζ(ψ)).

Observe that Lζg = 0, a Killing vector filed, follows from (1.4) and (1.5). This suggests that

LζS = 0, which is what the Lie derivative to the GRS equation (2.16) delivers.

q(ψ)− aζ(ζ(ψ))q(ψ) + a2ζ(ψ)2q(ψ)− 2aζ(ψ)q(ζ(ψ)) (3.42)

= −2aq(ζ(ψ))ζ(ψ)− 2aq(ψ)ζ(ζ(ψ)),

is equivalent to

q(ψ)[1 + aζ(ζ(ψ)) + a2ζ(ψ)2] = 0. (3.43)

Lemma 3.1 states that we have

aζ(ζ(ψ)) = aζg(ζ, grad ψ) (3.44)

= ag(ζ,∇ζ gradψ)

= a[Λ− 2nb(α2 + β2)]− a2ζ(ψ)2.

In view of equations (3.42) and (3.43), we gain

q(ψ)[Λ− 2nb(α2 + β2)] = 0. (3.45)

[Λ− 2nb(α2 + β2)] ̸= −1,
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which indicates that gradψ is parallel to ζ, and so q(ψ) = 0. Since D = kerγ is not integrable

anywhere, grad ψ = 0, indicating that ψ is a constant function. □

Now, the following scenarios exist for specific values of α and β:

Case 1.: For α = 0 or (β = 1), we can state:

Corollary 3.3. If Θ(2n+1) be a β-para Kenmotsu (or para Kenmotsu) manifold and satisfies

the AGRS (1.5) with condition a[Λ − 2nbβ2)] ̸= −1, then ψ is a constant function. In

addition, if b ̸= 0, then Θ(2n+1) is Einstein .

Case 2.: For β = 0, or (α = 1) we can state:

Corollary 3.4. If Θ(2n+1) be a α-para Sasakian (or para Sasakian) manifold and satisfies

the AGRS (1.5) with condition a[Λ−2nbα2)] ̸= −1, then ψ is a constant function. Moreover,

if b ̸= 0, then Θ(2n+1) is Einstein.

4. Almost generalized Ricci solitons on compact trans para Sasakian

manifolds

de Rham-Hodge’s classical theorem states that harmonic forms can express the cohomology

of an oriented closed Riemannian manifold. For an orientated compact Riemannian manifold

with boundary, the analogous one still holds by imposing certain boundary requirements,

including relative and absolute ones. However, these examples come from fully Riemannian

manifolds. The following are some helpful definitions.

Definition 4.1. [33] A C2-function ω : Θ −→ R is considered to be harmonic if ∆ω = 0.

The function ω is named subharmonic (resp. superharmonic) if ∆ ≥ 0 (resp. ∆ω ≤ 0),

where ∆ is the Laplacian operator in Θ.

Definition 4.2. [35] A function ω : Θ −→ R is called convex if the following inequality holds

ω ◦ δ(T ) ≤ (1− T )ω ◦ δ(0) + Tω ◦ δ(1), ∀T ∈ [0, 1],

for any geodesic δ : [0, 1] −→ Θ. Therefore in this case ω is differentiable, then ω is convex

if and only if ω satisfies

g(∇ω, p) ≤ ω(ex∇ω)− ω(x), ∀p ∈ TxΘ.
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Let p ∈ χ(Θ) and Θ be compact orientable TPS- manifolds. Then, according to the [1]

Hodge-de Rham decomposition theorem, p can be stated as

p = ∇ℏ+ q, (4.46)

where ℏ ∈ C∞(Θ) and div(q) = 0. The Hodge-de Rham potential is the name given to the

function h [22].

Let (g, p, λ) be a compact AGRS on compact TPS-manifold Θ, we turn up

div(p) + 2n(2n+ 1)b(α2 + β2) = nΛ− tr(aU ♯ ⊗ U ♯). (4.47)

div(X) = ∆ℏ is implied by the Hodge-de Rham decomposition, so, using equation(4.47), we

obtain

2n(2n+ 1)b(α2 + β2) = nΛ−∆ℏ− tr(aU ♯ ⊗ U ♯). (4.48)

Since Θ is GAGRS with potential function, we obtain

2n(2n+ 1)b(α2 + β2) = nΛ−∆f − tr(aU ♯ ⊗ U ♯). (4.49)

Now, on equating (4.48) and (4.49), we turn

∆(f − ℏ) = 0.

Consequently, although Θ is compact, f is a harmonic function in Θ. Thus, for some constant

c, f = ℏ+ c. As so, we possess the following outcome.

Theorem 4.1. If (g, p,Λ) is a compact GAGRS. If TPS- manifold Θ is also a GAGRS

with potential function f , then, up to constant, f equals to the Hodge-de Rham potential.

Theorem 4.2. Let (Θ, ζ, γ,Φ, g) be a complete TPS-manifold satisfying

1

2
Lpg − bSric ≥ Λg − aU ♯ ⊗ U ♯, (4.50)

where U ♯ is a canonical 1-from associated with p, a, b, and Λ are smooth functions, and p

is a smooth vector field. If one of the following requirements is fulfilled and ∥p∥ is bounded,

then the TPS-manifold Θ is compact:

(1) Λ ≥ 0 and a > 0, c > 0,

(2) Λ > c > 0 and a ≥ 0,

for a constant c > 0.
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Proof. If π ∈ Θ be a fixed point and δ : (0,∞] −→ Θ be a geodesic such that δ(0) = p. Then

along δ we compute

Lpg(δ1, δ1) = 2g(∇δ1p, δ1) = 2
d

dt
[g(p, δ1)]. (4.51)

Now, from (4.50) and (4.51), we have

−
∫ T

0
bSric(δ1, δ1)dt ≥

∫ T

0
Λ(δ(t))g(δ1, δ1)dt−

∫ T

0

d

dt
[g(p, δ1)dt−

∫ t

0
a(δ(T ))(U ♯⊗U ♯)(δ1, δ1)dt

= −1

b

[∫ T

0
Λ(δ(t))dt+ g(pπ, δ1(0))− g(pδ(T ), δ1(T )) +

∫ T

0
a(δ(T ))U ♯2(δ1)dt

]

≥ −1

b

[∫ T

0
Λ(δ(t))dt+ g(pπ, δ1(0))−

∥∥Xδ(T )

∥∥+

∫ T

0
a(δ(T ))U ♯2(δ1)dt

]
.

Cauchy-Schwarz inequality leads to the final inequality. If either of the two conditions (1)

or (2) is true, the inequality above suggests that

∫ ∞

0
bSric(δ1, δ1)dt = ∞. (4.52)

Hence by Ambrose’s Compactness Theorem [1] implies that TPS-manifold Θ is compact.

□

5. Gradient almost generalized Ricci soliton on compact trans para

Sasakian manifolds

In this segment, we discuss some results based on gradient almost generalized Ricci

solitonon compact trans-para Sasakian manifold n ≥ 2. Next, we articulate the following.

Theorem 5.1. [32] IF (Θ,Φ, γ, ζ, g) be a compact TPS-manifold with constant scalar curva-

ture and Θ admits a non-trivial conformal vector field p. If LpSric = ρg for some ρ ∈ C∞(Θ),

then Θ is isometric to the Euclidean sphere Sn.

Hence, from Theorem (5.1) we can also state the next theorem:

Theorem 5.2. Let (Θ,Φ, ζ, γ, g) be a compact GAGRS with Einstein potential f . If ∇f is

non-trivial conformal vector field, then TPS-manifold Θ is isometric to the Euclidean sphere

Sn.
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Proof. Let (Θ, g) be a GAGRS. Then from (1.4) we deduce

∇2f − bSric = Λg − aU ♯ ⊗ U ♯.

For each ψ ∈ C∞(Θ), ∇2f − ψg, if ∇f is a conformal vector field. The equation above now

takes the form

bSric = (ψ − Λ)g − aU ♯ ⊗ U ♯. (5.53)

As a result, Sric is only dependent on Θ points. Schur’s lemma thus implies that R is

constant. Once more, using p = ∇f , we get

aLpSric = (ψ − Λ)Lpg − aLp(U ♯ ⊗ U ♯) (5.54)

aLpSric = (ψ − Λ)ψg − a[q(ζ(ψ))ζ(ψ) + q(ψ)ζ(ζ(ψ))]. (5.55)

This completes the proof. □

In [32] Yano already proved a following results.

Theorem 5.3. [32] A compact manifold Θ with constant scalar curvature admits a non-

trivial conformal vector field p such that Lpg = 2ψg, ψ ̸= 0, then∫
Θ
ψdV = 0. (5.56)

Therefore in light of Theorem 5.3 we can state.

Theorem 5.4. Let (Θ,Φ, ζ, γ, g) be a compact GAGRS with Einstein potential f and (α2+

β2) ≤ 0. If ∇f is conformal vector field then TPS manifold Θ is shrinking or steady GAGRS.

Proof. Taking the trace in (5.53)

2n(2n+ 1)b(α2 + β2) = (2n+ 1)(ψ − Λ)− a |ζ|2 (5.57)

which implies ∫
Θ
2nb(α2 + β2) +

a

(2n+ 1)
|ζ|2 =

∫
Θ
(ψ − Λ). (5.58)

If p is conformal vector field and the scalar curvature of Θ is constant 2n(2n+ 1)(α2 + β2),

then applying Theorem (5.3) we get

2n(2n+ 1)(α2 + β2)

∫
Θ

[
b+

a

2n(2n+ 1)(α2 + β2)
|ζ|2

]
= −(2n+ 1)

∫
Θ
Λ. (5.59)

Now, if Λ < 0, then above equation reduced

2n(2n+ 1)(α2 + β2)

∫
Θ

[
b+

a

2n(2n+ 1)(α2 + β2)
|ζ|2

]
< 0. (5.60)
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If M is a compact TPS-manifold, then Theorem (5.2) implies that Θ is isometric to Sn.

Because scalar curvature is preserved via isometry so 2n(2n + 1)(α2 + β2) > 0. Hence the

above equation entails that

V ol(M) <
1

2n(2n+ 1)

∫
Θ

[
2n(2n+ 1)b+

a

(α2 + β2)
|ζ|2

]
. (5.61)

□

Lemma 5.1. [5] If (Θ,Φ, ζ, γ, g) be a GAGRS with Einstein potential f . Then we have

∆f = 2n(2n+ 1)b(α2 + β)2) + (2n+ 1)Λ− a |ζ|2 . (5.62)

Currently, function f convexity suggests that it is harmonic, or that ∆f = 0, [32]. There-

fore, (5.62) implies

2n(2n+ 1)b(α2 + β)2) + (2n+ 1)Λ− a |ζ|2 = 0. (5.63)

Λ =
a |ζ|2

(2n+ 1)
− 2nb(α2 + β2). (5.64)

Therefore, this leads the following result:

Theorem 5.5. If f is a convex harmonic function on TPS-manifold (Θ,Φ, ζ, γ, g) and

has non negative scalar curvature, then admitting a GAGRS with Einstein potential f is

expanding, stable, or shrinking according as

(1) a|ζ|2
(2n+1) > 2nb(α2 + β2),

(2) a|ζ|2
(2n+1) = 2nb(α2 + β2) and

(3) a|ζ|2
(2n+1) < 2nb(α2 + β2), respectively.

Moreover, Lemma 5.1 entails the following:

Corollary 5.1. If (Θ,Φ, ζ, γ, g) be a TPS-manifold admitting a GAGRS with Einstein

potential f , then the Poisson equation satisfied by f becomes

∆f = 2n(2n+ 1)b(α2 + β)2) + (2n+ 1)Λ− a |ζ|2 . (5.65)

Example 5.1. Let (Θ,Φ, ζ, γ, g) be the 3-dimensional TPS-manifold considered in example

3.1.
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Let ∇ be a Levi-Civita connection. From (3.27), we obtain the following components of

Riemannina curvature tensor and Ricci tensor:

ℜ(E1, E2)E2 =
(
−3

4
e4z + 1

)
E1, ℜ(E1, E3)E3 = −

(
1

4
e4z + 1

)
E1, ℜ(E1, E3)E2 = −e3zyE1,

(5.66)

ℜ(E2, E3)E3 = −
(
1

4
e4z + 1

)
E2, ℜ(E2, E3)E2 = −

(
1

4
e4z + 1

)
E3,

ℜ(E1, E2)E1 = −e2zE1 −
(
1

2
e4z + 1

)
E2 + e3zyE3, ℜ(E2, E3)E1 = 0,

ℜ(E1, E3)E1 = e3zye2 +

(
1

4
e4z + 1

)
E3, ℜ(E1, E2)E3 = −e3zyE1.

Sric(E1, E1) = −3

4
e4z − 2, Sric(E2, E2) = −1

2
e4z + 2E2, Sric(E3, E3,) = −1

2
e4z − 2. (5.67)

From (2.14), we have

bSric(Ei, Ei) = −(β + Λ)g(Ei, Ei) + (a− β)δij , {i = 1, 2, 3} (5.68)

Now, we find the following cases corresponding to the different values of a and b in equation

(2.14):

Case(1). For Killing vector field i.e., a = b = 0, from (5.68) we find Λ = −2β, which is

shrinking.

Case(2). In case of Ricci soliton a = 0, b = −1, from (5.68), Λ = −
(
3
4e

4z + 2
)
−β. Therefore,

the data (g, ζ,Λ, a, b) is an AGRS on TPS-manifold (Θ,Φ, ζ, γ, g), is steady and shrinking

according as 3
4e

4z + 2 < −β, 3
4e

4z + 2 = β, respectively.

Case(3). For Einstein-Weyl geometry case a = 1, b = −1
n−2) , from (5.68), Λ = (2β + 1) −

1
(n−2)

(
1
2e

4z + 2
)
. Now, the data (g, ζ,Λ, a, b) is an AGRS on TPS-manifold (Θ,Φ, ζ, γ, g)

is steady, shrinking or expanding according as (2β + 1) = 1
(n−2)

(
1
2e

4z + 2
)
, (2β + 1) <

1
(n−2)

(
1
2e

4z + 2
)
or (2β + 1) > 1

(n−2)

(
1
2e

4z + 2
)
, respectively.

Case(4). For the geometry of Vacuum near horizon equation a = 1, b = 1
2 , from (5.68),

Λ = (2β − 2) −
(
1
4e

4z
)
. The data (g, ζ,Λ, a, b) is an AGRS on TPS-manifold (Θ,Φ, ζ, γ, g),

is steady, shrinking or expanding according as (2β − 2) =
(
1
4e

4z
)
, (2β − 2) <

(
1
4e

4z
)
or

(2β − 2) >
(
1
4e

4z
)
, respectively.
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