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TRANSLATION FRAMED SURFACES GENERATED BY NON-NULL

FRAMED CURVES IN MINKOWSKI 3-SPACE E3
1
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Abstract. In this paper, first we obtain the conditions for the existence and uniqueness

of non-null framed curves as well as non-null framed surfaces in Minkowski 3-space. Fur-

ther, we study the timelike and spacelike translation framed surfaces generated by non-null

framed curves and obtain the basic invariants of such surfaces in E3
1. We also find the cur-

vatures of timelike and spacelike translation framed surfaces generated by non-null framed

curves. Finally, we classify the translation framed surfaces generated by non-null framed

curves lying in mutually perpendicular coordinate planes of E3
1 with µK ≡ 0 and µH ≡ 0.

Keywords: Framed curve, Framed surface, Translation framed surface, Curvature and in-

variants of a translation framed surface.
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1. Introduction

A translation surface is a special case of Darboux surface which is the union of ‘equivalent’

curves (‘equivalent’ in the sense that, the curves are images of one another by some isometries

of the space), also known as generating curves of the surface. A Darboux surface is defined

as the movement of curves by rigid motions of the space. Therefore, it can be parametrized

as X(u, v) = A(v).α(u) + β(v), where α, β are two space curves and A is an orthogonal

matrix. When the orthogonal matrix A is identity matrix the surface is called a translation
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surface. Thus, a generalized type of a translation surface is given by

X(u, v) = α(u) + β(v).

Translation surface which is known as the double curve in differential geometry is base for

roofing structures. The construction and design of free form glass roofing structures are

generally created with the help of curved (formed) glass panes or planar triangular glass

facets. Recently, classification of translation surfaces under some conditions on curvatures

has been studied in Euclidean as well as Minkowski space ([1],[10],[11],[15]).

A framed curve in Minkowski 3-space is a curve with an assigned frame which moves along

the curve. In [7], Honda and Takahashi defined the curvature functions of the framed curve

in E3, similar to a regular curve. By using curvature functions, they obtained the existence

and the uniqueness theorem for the framed curves. The curvature functions of a framed

curve are used to investigate the curve along with its singularities. On the other hand, a

framed surface is defined to be a surface with an assigned moving frame which is used to

analyze properties and singularities of the surface. In [4], by using the moving frames in E3,

the basic invariants and the curvatures of framed surfaces are introduced by Fukunaga and

Takahashi. They studied the properties of framed surfaces using the basic invariants of the

surfaces and gave some examples.

In [5], Fukunaga and Takahashi reviewed the theories for framed surfaces, framed curves

and one-parameter families of framed curves in E3. They showed that up to congruence,

the surface along with the moving frame can be determined by the basic invariants of the

framed surface and the curvature of a one parameter family of framed curves. In [6], the

authors studied the translation surfaces with assigned moving frame and discussed the various

singularities that arise on such surfaces with help of the notion of framed curves and surfaces.

In this paper, we study the non-null translation framed surfaces generated by non-null framed

curves in E3
1. The paper is arranged as follows. There are some basic results in section 2. In

section 3, we study non-null framed curves in E3
1 and obtain the conditions for the existence

and uniqueness of non-null framed curves. In section 4, first we study non-null framed

surfaces in E3
1 and find their curvatures and existence and uniqueness conditions. Further,

we study the timelike and spacelike translation framed surfaces generated by non-null framed

curves and obtain the basic invariants of such surfaces in E3
1. We also find the curvatures

of timelike and spacelike translation framed surfaces generated by non-null framed curves.
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Finally, we classify the translation framed surfaces generated by non-null framed curves lie

in the coordinate planes of E3
1 with µK ≡ 0 and µH ≡ 0.

2. Preliminaries

The Minkowski 3-space, denoted by E3
1, is a three dimensional real vector space R3 endowed

with the metric tensor ⟨., .⟩ = −dx2 + dy2 + dz2. The (Lorentzian) scalar and cross product

are defined by: 
⟨x, y⟩ = −x1y1 + x2y2 + x3y3,

x× y = (−x2y3 + x3y2, x3y1 − x1y3, x1y2 − x2y1),

(2.1)

where x = (x1, x2, x3), y = (y1, y2, y3) belong to E3
1. This space is also known as Lorentz-

Minkowski space. A vector x ∈ E3
1 is said to be spacelike when ⟨x, x⟩ > 0 or x = 0, timelike

when ⟨x, x⟩ < 0 and lightlike(null) when ⟨x, x⟩ = 0, x ̸= 0. A curve in E3
1 is called spacelike,

timelike or lightlike when the velocity vector of the curve is spacelike, timelike or lightlike,

respectively. The norm of a vector x ∈ E3
1 is defined as ∥x∥ =

√
|⟨x, x⟩|. The hyperbolic and

Lorentzian unit spheres are defined as

H2
0 = {x ∈ E3

1∥⟨x, x⟩ = −1}

and

S2
1 = {x ∈ E3

1∥⟨x, x⟩ = 1},

respectively. Let γ = γ(s) : I → E3
1 be an arbitrary curve. The curve γ is said to be an unit

speed curve (or parameterized by the arc-length parameter s) if ⟨γ′(s), γ′(s)⟩ = ±1 for any

s ∈ I.

For a spacelike curve γ : I → E3
1 parametrized with arclength parameter s, let {t, n, b} be the

moving Frenet frame along the curve, where t(s) = γ′(s) is the unit tangent vector, n is the

unit normal vector defined as the unit vector in the direction t′(s) such that t′(s) = κ(s) n(s),

where κ(s) is the curvature of the curve and b(s) = t(s)×n(s). The second curvature (torsion)

of the curve is given by τ = ϵ⟨b′, n⟩, where ϵ = ⟨n, n⟩.The Frenet-Serret equations of the

spacelike curve are given as 
t′

n′

b′

 =


0 κ 0

−ϵκ 0 τ

0 τ 0

 =


t

n

b

 ,
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where ⟨t, t⟩ = 1, ⟨n, n⟩ = ϵ, ⟨b, b⟩ = −ϵ, ⟨t, b⟩ = ⟨t, n⟩ = ⟨n, b⟩ = 0. If ϵ = 1, γ(s) is a spacelike

curve with the spacelike principal normal n and the timelike binormal b, while if ϵ = -1 then

γ is a spacelike curve with the timelike principal normal n and the spacelike binormal b.

For a timelike curve γ, we define Frenet frame in similar way except for the torsion is given

by τ = −⟨b′, n⟩. The Frenet-Serret equations are given by
t′

n′

b′

 =


0 κ 0

κ 0 τ

0 −τ 0

 =


t

n

b

 ,

where ⟨t, t⟩ = -1, ⟨n, n⟩ = 1, ⟨b, b⟩ = 1, ⟨t, n⟩ = ⟨t, b⟩ = ⟨n, b⟩ = 0.

A surface in E3
1 is said to be a spacelike, timelike or lightlike if the metric on the surface

is positive definite, indefinite or degenerate, respectively. The type of a surface can also be

expressed in terms of the causal character of the normal vector of the surface by the following

lemma.

Lemma 2.1. [8] A surface in Minkowski 3-space is spacelike, timelike or lightlike if and only

if at every point of the surface there exists a normal which is timelike, spacelike or lightlike,

respectively.

Definition 2.1. [14] Let v and w be two spacelike vectors. Then, there exists a unique

non-negative real number θ ≥ 0, such that ⟨v, w⟩ = ∥v∥∥w∥ cos θ.

Definition 2.2. [14] Let v be a spacelike vector and w be a timelike vector in E3
1. Then,

there exists a unique non-negative real number θ ≥ 0, such that ⟨v, w⟩ = ∥v∥∥w∥ sinh θ.

Definition 2.3. [12] Let v and w be two timelike vectors in the same time cone of E3
1,

i.e. ⟨v, w⟩ < 0. Then, there exists a unique non-negative real number θ ≥ 0, such that

⟨v, w⟩ = −∥v∥∥w∥ cosh θ.

Lagrange’s Identity: For any vectors η, ξ ∈ E3
1, we have ⟨η×ξ, η×ξ⟩ = −⟨η, η⟩⟨ξ, ξ⟩+⟨η, ξ⟩2.

3. Framed curves in Minkowski 3-space

In this section we define the Frenet type formula for the framed curves and give existence

and uniqueness theorem of the framed curves in E3
1.

Definition 3.1. [9] Let γ : I → E3
1 be a curve in E3

1. Then the map (γ, ϑ1, ϑ2) : I → E3
1 ×Θ

is called a spacelike framed curve if

⟨γ′(t), ϑ1(t)⟩ = 0, ⟨γ′(t), ϑ2(t)⟩ = 0, ∀t ∈ I,
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such that ρ(t) = ϑ1(t)× ϑ2(t) is an arbitrary spacelike vector field, where

Θ = {(u, v) ∈ S2
1 ×H2

0 |⟨u, v⟩ = 0} or Θ = {(u, v) ∈ H2
0 × S2

1 |⟨u, v⟩ = 0}.

Definition 3.2. [9] Let γ : I → E3
1 be an arbitrary curve in E3

1. Then the map (γ, ϑ1, ϑ2) :

I → E3
1 ×Θ is called a timelike framed curve if

⟨γ′(t), ϑ1(t)⟩ = 0, ⟨γ′(t), ϑ2(t)⟩ = 0,∀t ∈ I,

such that ρ(t) = ϑ1(t)× ϑ2(t) is a timelike vector field, where

Θ = {(u, v) ∈ S2
1 × S2

1 |⟨u, v⟩ = 0}.

Definition 3.3. Let (γ, ϑ1, ϑ2) and (γ̄, ϑ̄1, ϑ̄2) : I → E3
1 ×Θ are framed curves. We say that

γ and γ̄ have the same causal character of the moving frame if the vector triplets {ϑ1, ϑ2, ρ}

and {ϑ̄1, ϑ̄2, ρ̄} have the same causal characters, respectively.

3.1. Frenet-Serret type formula for framed curves. Let (γ, ϑ1, ϑ2) : I → E3
1×Θ be an

spacelike framed curve and ρ(t) = ϑ1(t)× ϑ2(t). The Frenet-Serret type formula is given by
ϑ′
1

ϑ′
2

ρ′

 =


0 −δκ1 κ2

−δκ1 0 κ3

−δκ2 δκ3 0



ϑ1

ϑ2

ρ

 , (3.2)

where δ = ⟨ϑ1, ϑ1⟩ = −⟨ϑ2, ϑ2⟩. κ1 = ⟨ϑ′
1, ϑ2⟩, κ2 = ⟨ϑ′

1, ρ⟩, κ3 = ⟨ϑ′
2, ρ⟩. Moreover

we can find a smooth function τ(t) such that γ′(t) = τ(t)ρ(t). We call the functions

(τ(t), κ1(t), κ2(t), κ3(t)) the curvature of the framed curve.

Similarly, the Frenet-Serret type formula for a timelike framed curve (γ, ϑ1, ϑ2) can be given

by 
ϑ′
1

ϑ′
2

ρ′

 =


0 κ1 −κ2

−κ1 0 −κ3

−κ2 −κ3 0



ϑ1

ϑ2

ρ

 , (3.3)

where κ1 = ⟨ϑ′
1, ϑ2⟩, κ2 = ⟨ϑ′

1, ρ⟩, κ3 = ⟨ϑ′
2, ρ⟩.

3.2. Existence and uniqueness of the framed curves in E3
1.

Theorem 3.1. Let (τ(t), κ1(t), κ2(t), κ3(t)) : I → R4 be a smooth map. Then there exist

framed curves (γ, ϑ1, ϑ2) : I → E3
1 × Θ with three different causality whose curvatures are

(τ(t), κ1(t), κ2(t), κ3(t)).
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Proof. Let t0 ∈ I and let {e1, e2, e3} be an pseudo orthonormal basis for E3
1. First we suppose

that e3 is a timelike vector and the basis is positively oriented. We need to solve the following

ODE system

ϑ′
1 = κ1ϑ2 + κ2ρ, (3.4)

ϑ′
2 = −κ1ϑ1 + κ3ρ,

ρ′ = κ2ϑ1 + κ3ϑ2,

with initial conditions, ϑ1(t0) = e1, ϑ2(t0) = e2, ρ(t0) = e3. Then by existence and uniqueness

of the solution of a system of ODE, we get {ϑ1, ϑ2, ρ} to be the unique solution and define

γ(t) =

∫ t

t0

τ(s)ρ(s)ds. (3.5)

Then we have to prove that the framed curve (γ(t), ϑ1(t), ϑ2(t)) is a timelike curve with

curvature functions (τ, κ1, κ2, κ3). We first show that the moving frame {ϑ1(t), ϑ2(t), ρ(t)}

is an pseudo orthonormal basis of E3
1 with the same causal properties as of the initial basis

{e1, e2, e3}. Consider the ODE system,

⟨ϑ1, ϑ1⟩′ = 2κ1⟨ϑ1, ϑ2⟩+ 2κ2⟨ρ, ϑ1⟩,

⟨ϑ2, ϑ2⟩′ = −2κ1⟨ϑ1, ϑ2⟩+ 2κ3⟨ρ, ϑ2⟩,

⟨ρ, ρ⟩′ = 2κ2⟨ϑ1, ρ⟩+ 2κ3⟨ρ, ϑ2⟩,

⟨ϑ1, ϑ2⟩′ = κ1⟨ϑ2, ϑ2⟩+ κ2⟨ρ, ϑ2⟩ − κ1⟨ϑ1, ϑ1⟩+ κ3⟨ρ, ϑ1⟩,

⟨ϑ1, ρ⟩′ = κ1⟨ϑ2, ρ⟩+ κ2⟨ρ, ρ⟩+ κ2⟨ϑ1, ϑ1⟩+ κ3⟨ϑ2, ϑ1⟩,

⟨ϑ2, ρ⟩′ = −κ1⟨ϑ1, ρ⟩+ κ3⟨ρ, ρ⟩+ κ2⟨ϑ1, ϑ2⟩+ κ3⟨ϑ2, ϑ2⟩,

with initial conditions ⟨ϑ1, ϑ1⟩ = 1, ⟨ϑ2, ϑ2⟩ = 1, ⟨ρ, ρ⟩ = −1, ⟨ϑ1, ϑ2⟩ = 0, ⟨ϑ1, ρ⟩ = 0, ⟨ϑ2, ρ⟩ =

0. On the other hand, the constant functions f1(t) = 1, f2(t) = 1, f3(t) = −1, f4(t) =

0, f5(t) = 0, f6(t) = 0 satisfy the same ODE system and initial conditions, so by uniqueness

of the solution,

−⟨ρ, ρ⟩ = ⟨ϑ1, ϑ1⟩ = ⟨ϑ2, ϑ2⟩ = 1, ⟨ϑ1, ϑ2⟩ = ⟨ϑ1, ρ⟩ = ⟨ϑ2, ρ⟩ = 0.

This implies that {ϑ1, ϑ2, ρ} is a pseudo orthonormal basis of E3
1. From (3.4), γ′(t) = τ(t)ρ(t),

and hence ⟨γ′, γ′⟩ = τ2⟨ρ, ρ⟩ = −τ2 < 0, considering τ ̸= 0, this implies that γ is a timelike

framed curve with curvatures (τ, κ1, κ2, κ3).
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Similarly, we can show that (γ, ϑ1, ϑ2) is a spacelike framed curve with the spacelike vector

ϑ1 if e2 is timelike, and is a spacelike framed curve with the timelike vector ϑ1 if e1 is

timelike. □

Proposition 3.1. [2] For any vectors a, b ∈ E3
1 and an isometry M ∈ SO1(3), we have

⟨a, b⟩ = ⟨Ma,Mb⟩, (3.6)

a× b = Ma×Mb.

Definition 3.4. [9] Let (γ, ϑ1, ϑ2) and (γ̄, ϑ̄1, ϑ̄2) : I → E3
1 × Θ be framed curves of same

causal character. We say that (γ, ϑ1, ϑ2) and (γ̄, ϑ̄1, ϑ̄2) are congruent as framed curves

through a Lorentzian motion if there exists a matrix M ∈ SO1(3) and a constant vector

c ∈ E3
1 such that

γ̄(t) = M(γ(t)) + c, (3.7)

ϑ̄i(t) = M(ϑi(t)),

for all t ∈ I, where the matrix M satisfies MTGM = G, Det(M) = 1, G =


−1 0 0

0 1 0

0 0 1

 .

Lemma 3.1. [9] Let the framed curves (γ, ϑ1, ϑ2) and (γ̄, ϑ̄1, ϑ̄2) be congruent. Then their

curvatures coincide, i.e. the curvatures (τ, κ1, κ2, κ3) are invariant under a Lorentzian mo-

tion.

Theorem 3.2. Let (γ, ϑ1, ϑ2) and (γ̄, ϑ̄1, ϑ̄2) : I → E3
1 × Θ be framed curves that have the

same causal character of the moving frames. If they have the same corresponding curvatures

then they are congruent as framed curves through a Lorentzian motion.

Proof. Let t0 ∈ I and consider the isometry A ∈ SO1(3) such that ϑ̄i(t0) = Aϑi(t0), ρ̄(t0) =

Aρ(t0). If c = γ̄(t0) − A ◦ γ(t0), define the rigid motion Mx = Ax + c. We know that by

above lemma 3.6, that the framed curve (M ◦ γ,Aϑ1, Aϑ2) satisfies the same ODE system as

(γ̄, ϑ̄1, ϑ̄2). As the initial conditions coincide, then by uniqueness of ODE system,

γ̄(t) = M ◦ γ(t),

ϑ̄i(t) = Aϑi(t), i = 1, 2,

which completes the proof. □
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4. Translation Framed surfaces in E3
1

Definition 4.1. A smooth map (σ, ξ, η) : Ω ⊂ E2 → E3
1 ×Θ is said to be a spacelike framed

surface if the following conditions hold

σs(s, t).ξ(s, t) = 0, σt(s, t).ξ(s, t) = 0, ∀(s, t) ∈ Ω, (4.8)

where Θ = {(u, v) ∈ H2
0 × S2

1 |u.v = 0}.

Also, we say that the map (σ, ξ, η) : Ω ⊂ E2 → E3
1×Θ is a timelike framed surface if condition

(4.8) holds with Θ = {(u, v) ∈ S2
1 × S2

1 |u.v = 0} or Θ = {(u, v) ∈ S2
1 ×H2

0 |u.v = 0}.

For a framed surface (σ, ξ, η), the map (ξ, η) : Ω → Θ, is a moving frame while σ : Ω → E3
1

is called the framed base surface.

4.1. Basic invariants of a framed surface. Let’s define ζ(s, t) = ξ(s, t) × η(s, t), then

with respect to the moving frame {ξ(s, t), η(s, t), ζ(s, t)} along σ(s, t), the basic invariants

are defined as follows

Case(i):- For the spacelike surface, ξ is a timelike vector and η, ζ are spacelike vectors.

Then σs
σt

 =

c1 d1

c2 d2

η
ζ

 , (4.9)

where c1 = σs.η, c2 = σt.η, d1 = σs.ζ, d2 = σt.ζ.
ξs

ηs

ζs

 =


0 l1 m1

l1 0 n1

m1 −n1 0



ξ

η

ζ

 , (4.10)


ξt

ηt

ζt

 =


0 l2 m2

l2 0 n2

m2 −n2 0



ξ

η

ζ

 ,

where l1 = ξs.η, m1 = ξs.ζ, n1 = ηs.ζ and l2 = ξt.η, m2 = ξt.ζ, n2 = ηt.ζ.

We call the smooth functions ci, di, li,mi, ni : Ω → R, i = 1, 2 the basic invariants of the

framed surface. Let the above matrices be denoted by Λ,∆1,∆2, respectively, as follows

Λ =

c1 d1

c2 d2

 , ∆1 =


0 l1 m1

l1 0 n1

m1 −n1 0

 , ∆2 =


0 l2 m2

l2 0 n2

m2 −n2 0

 .
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Then, using the integrability condition σst = σts and ∆2,s −∆1,t = ∆1∆2 −∆2∆1, the basic

invariants satisfy the following conditions:


c1,t − d1g2 = c2,s − d2n1,

d1,t − c2g1 = d2,s − c1n2,

c1e2 + d1f2 = c2e1 + d2m1.

(4.11)


l1,t −m1n2 = l2,s −m2n1,

m1,t − l2n1 = m2,s − l1n2,

n1,t + l1m2 = n2,s + l2m1.

(4.12)

Case(ii):- For the timelike surface, ξ is a spacelike vector and one of the vectors η or ζ is a

timelike vector and other is spacelike. So let ⟨η, η⟩ = δ = −⟨ζ, ζ⟩, where δ = ±1, accordingly.

Then

σs
σt

 = δ

c1 −d1

c2 −d2

η
ζ

 , (4.13)

where c1 = σs.η, c2 = σt.η, d1 = σs.ζ, d2 = σt.ζ.


ξs

ηs

ζs

 = δ


0 l1 −m1

−δl1 0 −n1

−δm1 −n1 0



ξ

η

ζ

 , (4.14)


ξt

ηt

ζt

 = δ


0 l2 −m2

−δl2 0 −n2

−δm2 −n2 0



ξ

η

ζ

 ,

where l1 = ξs.η, m1 = ξs.ζ, n1 = ηs.ζ and l2 = ξt.η, m2 = ξt.ζ, n2 = ηt.ζ.

In particular, if we assume that the vector field η is timelike, then the basic invariants are

given by

Λ =

−c1 d1

−c2 d2

 , ∆1 =


0 −l1 m1

−l1 0 n1

−m1 n1 0

 , ∆2 =


0 −l2 m2

−l2 0 n2

−m2 n2 0

 .

Again using the integrability conditions, the basic invariants satisfy the following conditions:



106 A. YADAV AND A. K. YADAV


c1,t − d1n2 = c2,s − d2n1,

d1,t + c2n1 = d2,s + c1n2,

c1l2 − b1m2 = c2l1 − d2m1.

(4.15)


l1,t −m1n2 = l2,s −m2n1,

m1,t + l2n1 = m2,s + l1n2,

n1,t − l1m2 = n2,s − l2m1.

(4.16)

4.2. Existence and Uniqueness of framed surfaces in E3
1.

Theorem 4.1. For arbitrary given smooth functions ci, di, li,mi, ni : Ω → R, i = 1, 2, defined

on a simply connected domain Ω, satisfying the integrability conditions (4.11) and (4.12)

(respectively, (4.15) and (4.16)), there exists a spacelike (respectively, timelike) framed surface

(σ, ξ, η) : Ω → E3
1 ×Θ such that ci, di, li,mi, ni are the basic invariants of the surface.

Proof. By the integrability condition (4.12) (respectively, (4.16)), there exists a pseudo or-

thonormal frame {ξ, η, ζ} such that it satisfy ODE system (4.10) (respectively, (4.14)). Fur-

ther, by the integrability condition (4.11) and (4.15), there exists a smooth map σ : Ω → E3
1

which satisfies the condition (4.9) and (4.13). Thus, we get a spacelike (respectively, timelike)

framed surface (σ, ξ, η) with basic invariants (Λ,∆1,∆2). □

Theorem 4.2. Let (σ, ξ, η) and (σ̄, ξ̄, η̄) : Ω → E3
1 × Θ be framed surfaces of same causal

character with basic invariants (Λ,∆1,∆2) and (Λ̄, ∆̄1, ∆̄2), respectively. Then (σ, ξ, η) and

(σ̄, ξ̄, η̄) are congruent as framed surfaces if and only if the basic invariants coincide.

Proof. Let (s0, t0) ∈ U0 and consider the isometry A ∈ O1(3), such that ξ̄(s0, t0) = A ◦

ξ(s0, t0), η̄(s0, t0) = A ◦ η(s0, t0) and ζ̄(s0, t0) = A ◦ ζ(s0, t0). If c = σ̄(s0, t0) − A ◦ σ(s0, t0),

define the rigid motion Mx = Ax + c. Using the proposition 3.1, we see that the framed

surface (M ◦ σ,A ◦ ξ, A ◦ η) and (σ̄, ξ̄, η̄) both satisfy the same linear system of differential

equations (4.13) and (4.14), i.e., basic invariants coincide. Now since initial conditions are

same, by uniqueness theorem of system of ordinary differential equations, we find thatM◦σ =

σ̄, A ◦ ξ = ξ̄, A ◦ η = η̄, A ◦ ζ = ζ̄. Conversely, If (σ, ξ, η) and (σ̄, ξ̄, η̄) are congruent then

M ◦σ = σ̄, A◦ ξ = ξ̄, A ◦ η = η̄, A◦ ζ = ζ̄, then again using proposition 3.1, we find that both

framed surfaces have common basic invariants. □
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4.3. Curvatures of a Framed surface in E3
1. We define curvatures of a framed surface

(σ, ξ, η) : Ω → E3
1 × Θ using the moving frame {ξ, η, ζ = ξ × η} instead of {σs, σt, ξ} as at

singular points it may not be well defined. So first we obtain the matrix associated with the

Weingarten map W : TM → TM with respect to the frame {ξ, η, ζ = ξ× η} and then define

the curvatures as determinant and trace of the map, where TM = span{η, ζ}. Thus,

W (η) = −ηξ, W (ζ) = −ζξ, (4.17)

where ηξ and ζξ are the derivatives of the unit normal ξ with respect to the vector fields η

and ζ, respectively. By using equation (4.9), we get

η
ζ

 =
1

λ

 d2 −d1

−c2 c1

σs
σt

 ,

where λ = det

c1 d1

c2 d2

 .

W (η) = −ηξ = − 1

λ
(d2σs − d1σt)ξ = − 1

λ
(d2ξs − d1ξt),

W (ζ) = −ζξ = − 1

λ
(−c2σs + c1σt)ξ = − 1

λ
(−c2ξs + c1ξt).

Also using (4.10), we get

W (η) = − 1

λ
((d2l1 − d1l2)η + (m1d2 −m2d1)ζ),

W (ζ) = − 1

λ
((c1l2 − c2l1)η + (c1m2 − c2m1)ζ).

Thus, we get the Weingarten matrix as follows

W = − 1

λ

 l1d2 − l2d1 c1l2 − c2l1

m1d2 −m2d1 c1m2 − c2m1

 .

Now, we define µK = λ.detW and µH = λ.12trace(W ). By direct calculation we obtain

λ = det

c1 d1

c2 d2

 , µK = det

l1 m1

l2 m2

 , (4.18)

µH = −1

2
{det

c1 m1

c2 m2

− det

d1 l1

d2 l2

}. (4.19)
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Where κf = (λ, µK , µH) is the curvature of a spacelike framed surface. Similarly we find the

curvature of a timelike framed surface as follows

λ = −det

c1 d1

c2 d2

 , µK = −det

l1 m1

l2 m2

 , (4.20)

µH = −δ

2
{det

c1 −m1

c2 m2

− det

d1 −l1

d2 l2

}, (4.21)

where δ = ⟨η, η⟩.

4.4. Translation framed surface generated by framed curves in E3
1. Let (γ, ν1, ν2) :

I → E3
1 ×Θ and (γ̄, ν̄1, ν̄2) : Ī → E3

1 ×Θ be framed curves with the curvatures (κ1, κ2, κ3, τ)

and (κ̄1, κ̄2, κ̄3, τ̄) in E3
1. Let σ : I × Ī :→ E3

1 be the translation surface parametrized as

σ(s, t) = γ(s) + γ̄(t).

Proposition 4.1. [5] Let (σ, νs1, ν
s
2) : Ω → E3

1 ×Θ be a one parameter family of curves with

respect to s and (σ, νt1, ν
t
2) : Ω → E3

1 ×Θ be a one parameter family of curves with respect to

t. If ρs = νs1 × νs2 and ρt = νt1 × νt2 are linearly independent for each (s, t) ∈ Ω, then (σ, ξ, η)

is a framed surface for some smooth mapping (ξ, η) : Ω → Θ.

For a translation surface σ(s, t) = γ(s) + γ̄(t) defined as above, we have (σ, ν1, ν2) and

(σ, ν̄1, ν̄2) as one parameter family of curves on the translation surface with respect to s and

t, respectively. We consider a smooth map (ξ, η) : Ω → Θ defined by ξ(s, t) = ρ(s)×ρ̄(t)
∥ρ(s)×ρ̄(t)∥ and

η(s, t) = ρ(s), where ρ = ν1 × ν2 and ρ̄ = ν̄1 × ν̄2 such that the map (σ, ξ, η) : Ω → E3
1 × Θ

is a framed surface and σ is a framed base surface by the Proposition 4.1. Considering the

above construction we have the following corollary.

Corollary 4.1. Let (γ, ν1, ν2) : I → E3
1 × Θ and (γ̄, ν̄1, ν̄2) : Ī → E3

1 × Θ be framed curves

in Minkowski 3-space such that ρ(s) and ρ̄(t) are linearly independent for all (s, t) ∈ I × Ī ,

then (σ, ξ, η) : I × Ī → E3
1 × Θ, defined by σ(s, t) = γ(s) + γ̄(t), ξ(s, t) = ρ(s)×ρ̄(t)

∥ρ(s)×ρ̄(t)∥ and

η(s, t) = ρ(s), is a translation framed surface.

Theorem 4.3. Let (γ, ν1, ν2) : I → E3
1 × Θ and (γ̄, ν̄1, ν̄2) : Ī → E3

1 × Θ be timelike framed

curves with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively in E3
1. Then the basic

invariants of the timelike translation framed surface (σ, ξ, η) : I × Ī → E3
1 × Θ are obtained
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as follows

c1(s, t) = −τ(s),

d1(s, t) = 0,

c2(s, t) = τ̄(t)ρ(s).ρ̄(t),

d2(s, t) = τ̄(t)
√

(ρ(s).ρ̄(t))2 − 1,

l1(s, t) =
1√

(ρ(s).ρ̄(t))2 − 1
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

m1(s, t) =
ρ(s).ρ̄(t)

(ρ(s).ρ̄(t))2 − 1
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

n1(s, t) =
−1√

(ρ(s).ρ̄(t))2 − 1
(κ2(s)ν1(s).ρ̄(t) + κ3(s)ν2(s).ρ̄(t)),

l2(s, t) = 0,

m2(s, t) =
−1

(ρ(s).ρ̄(t))2 − 1
(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s)),

n2(s, t) = 0,

where . denotes semi-Euclidean or Lorentzian scalar product.

Proof. Since the framed curves (γ(s), ν1(s), ν2(s)) and (γ̄(s), ν̄1(s), ν̄2(s)) are timelike, by

construction η(s, t) = ρ(s) is a timelike vector field which belongs to the tangent space of

the surface σ, therefore it is a timelike surface and furthermore ξ and ζ are spacelike vector.

Now by using the Lagrange’s identity ⟨u× v, u× v⟩ = −⟨u, u⟩⟨v, v⟩+ ⟨u, v⟩2 and vector triple

product (u× v)× w = ⟨v, w⟩u− ⟨u,w⟩v for Minkowski space, we have

∥ρ(s)× ρ̄(t)∥ =
√

ϵ(−⟨ρ(s), ρ(s)⟩⟨ρ̄(t), ρ̄(t)⟩+ ⟨ρ(s), ρ̄(t)⟩2) =
√
ϵ(−1 + ⟨ρ(s), ρ̄(t)⟩2),

where ϵ = ⟨ξ, ξ⟩ = 1. Since by definition (of angle), ⟨ρ(s), ρ̄(t)⟩ = − cosh θ, therefore −1 +

⟨ρ(s), ρ̄(t)⟩2 = −1 + cosh2 θ = sinh2 θ ≥ 0. Also since ρ and ρ̄ are linearly independent,

ρ.ρ̄ ̸= 1 therefore sinh2 θ > 0. Thus, we have

c1(s, t) = σs(s, t).η(s, t) = τ(s)ρ(s).ρ(s) = −τ(s),

d1(s, t) = σs(s, t).ζ(s, t) = τ(s)η(s, t).ζ(s, t) = 0,

c2(s, t) = σt(s, t).η(s, t) = τ̄(t)η̄(t).η(s) = τ̄(t)ρ(s).ρ̄(t),
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d2(s, t) = σt(s, t).ζ(s, t) = τ̄(t)ρ̄(t).(ξ(s, t)× ρ(s))

= τ̄(t)(ρ(s)× ρ̄(t)).
ρ(s)× ρ̄(t)

∥ρ(s)× ρ̄(t)∥

= τ̄(t)∥ρ(s)× ρ̄(t)∥ = τ̄(t)
√

(ρ(s).ρ̄(t))2 − 1,

Now, by using equation (3.3), we have ρs(s) = κ2(s)ν2(s)− κ3(s)ν1(s). Thus

l1(s, t) = ξs(s, t).η(s, t) =
1

∥ρ(s)× ρ̄(t)∥
((ρ(s)× ρs(s)).ρ̄(t))

=
1√

(ρ(s).ρ̄(t))2 − 1
(ρ(s)× (−κ2(s)ν1(s)− κ3(s)ν2(s)).ρ̄(t))

=
1√

(ρ(s).ρ̄(t))2 − 1
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

m1(s, t) = ξs(s, t).ζ(s, t) =
1

∥ρ(s)× ρ̄(t)∥2
(ρs(s)× ρ̄(t)).(ρ(s)× ρ̄(t)× ρ(s))

=
1

(ρ(s).ρ̄(t))2 − 1
(ρs(s)× ρ̄(t)).((ρ(s).ρ̄(t))ρ(s) + ρ̄(t))

=
1

(ρ(s).ρ̄(t))2 − 1
(ρ(s).ρ̄(t))(ρ(s)× ρs(s)).ρ̄(t)

=
ρ(s).ρ̄(t)

(ρ(s).ρ̄(t))2 − 1
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

n1(s, t) = ηs(s, t).ζ(s, t) =
1

∥ρ(s)× ρ̄(t)∥
ρs(s).((ρ(s)× ρ̄(t))× ρ(s))

=
1√

(ρ(s).ρ̄(t))2 − 1
ρs(s).((ρ(s).ρ̄(t))ρ(s) + ρ̄(t))

=
1√

(ρ(s).ρ̄(t))2 − 1
(ρs(s).ρ̄(t))

=
−1√

(ρ(s).ρ̄(t))2 − 1
(κ2(s)ν1(s).ρ̄(t) + κ3(s)ν2(s).ρ̄(t)).

l2(s, t) = ξt(s, t).η(s, t) =
1

∥ρ(s)× ρ̄(t)∥
(ρ(s)× ρ̄t(t).ρ(s)) = 0,

m2(s, t) = ξt(s, t).ζ(s, t) =
1

(ρ(s).ρ̄(t))2 − 1
(ρ(s)× ρ̄t(t)).(ρ(s)× ρ̄(t)× ρ(s))

=
1

(ρ(s).ρ̄(t))2 − 1
(ρ̄t(t)× ρ̄(t)).ρ(s)

=
1

(ρ(s).ρ̄(t))2 − 1
(−κ̄2(t)ν̄2(t).ρ(s) + κ̄3(t)ν̄1(t).ρ(s)),

n2(s, t) = ηt(s, t).ζ(s, t) = ρt(s, t).ζ(s, t) = 0.ζ(s, t) = 0.

□
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Corollary 4.2. The curvature κf = (λ, µK , µH) of the timelike translation framed surface

in Theorem 4.4 is given as follows

λ = τ(s)τ̄(t)
√
(ρ(s).ρ̄(t))2 − 1,

µK =
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))

((ρ(s).ρ̄(t))2 − 1)3/2
,

µH =
τ(s)(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s)) + τ̄(t)(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))

2((ρ(s).ρ̄(t))2 − 1)
.

Proof. Using (4.20) and (4.21) and Theorem 4.4, we have

λ(s, t) = τ(s)τ̄(t)
√
(ρ(s).ρ̄(t))2 − 1,

µK(s, t) = −l1(s, t)m2(s, t)

=
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))

((ρ(s).ρ̄(t))2 − 1)3/2
.

δ = ⟨η, η⟩ = −1, so

µH(s, t) =
1

2
{c1m2 + c2m1 − d2l1}

=
1

2
{τ(s)(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))

(ρ(s).ρ̄(t))2 − 1

+
τ̄(t)(ρ(s).ρ̄(t))2

(ρ(s).ρ̄(t))2 − 1
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))

− τ̄(t)
√
(ρ(s).ρ̄(t))2 − 1

1√
(ρ(s).ρ̄(t))2 − 1

(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))}

=
τ(s)(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s)) + τ̄(t)(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))

2((ρ(s).ρ̄(t))2 − 1)
.

□

Proposition 4.2. Let (γ, ν1, ν2) : I → E3
1 × Θ and (γ̄, ν̄1, ν̄2) : Ī → E3

1 × Θ be timelike

framed curves with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively. Assume that γ

is contained in the xz-plane and γ̄ is contained in the xy-plane. Then for the translation

framed surface (σ, ξ, η) : I × Ī → E3
1 ×Θ obtained by the above curves, µK ≡ 0 if and only if

σ is a generalized cylinder.

Proof. Let the curve γ be contained in the xz-plane and γ̄ be contained in the xy-plane. Then

we take ν1(s) = (0, 1, 0), ν̄1(t) = (0, 0, 1) and ρ(s) = (ρ1(s), 0, ρ3(s)), ρ̄(t) = (ρ̄1(t), ρ̄2(t), 0)

for some real smooth functions ρ1, ρ3, ρ̄1 and ρ̄2, which further gives ν2(s) = ν1(s)× ρ(s) =
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(−ρ3(s), 0,−ρ1(s)) and ν̄2(t) = ν̄1(t) × ρ̄(t) = (−ρ̄2(t),−ρ̄1(t), 0). Also since ν1 and ν̄1 are

fixed vectors, ν ′1 = 0 and ν̄ ′1 = 0 therefore from (3.3), κ1 = κ2 = κ̄1 = κ̄2 = 0. Hence

µK(s, t) =
κ3(s)κ̄3(t)ρ3(s)ρ̄2(t)

(ρ21(s)ρ̄
2
1(t)− 1)3/2

.

Thus µK ≡ 0 if and only if one of the functions κ̄3, κ3, ρ3, ρ̄2 is identically zero on an open

interval in I or Ī. So, if κ3 = 0 or ρ3 = 0 then γ is a part of a timelike straight line, while

κ̄3 = 0 or ρ̄2 = 0 implies γ̄ is a part of a timelike straight line. In either case σ is a generalized

cylinder. □

Proposition 4.3. Let (γ, ν1, ν2) : I → E3
1 × Θ and (γ̄, ν̄1, ν̄2) : Ī → E3

1 × Θ be timelike

framed curves with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively. Assume that γ

is contained in the xz-plane and γ̄ is contained in the xy-plane. Then for the translation

framed surface (σ, ξ, η) : I × Ī → E3
1 ×Θ generated by the framed curves, µH ≡ 0 if and only

if σ is a point or is a part of the following surface

σ(s, t) =
(1
c
log

∣∣∣cosh(cu(s))
sinh(cv(t))

∣∣∣+B, v(t), u(s)
)
,

where B, c are some constants.

Proof. Using the similar constructions {ν1, ν2, ρ} and {ν̄1, ν̄2, ρ̄} as in Proposition 4.2, we get

κ1 = κ2 = κ̄1 = κ̄2 = 0. Hence

µH(s, t) =
−τ(s)κ̄3(t)ρ3(s)− τ̄(t)κ3(s)ρ̄2(t)

2(ρ21(s)ρ̄
2
1(t)− 1)

.

Now µH ≡ 0 if and only if τ(s)κ̄3(t)ρ3(s) + τ̄(t)κ3(s)ρ̄2(t) = 0, or

τ(s)ρ3(s)

κ3(s)
= − τ̄(t)ρ̄2(t)

κ̄3(t)
= C(constant). (4.22)

By definition κ3(s) = ν ′2(s).ρ(s) = ρ3,sρ1 − ρ1,sρ3 and κ̄3(t) = ρ̄2,tρ̄1 − ρ̄1,tρ̄2, substituting

into (4.22) we get,

C(ρ3,sρ1 − ρ1,sρ3) = τ(s)ρ3(s),

C(ρ̄2,tρ̄1 − ρ̄1,tρ̄2) = −τ̄(t)ρ̄2(t).

In the case C = 0, we have τ = 0 or ρ3 = 0 and τ̄ = 0 or ρ̄2 = 0. If ρ3 = 0 and ρ̄2 = 0 then

κ3 = 0 = κ̄3 which contradicts to the equation (4.22). Thus τ = 0 and τ̄ = 0 which implies

that σ is a point.
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Now in the case C ̸= 0, replacing c = 1
C in the above equations we get,

ρ3,sρ1 − ρ1,sρ3 = cτ(s)ρ3(s), (4.23)

ρ̄2,tρ̄1 − ρ̄1,tρ̄2 = −cτ̄(t)ρ̄2(t). (4.24)

Since ρ is a timelike unit vector we take ρ(s) = (cosh (θ(s)), 0, sinh (θ(s))), therefore ρ1,s =

θs sinh (θ) and ρ3,s = θs cosh (θ). Using equation (4.23), we get

θs = cτ(s) sinh (θ(s)),∫
1

sinh (θ)
dθ = c

∫
τ(s)ds+ b,

which gives eθ = 1+Aec
∫
τ(s)ds

1−Aec
∫
τ(s)ds , thus we get ρ(s) =

(
1+A2e2c

∫
τ(s)ds

1−A2e2c
∫
τ(s)ds , 0,

2Aec
∫
τ(s)ds

1−Ae2c
∫
τ(s)ds

)
. Now we

calculate γ(s) =
∫
τ(s)ρ(s)ds. Let γ(s) = (γ1(s), 0, γ2(s)), then we get γ1(s) =

∫
τ(s)ρ1(s)ds =

−1
c log

(
1−A2e2c

∫
τ(s)ds

ec
∫
τ(s)ds

)
and γ3(s) =

∫
τ(s)ρ3(s)ds =

1
c log

(
1+Aec

∫
τ(s)ds

1−Aec
∫
τ(s)ds

)
.

Let u(s) = 1
c log

(
1+Aec

∫
τ(s)ds

1−Aec
∫
τ(s)ds

)
, then γ is given by

γ(s) =
(1
c
log cosh (cu(s))− 1

c
log (2A), 0, u(s)

)
.

Similarly, by equation (4.24), we obtain

γ̄(t) =
(
− 1

c
log

∣∣ sinh (cv(t))∣∣+ 1

c
log (2Ā), v(t), 0

)
,

where v(t) = −1
c log

1+Āe−c
∫ ¯τ(t)dt

1−Āe−c
∫ ¯τ(t)dt

. Thus

σ(s, t) = γ(s) + γ̄(t)

=
(1
c
log

∣∣∣cosh(cu(s))
sinh(cv(t))

∣∣∣+B, v(t), u(s)
)
,

where B is a constant. In fig. 1 we have diagram of the surface when c = 1, B = 0. □

Figure 1.
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Theorem 4.4. Let (γ, ν1, ν2) : I → E3
1 × Θ a spacelike and (γ̄, ν̄1, ν̄2) : Ī → E3

1 × Θ be

a timelike framed curve with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively in E3
1.

Then the basic invariants of the timelike translation framed surface (σ, ξ, η) : I× Ī → E3
1×Θ,

are obtained as follows

c1(s, t) = τ(s),

d1(s, t) = 0,

c2(s, t) = τ̄(t)ρ(s).ρ̄(t),

d2(s, t) = τ̄(t)
√
1 + (ρ(s).ρ̄(t))2,

l1(s, t) =
1√

1 + (ρ(s).ρ̄(t))2
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

m1(s, t) =
ρ(s).ρ̄(t)

1 + (ρ(s).ρ̄(t))2
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

n1(s, t) =
δ√

1 + (ρ(s).ρ̄(t))2
(κ2(s)ν1(s).ρ̄(t)− κ3(s)ν2(s).ρ̄(t)),

l2(s, t) = 0,

m2(s, t) =
1

1 + (ρ(s).ρ̄(t))2
(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s)),

n2(s, t) = 0,

where δ = ⟨ν1, ν1⟩ = ±1.

Proof. Since the framed curves (γ(s), ν1(s), ν2(s)) is spacelike and (γ̄(s), ν̄1(s), ν̄2(s)) is time-

like, by construction σt(s, t) = γ̄′(t) is a timelike vector field which belongs to the tangent

space of the surface σ, hence σ is a timelike surface and ξ and η are spacelike vectors, ζ is a

timelike vector. Thus, we have

∥ρ(s)× ρ̄(t)∥ =
√

ϵ(⟨ρ(s), ρ(s)⟩⟨ρ̄(t), ρ̄(t)⟩+ ⟨ρ(s), ρ̄(t)⟩2) =
√
ϵ(1 + ⟨ρ(s), ρ̄(t)⟩2),

we have ⟨ρ(s), ρ̄(t)⟩ = sinh θ, 1+⟨ρ(s), ρ̄(t)⟩2 = 1+sinh2 θ = cosh2 θ > 0, hence ϵ = ⟨ξ, ξ⟩ = 1,

and ∥ρ(s)× ρ̄(t)∥ =
√

1 + ⟨ρ(s), ρ̄(t)⟩2, we have

c1(s, t) = σs(s, t).η(s, t) = τ(s)ρ(s).ρ(s) = τ(s),

d1(s, t) = σs(s, t).ζ(s, t) = τ(s)η(s, t).ζ(s, t) = 0,

c2(s, t) = σt(s, t).η(s, t) = τ̄(t)ρ̄(t).ρ(s) = τ̄(t)ρ(s).ρ̄(t),

d2(s, t) = σt(s, t).ζ(s, t) = τ̄(t)ρ̄(t).(ξ(s, t)× ρ(s))
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= τ̄(t)(ρ(s)× ρ̄(t)).
ρ(s)× ρ̄(t)

∥ρ(s)× ρ̄(t)∥

= τ̄(t)∥ρ(s)× ρ̄(t)∥ = τ̄(t)
√
1 + ⟨ρ(s), ρ̄(t)⟩2,

By using (3.2), we have ρs(s) = −δκ2(s)ν1(s) + δκ3(s)ν2(s), hence

l1(s, t) = ξs(s, t).η(s, t) =
1

∥ρ(s)× ρ̄(t)∥
((ρ(s)× ρs(s)).ρ̄(t))

=
1√

1 + ⟨ρ(s), ρ̄(t)⟩2
((ρ(s)× (−δκ2(s)ν1(s) + δκ3(s)ν2(s)).ρ̄(t))

=
δ√

1 + ⟨ρ(s), ρ̄(t)⟩2
(−κ2(s)(−δν2(s)) + κ3(s)(−δν1(s))).ρ̄(t)

=
1√

1 + ⟨ρ(s), ρ̄(t)⟩2
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

m1(s, t) = ξs(s, t).ζ(s, t) =
1

∥ρ(s)× ρ̄(t)∥2
(ρs(s)× ρ̄(t)).(ρ(s)× ρ̄(t)× ρ(s))

=
1

1 + ⟨ρ(s), ρ̄(t)⟩2
(ρs(s)× ρ̄(t)).((ρ(s).ρ̄(t))ρ(s) + ρ̄(t))

=
1

1 + ⟨ρ(s), ρ̄(t)⟩2
(ρ(s).ρ̄(t))(ρ(s)× ρs(s)).ρ̄(t)

=
ρ(s).ρ̄(t)

1 + ⟨ρ(s), ρ̄(t)⟩2
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

n1(s, t) = ηs(s, t).ζ(s, t) =
1

∥ρ(s)× ρ̄(t)∥
ρs(s).((ρ(s)× ρ̄(t))× ρ(s))

=
1√

1 + ⟨ρ(s), ρ̄(t)⟩2
ρs(s).((ρ(s).ρ̄(t))ρ(s)− ρ̄(t))

=
−1√

1 + ⟨ρ(s), ρ̄(t)⟩2
(ρs(s).ρ̄(t))

=
δ√

1 + ⟨ρ(s), ρ̄(t)⟩2
(κ2(s)ν1(s).ρ̄(t)− κ3(s)ν2(s).ρ̄(t)),

l2(s, t) = ξt(s, t).η(s, t) =
1

∥ρ(s)× ρ̄(t)∥
(ρ(s)× ρ̄t(t).ρ(s)) = 0,

m2(s, t) = ξt(s, t).ζ(s, t) =
1

1 + ⟨ρ(s), ρ̄(t)⟩2
(ρ(s)× ρ̄t(t)).(ρ(s)× ρ̄(t)× ρ(s))

=
−1

1 + ⟨ρ(s), ρ̄(t)⟩2
(ρ̄t(t)× ρ̄(t)).ρ(s)

=
1

1 + ⟨ρ(s), ρ̄(t)⟩2
(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s)),

n2(s, t) = ηt(s, t).ζ(s, t) = ρt(s, t).ζ(s, t) = 0.ζ(s, t) = 0.

□
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Corollary 4.3. The curvature κf = (λ, µK , µH) of the timelike translation framed surface

given in Theorem 4.5 is given as follows

λ = −τ(s)τ̄(t)
√

1 + (ρ(s).ρ̄(t))2,

µK = −(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))

(1 + (ρ(s).ρ̄(t))2)3/2
,

µH = −τ(s)(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))− τ̄(t)(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))

2(1 + (ρ(s).ρ̄(t))2)
.

Proof. Using (4.20) and (4.21) and Theorem 4.5, we have

λ(s, t) = τ(s)τ̄(t)
√
1 + (ρ(s).ρ̄(t))2,

µK(s, t) = −l1(s, t)m2(s, t)

= −(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))

(1 + (ρ(s).ρ̄(t))2)3/2
.

δ = ⟨η, η⟩ = 1, so

µH(s, t) =− 1

2
{c1m2 + c2m1 − d2l1}

=− 1

2
{τ(s)(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))

1 + (ρ(s).ρ̄(t))2

+
τ̄(t)(ρ(s).ρ̄(t))2

1 + (ρ(s).ρ̄(t))2
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))

− τ̄(t)
√

1 + (ρ(s).ρ̄(t))2
1√

1 + (ρ(s).ρ̄(t))2
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))}

=− τ(s)(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))− τ̄(t)(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))

2(1 + (ρ(s).ρ̄(t))2)
.

□

Proposition 4.4. Let (γ, ν1, ν2) : I → E3
1×Θ be an spacelike and (γ̄, ν̄1, ν̄2) : Ī → E3

1×Θ be a

timelike framed curve with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively. Assume

that γ is contained in the yz-plane and γ̄ is contained in the xz-plane. Then for the translation

framed surface (σ, ξ, η) : I × Ī → E3
1 ×Θ, µK ≡ 0 if and only if σ is a generalized cylinder.

Proof. We take ν1(s) = (1, 0, 0), ν̄1(t) = (0, 1, 0) and ρ(s) = (0, ρ2(s), ρ3(s)), ρ̄(t) = (ρ̄1(t), 0, ρ̄3(t))

for some real smooth functions ρ2, ρ3, ρ̄1 and ρ̄3. Then we get ν2(s) = ρ(s) × ν1(s) =

(0, ρ3(s), ρ2(s)) and ν̄2(t) = ν̄1(t) × ρ̄(t) = (−ρ̄3(t), 0,−ρ̄1(t)). Since ν1 and ν̄1 are fixed

vectors, ν ′1 = 0 and ν̄ ′1 = 0 therefore κ1 = κ2 = κ̄1 = κ̄2 = 0. Now by following the similar

steps to the Proposition 4.2 we get the result. □



INT. J. MAPS MATH. (2024) 7(1):97–121 / TRANSLATION FRAMED SURFACES IN E3
1 117

Proposition 4.5. Let (γ, ν1, ν2) : I → E3
1×Θ be an spacelike and (γ̄, ν̄1, ν̄2) : Ī → E3

1×Θ be a

timelike framed curve with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively. Assume

that γ is contained in the yz-plane and γ̄ is contained in the xz-plane. Then for the translation

framed surface (σ, ξ, η) : I × Ī → E3
1 × Θ, µH ≡ 0 if and only if σ is a point or is a part of

the following surface

σ(s, t) =
(
v(t), u(s),

1

c
log

∣∣∣2 csc(cu(s))
cosh(cv(t))

∣∣∣),
where c is some constant.

Proof. Working with the same frames {ν1, ν2, ρ} and {ν̄1, ν̄2, ρ̄} as defined in the Proposition

4.4, we get κ1 = κ2 = κ̄1 = κ̄2 = 0. Since ρ is an spacelike unit vector and ρ̄ is a timelike unit

vector so we take ρ(s) = (0, cos θ(s), sin θ(s)) and ρ̄ = (cosh θ(t), 0, sinh θ(t)) and by following

the similar steps to the Proposition 4.3 we obtain

γ(s) =
(
0, u(s),

1

c
log (2 csc (cu(s)))

)
,

γ̄(t) =
(
v(t), 0,−1

c
log cosh (cv(t))

)
,

where u(s) = −1
c log(tan (

c
2

∫
τ̄(t)dt+ b)) and v(t) = 2

c arctan (Ae
c
∫
τ̄(t)dt). Thus

X(s, t) = γ(s) + γ̄(t)

=
(
v(t), u(s),

1

c
log

∣∣∣2 csc(cu(s))
cosh(cv(t))

∣∣∣),
where c is a constant. In fig. 2 we have diagram of the surface when c = 1. □

Figure 2.
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Theorem 4.5. Let (γ, ν1, ν2) : I → E3
1 ×Θ and (γ̄, ν̄1, ν̄2) : Ī → E3

1 ×Θ be spacelike framed

curves with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively in E3
1. Then the basic

invariants of the spacelike translation framed surface (σ, ξ, η) : I × Ī → E3
1 ×Θ, are obtained

as follows

c1(s, t) = τ(s),

d1(s, t) = 0,

c2(s, t) = τ̄(t)ρ(s).ρ̄(t),

d2(s, t) = −τ̄(t)
√
1− (ρ(s).ρ̄(t))2,

l1(s, t) =
1√

1− (ρ(s).ρ̄(t))2
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

m1(s, t) =
ρ(s).ρ̄(t)

1− (ρ(s).ρ̄(t))2
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

n1(s, t) =
δ√

1− (ρ(s).ρ̄(t))2
(κ2(s)ν1(s).ρ̄(t)− κ3(s)ν2(s).ρ̄(t)),

l2(s, t) = 0,

m2(s, t) =
1

1− (ρ(s).ρ̄(t))2
(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s)),

n2(s, t) = 0,

where δ = ⟨ν1, ν1⟩ = ±1.

Proof. We can prove this theorem using similar steps as the Theorems 4.4, 4.5. □

Corollary 4.4. The curvature κf = (λ, µK , µH) of the spacelike translation framed surface

given in Theorem 4.7 is given as follows

λ = −τ(s)τ̄(t)
√

1− (ρ(s).ρ̄(t))2,

µK =
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))

(1− (ρ(s).ρ̄(t))2)3/2
,

µH = −τ(s)(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))− τ̄(t)(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))

2(1− (ρ(s).ρ̄(t))2)
.

Proof. Proof is similar to the corollaries 4.2, 4.3. □

Proposition 4.6. Let (γ, ν1, ν2) : I → E3
1 × Θ and (γ̄, ν̄1, ν̄2) : Ī → E3

1 × Θ be spacelike

framed curves with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively. Assume that γ

is contained in the yz-plane and γ̄ is contained in the xz-plane. Then for the translation

framed surface (σ, ξ, η) : I × Ī → E3
1 ×Θ, µK ≡ 0 if and only if σ is a generalized cylinder.
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Proof. We take ν1(s) = (1, 0, 0) and ν̄1(t) = (0, 1, 0) then there exist real smooth functions ρ2,

ρ3, ρ̄1 and ρ̄3 such that ρ(s) = (0, ρ2(s), ρ3(s)) and ρ̄(t) = (ρ̄1(t), 0, ρ̄3(t)). Now by definition

ν2(s) = ρ(s)×ν1(s) = (0, ρ3(s), ρ2(s)) and ν̄2(t) = ν̄1(t)× ρ̄(t) = (−ρ̄3(t), 0,−ρ̄1(t)) and since

ν1 and ν̄1 are fixed vectors, ν ′1 = 0 and ν̄ ′1 = 0 therefore κ1 = κ2 = κ̄1 = κ̄2 = 0. Now by

following the similar steps to the Proposition 4.2, we get the desired result. □

Proposition 4.7. Let (γ, ν1, ν2) : I → E3
1 × Θ and (γ̄, ν̄1, ν̄2) : Ī → E3

1 × Θ be spacelike

framed curves with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively. Assume that γ

is contained in the xz-plane and γ̄ is contained in the yz-plane. Then for the translation

framed surface (σ, ξ, η) : I × Ī → E3
1 × Θ, µH ≡ 0 if and only if σ is a point or is a part of

the following surface

σ(s, t) =
(
v(t), u(s),

1

c
log

∣∣∣sinh(cv(t))
sin(cu(s))

∣∣∣),
where c is some constant.

Proof. Working with the frames {ν1, ν2, ρ} and {ν̄1, ν̄2, ρ̄} as defined in the Proposition 4.6,

we have κ1 = κ2 = κ̄1 = κ̄2 = 0. Since ρ and ρ̄ are spacelike unit vectors so we take

ρ(s) = (0, cos θ(s), sin θ(s)) and ρ̄(t) = (sinh θ(t), 0, cosh θ(t)) and by following the similar

steps to the Proposition 4.3 we obtain

γ(s) =
(
0, u(s),−1

c
log (2 sin (cu(s)))

)
,

γ̄(t) =
(
v(t), 0,

1

c
log (2 sinh (cv(t)))

)
,

where u(s) = −1
c log(tan (

c
2

∫
τ̄(t)dt+ b)) and v(t) = 1

c log (
1+Āec

∫
τ̄(t)dt

1−Āec
∫
τ̄(t)dt ). Thus,

σ(s, t) = γ(s) + γ̄(t)

=
(
v(t), u(s),

1

c
log

∣∣∣sinh(cv(t))
sin(cu(s))

∣∣∣),
where c is a constant. In fig. 3 we have diagram of the surface when c = 1. □
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Figure 3.
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