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Abstract. In this paper, we define two types of Translation-Factorable (TF-) surfaces in

the Galilean 3-space. Then, we obtain the complete classification of these surfaces with

vanishing Gaussian curvature and mean curvature and also, we give some explicit graphics

of these surfaces.
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1. Introduction

The history of the view of what constitutes geometry has been changed radically on a

number of occasions. For centuries, it was thought that the single aim of geometry is the

through investigation of the properties of ordinary 3-dimensional Euclidean space. That view

was broadened by Gauss in 1816, by Bolyai 1824 and by Lobachevski in 1826, independently.

Furthermore, the explorations and views of Riemann [15] and Klein [11] being a synthesis

of the geometric views of Cayley showed that there exist other (non-Euclidean) geometric

systems. Until this time, many technical and popular resources have been written about

the geometry of non-Euclidean space. Among these space, there are Minkowski space [13],

Galilean and pseudo-Galilean space [1, 10, 14, 16] and so on.
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It should be noted that one of the pioneer books of the Galilean geometry is the Yaglom’s

book [19]. In that book was discussed on the physical basis of this geometry closely related

with Galilean’s principle of relativity, i.e., Newtonian mechanics. In the last decade, the

Galilean and pseudo-Galilean space were used by several researchers as an ambient space for

the well-known Euclidean concepts (see in [3, 4, 5, 6, 7, 9, 12, 17, 18]).

In this paper, we first introduce the notations that we are going to use and give a brief

summary of basic definitions in theory of surfaces in Galilean 3-space. Then, we define

two types of Translation-Factorable (TF-) surfaces in Galilean 3-space, by considering the

definition of these surfaces given in [8] in Euclidean and Lorentzian 3-space. Also, we give

the complete classification of such surfaces with vanishing Gaussian curvature and mean

curvature and also some explicit graphics of them.

2. Preliminaries

First, we would like to give a brief summary of basic definitions, facts and equations in

the theory of surfaces of Galilean 3-space (see for detail, [14, 16, 19]).

The Galilean 3−space G3 arises in a Cayley-Klein way by pointing out an absolute figure

{ω, f, J} in the 3-dimensional real projective space P3(R) where ω is the ideal (absolute)

plane, f is the absolute line and J is the fixed elliptic involution of points of f . Then the

homogeneous coordinates (x0 : x1 : x2 : x3) are introduced such that ω is given by x0 = 0, f

is given by x0 = x1 = 0 and J , by (0 : 0 : x2 : x3) 7→ (0 : 0 : −x3 : x2).

In affine coordinates defined by (x0 : x1 : x2 : x3) = (1 : x1 : x2 : x3), the distance between

two points Pi = (xi, yi, zi) with i ∈ {1, 2} is defined by the formula

dP1P2 =

 |x2 − x1| if x1 6= x2,√
(y2 − y1)2 + (z2 − z1)2 if x1 = x2

The group of motions of G3 is a six-parameter group. Regarding this group of motions,

except the absolute plane, there exist two classes of planes in G3: Euclidean planes that

contain f where the induced metric is Euclidean and isotropic planes that do not contain f

whose induced metric is isotropic. Also, there are four types of lines in G3: isotropic lines

that intersect f , non-isotropic lines that do not intersect f , non-isotropic lines in ω and the

absolute line f , [6].

Let ~X = (x1, x2, x3) be a vector in G3. If x1 = 0, then ~X is called as isotropic; otherwise,

it is said to be non-isotropic. Note that, the x1−axis is non-isotropic while the x2−axis and

the x3−axis are isotropic, for standart coordinates (x1, x2, x3). Moreover, a plane of the form
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x1 = const. is called an Euclidean plane, otherwise isotropic. For two vectors ~X = (x1, x2, x3)

and ~Y = (y1, y2, y3), the Galilean scalar product is given by

〈X,Y 〉 =

 x1y1 if x1 6= 0 or y1 6= 0,

x2y2 + x3y3 if x1 = y1 = 0.

The norm of vector ~X in G3 is defined by
∥∥∥ ~X∥∥∥ :=

√〈
~X, ~X

〉
. If

∥∥∥ ~X∥∥∥ = 1, then ~X is called

as unit vector. Also, the Galilean cross product of the vectors ~X and ~Y of which at least one

is non-isotropic is defined by

~X × ~Y =
(

0, x3y1 − x1y3, x1y2 − x2y1
)
. (2.1)

Assume that U is an open set of R2 and S is a Cr−surface such that r ≥ 2, immersed in

G3 parametrized by

ϕ : U → R2, ϕ(u1, u2) = (ϕ1(u1, u2), ϕ2(u1, u2), ϕ3(u1, u2)) . (2.2)

Let us denote
∂ϕ

∂ui
= ϕ,i,

∂ϕk

∂ui
= (ϕk),i and

∂2ϕk

∂ui∂uj
= (ϕk),ij where 1 ≤ k ≤ 3 and

1 ≤ i, j ≤ 2. Then a surface is admissible (i.e., without Euclidean tangent planes) if and

only if (ϕ1),i 6= 0 for some i = 1, 2. Let S ⊂ G3 be a regular admissible surface. We define

the side tangential vector field by

σ =
(ϕ1),1ϕ,2 − (ϕ1),2ϕ,1

W
(2.3)

and a unit normal vector N as

N =
ϕ,1 × ϕ,2

W
(2.4)

where the function W = ‖ϕ,1 × ϕ,2‖, [17].

Now, we introduce the coefficients of the second fundamental form

Lij =

〈
ϕ,ij(ϕ1),1 − (ϕ1),ijϕ,1

(ϕ1),1
, N

〉
=

〈
ϕ,ij(ϕ1),2 − (ϕ1),ijϕ,2

(ϕ1),2
, N

〉
. (2.5)

Consequently, the Gaussian curvature K and the mean curvature H of M are defined by

K =
L11L22 − L2

12

W 2
, (2.6)

H =
1

2

2∑
i,j=1

gijLij , (2.7)

where

g1 =
(ϕ1),2
W

, g2 =
(ϕ1),1
W

and gij = gigj for i, j = 1, 2. (2.8)
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Note that, if M has zero curvatures, i.e., K = 0 or H = 0, then it is called as flat or

minimal, respectively.

2.1. Translation-Factorable Surfaces in Galilean 3-space. In this section, we first

would like to state the following definitions given in [3, 4, 17] :

Definition 2.1. Let M2 be an admissible surface in Galilean space. Then M is called a

factorable surface if it can be locally written as one of the following:

x(s, t) = (s, t, f(s)g(t)), (2.9)

or

x(s, t) = (f(s)g(t), s, t), (2.10)

which are called as first and second kind, respectively. Here f, g are smooth functions of one

variable.

Definition 2.2. Let M2 be an admissible surface in Galilean space. Then M is called a

translation surface if it can be locally written as one of the following:

x(s, t) = (s, t, f(s) + g(t)), (2.11)

or

x(s, t) = (f(s) + g(t), s, t), (2.12)

which are called as first and second kind, respectively. Here f, g are smooth functions of one

variable.

Note that as can be seen from the definitions of translation surfaces or factorable surfaces

given above, there exist some distinction into two types of them coming from the fact that

the x-direction and another direction in the yz-plane play distinct roles due to the degeneracy

of the metric. Now by considering these definitions, we would like to give the definition of

translation-factorable (TF-) surface in Galilean 3-space, firstly defined in [8] in Euclidean

and Lorentzian 3-space, as follows:

Definition 2.3. Let M2 be an admissible surface in Galilean 3-space. Then M is called a

translation-factorable (TF-) surface if it can be locally written as one of the following:

ϕ(s, t) = (s, t, Bf(s)g(t) +A(f(s) + g(t))) , (2.13)
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or

ϕ(s, t) = (Bf(s)g(t) +A(f(s) + g(t)), s, t) , (2.14)

which are called as first and second type, respectively. Here f and g are real functions and

A,B are non-zero constants.

Remark 2.1. From Definition 2.3, one can observe that the surface M given by (2.13) and

(2.14) becomes a factorable surface when A = 0, B 6= 0. Similarly, if one takes B = 0 and

A 6= 0, then surface is a translation surface.

Hence, we are going to consider the case AB 6= 0.

3. Classification of Translation-Factorable surfaces with vanishing

curvature in G3

In this section, we obtain the Gaussian and the mean curvature of TF-surfaces in G3.

Then, we obtain the complete classification of flat and minimal TF-surfaces.

3.1. Type I TF-surfaces with zero curvature. Let M2 be a type I TF-surface in G3

given by (2.13). Then, we have

ϕs = (1, 0, (Bg(t) +A)f ′(s)), (3.15)

ϕt = (0, 1, g′(t)(Bf(s) +A)). (3.16)

In addition by using (2.4), we obtain

N =
1√

1 + g′(t)2(Bf(s) +A)2
(0,−g′(t)(Bf(s) +A), 1). (3.17)

Here by ′, we have denoted derivatives with respect to corresponding parameters. For read-

ability, here and in the rest of the paper, we will drop the explicit dependence of the functions

on the variables and simply write f = f(s) and g = g(t). Now, by combining (3.15)-(3.17)

with (2.5) and (2.8), respectively, we get

L11 =
f ′′(Bg +A)

W
, L12 =

Bf ′g′

W
, L22 =

g′′(Bf +A)

W
, (3.18)

and

g11 = 0, g12 = 0, g22 =
1

W 2
, (3.19)
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where W 2 = 1 + g′(t)2(Bf(s) +A)2. Consequently, (2.6) and (2.7) give

K =
f ′′g′′(Bf +A)(Bg +A)−B2(f ′)2(g′)2

(1 + g′2(Bf +A)2)
, (3.20)

H =
g′′(Bf +A)

2(1 + g′2(Bf +A)2)3/2
, (3.21)

respectively.

Now, we would like to investigate the vanishing curvature problem for TF-surfaces. First,

we examine a type I TF-surface in Galilean 3-space, whose Gaussian curvature is identically

zero.

Theorem 3.1. Let M2 be a type I TF-surface defined by (2.13) in the Galilean 3-space.

Then, M2 is a flat surface if and only if it belongs to one of the following families:

(1) M2 is a part of an isotropic plane,

(2) M2 is an admissible cylindrical surface in G3 parametrized by

ϕ(s, t) = (s, t, C1g(t) + C2) , (3.22)

where C1, C2 are non-zero constant and g is arbitrary function or

ϕ(s, t) = (s, t, C1f(s) + C2) (3.23)

where C1, C2 are non-zero constant and f is arbitrary function.

(3) f and g are given by

f(s) = − 1

B
eB(c1s+c2) +

A

B
, g(t) = − 1

B
eB(c1t+c2) +

A

B
. (3.24)

(4) f and g are given by

f(s) = −A
B

+B
C

C−1

(
(1− C)(c1s+ c2)

) 1
1−C

, g(t) = −A
B

+B
1

C−1

(
(1− 1

C
)(c1t+ c2)

) C
C−1

, (3.25)

where C 6= 1 is non-zero constant.

Proof. Let M2 be a type I TF-flat surface. Thus, from (3.20), we have

f ′′g′′(Bf +A)(Bg +A)−B2(f ′)2(g′)2 = 0. (3.26)

Let us consider on the following possibilities:

Case (1): f ′ = 0 and g′ = 0. Then, the equation (3.26) is trivially satisfied. By considering

these assumptions in (2.13), respectively, we obtain M2 is an open part of plane. Thus, we

have Case (1) of Theorem 3.1.
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Case (2): Either f ′ = 0 or g′ = 0. First, assume that f ′ = 0, i.e., f be constant. In case,

the equation (3.26) is trivially satisfied. But, in case g is a arbitrary smooth function. Thus,

we get (3.22). Similarly, by considering the assumption of g as g′ = 0, we can get (3.23) in

Theorem 3.1.

Case (3): Let f ′′ = 0 or g′′ = 0, but not both. First, assume that f ′′ = 0, i.e., f be

a linear function. In this case, one get g′ = 0 to provide the equation (3.26). Second, let

g′′ = 0. Then by the similar way, f ′ = 0 must be. Note that one can easily see that these

cases are covered by Case (2).

Case (4): Let f ′, g′, f ′′ and g′′ be non-zero. Then, the equation (3.26) can be rewritten

as

f ′′(A+Bf)

B(f ′)2
=

B(g′)2

g′′(A+Bg)
= C, (3.27)

for non-zero constant C. We are going to consider the following cases seperately:

Case (4a): C = 1. In this case (3.27) implies that

f ′′(A+Bf) = B(f ′)2 and B(g′)2 = g′′(A+Bg), (3.28)

from which, we get (3.24) in Case (3) in Theorem 3.1.

Case (4b): C 6= 1. In this case we solve (3.27) to obtain (3.25).

Conversely, a direct computation yields that the Gaussian curvature of each of surfaces

given in Theorem 3.1 vanishes identically.

Figure 1. A type I TF-flat surfaces parametrized by (3.24) and (3.25), respectively.

Now, we examine a type I TF-surface in Galilean 3-space, whose mean curvature is iden-

tically zero.

Theorem 3.2. Let M2 be a type I TF-surface defined by (2.13) in the Galilean 3-space.

Then, M2 is a minimal surface if and only if it is either
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(1) an open part of the plane z = −A2

B or

(2) a ruled surface of type C in G3 parametrized by

ϕ(s, t) = (s, 0, H(s))) + t (0, 1, F (s)) (3.29)

where F (s) = a(Bf +A) and H(s) = Af + b(A+B).

Proof. Let M2 be a type I TF-minimal surface. Thus, from (3.21), it is clear that is

sufficient that

g′′(Bf +A) = 0. (3.30)

Let us consider on the following possibilities:

Case (1): f = −A
B . Then the surface given in (2.13) can be reparametrized as ϕ(s, t) =(

s, t,−A2

B

)
which is an open part of the plane z = −A2

B . Thus, we have Case (1) of Theorem

3.2.

Case (2): g′′ = 0. Then, the function g(t) is a linear function, i.e., g(t) = at+ b, a, b ∈ R.

Then the surface given in (2.13) can be parametrized as in (3.29).

The converse follows from a direct computation.

Figure 2. A type I TF-minimal surfaces parametrized by (3.29).

Now, we would like to do the calculations for the second type TF-surfaces.
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3.2. Type II TF-surfaces with zero curvature. Let M2 be an admissible type II TF-

surface in G3 given by (2.14). Then, we have

ϕs = ((Bg +A)f ′, 1, 0), (3.31)

ϕt = (g′(Bf +A), 0, 1). (3.32)

Moreover, by substituting these into (2.4) we obtain

N =
1√

f ′2(Bg +A)2 + g′2(Bf +A)2
(0,−f ′(Bg +A),−g′(Bf +A)). (3.33)

Here by ′, we have denoted derivatives with respect to corresponding parameters. Now, by

combining the above with (2.5) and (2.8), respectively, we get

L11 =
f ′′(Bg +A)

W
, L12 =

Bf ′g′

W
, L22 =

g′′(Bf +A)

W
, (3.34)

and

g11 =
(g′)2(Bf +A)2

W 2
, g12 =

f ′g′(Bf +A)(Bg +A)

W 2
, g22 =

(f ′)2(Bg +A)2

W 2
, (3.35)

where W =
√
f ′2(Bg +A)2 + g′2(Bf +A)2. Consequently, (2.6) and (2.7) give

K =
f ′′g′′(Bf +A)(Bg +A)−B2(f ′)2(g′)2

(f ′2(Bg +A)2 + g′2(Bf +A)2)
(3.36)

and

H =
f ′′g′

2
(Bf +A)

2
(Bg +A) + g′′f ′

2
(Bg +A)

2
(Bf +A)− 2Bf ′

2
g′

2
(Bf +A)(Bg +A)

2(f ′2(Bg +A)
2

+ g′2(Bf +A)
2
)3/2

, (3.37)

respectively.

Remark 3.1. By comparing Eq. (3.20) and Eq. (3.36) implies that the Gaussian curvatures

of type I and type II of TF-surfaces in Galilean 3-space seem to be really very similar. Thus

the following classification of type II TF- flat surfaces can be proved as in Theorem 3.1.

Theorem 3.3. Let M2 be a type II TF-surface defined by (2.14) in the Galilean 3-space.

Then, M2 is a flat surface if and only if it belongs to one of the following families:

(1) M2 is a part of an isotropic plane,

(2) M2 is an admissible surface in G3 parametrized by

ϕ(s, t) = (C1g(t) + C2, s, t) , (3.38)

where C1, C2 are non-zero constant or

ϕ(s, t) = (C1f(s) + C2, s, t) (3.39)
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where C1, C2 are non-zero constant.

(3) f and g are given by

f(s) = − 1

B
eB(c1s+c2) +

A

B
, g(t) = − 1

B
eB(c1t+c2) +

A

B
. (3.40)

(4) f and g are given by

f(s) = −A
B

+B
C

C−1

(
(1− C)(c1s+ c2)

) 1
1−C

, g(t) = −A
B

+B
1

C−1

(
(1− 1

C
)(c1t+ c2)

) C
C−1

, (3.41)

where C 6= 1 and c1, c2 are non-zero constant.

Figure 3. A type II TF-flat surfaces parametrized by (3.40) and (3.41), respectively.

Finally, we would like to give the following classification theorem for a type II TF- minimal

surface:

Theorem 3.4. Let M2 be a type II TF-surface defined by (2.14) in the Galilean 3-space.

Then, M2 is a minimal surface if and only if it belongs to one of the following families:

(1) M2 is an open part of plane,

(2) M2 is an admissible surface in G3 parametrized by

ϕ(s, t) = (s, t, C1g(t) + C2) , (3.42)

where C1, C2 are non-zero constant and g is arbitrary function or

ϕ(s, t) = (s, t, C1f(s) + C2) (3.43)

where C1, C2 are non-zero constant and f is arbitrary function.

(3) f and g are given by

f(s) = − 1

B
eB(c1s+c2) +

A

B
, g(t) = − 1

B
eB(c1t+c2) +

A

B
, (3.44)
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(4) f and g are given by either

(a)

f(s) = −A
B

+B
C

1−C

(
(1− C)(c1s+ c2)

) 1
1−C

, g(t) = −A
B

+B
2−C
C−1

(
(C − 1)(c1t+ c2)

) 1
C−1

, (3.45)

or

(b)

f(s) = −A
B

+B
2−C
C−1

(
(C − 1)(c1s+ c2)

) 1
C−1

, g(t) = −A
B

+B
C

1−C

(
(1− C)(c1t+ c2)

) 1
1−C

, (3.46)

where c1, c2 are non-zero constant and C 6= 1.

Proof. Let M2 be a type II TF-minimal surface. Thus, from (3.37), we have

f ′′g′
2
(Bf +A)

2
(Bg +A) + g′′f ′

2
(Bg +A)

2
(Bf +A)− 2Bf ′

2
g′

2
(Bf +A)(Bg +A) = 0. (3.47)

Let us consider on the following possibilities:

Case (1): f ′ = 0 and g′ = 0. Then, the equation (3.26) is trivially satisfied. By considering

these assumptions in (2.14), respectively, we obtain M2 is an open part of plane. Thus, we

have Case (1) of Theorem 3.4.

Case (2): Either f ′ = 0 or g′ = 0. First, assume that f ′ = 0, i.e., f be constant. In case,

the equation (3.30) is trivially satisfied. But, in case g is a arbitrary smooth function. Thus,

we have (3.42) in Case (2) of Theorem 3.4. Similarly, by considering the assumption of g as

g′ = 0, we can get (3.43) in Case (2) of Theorem 3.4.

Case (3): Let f ′′ = 0 or g′′ = 0, but not both. First, assume that f ′′ = 0 and g′′ 6= 0.

Hence, by considering this assumption in (3.47) yields

g′′(Bg +A)2 − 2Bg′
2
(Bg +A) = 0, (3.48)

from which we have two possibilities; g = −A
B or

g′′(Bg +A)− 2Bg′
2

= 0

is valid. But the first statement contradicts with the hypothesis. Hence, we will only deal

with the second statement, whose solution is g(t) = − 1

B2(c1t+ c2)
− A

B
where c1 6= 0. Thus,

the surface is covered by in Case (4a) in Theorem 3.4 taking C = 0.

Second, let g′′ = 0. Thus, the surface is covered in exactly the same way as in the previous

case, as in Case (4b) in Theorem 3.4.
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Case (3): f ′, g′ and both f ′′ and g′′ be non-zero. Then, the equation (3.47) can be

rewritten as

f ′′(A+Bf)

B(f ′)2
+
g′′(A+Bg)

B(g′)2
= 2. (3.49)

Now, we are going to consider the following cases seperately:

Case (3a):
f ′′(A+Bf)

B(f ′)2
= 1 and

g′′(A+Bg)

B(g′)2
= 1. From there, we solve these equations

to find (3.44) in Case (3) Theorem 3.4.

Case (3b): Let
f ′′(A+Bf)

B(f ′)2
= C 6= 1. From (3.49), one gets

g′′(A+Bg)

B(g′)2
= 2 − C. By

solving these ODEs, we obtain the functions f, g given in (3.45).

Case (3c): Let
g′′(A+Bg)

B(g′)2
= C 6= 1. Similarly, one gets

f ′′(A+Bf)

B(f ′)2
= 2−C. Thus, we

obtain the functions f, g given in (3.46).

Conversely, a direct computation yields that the Gaussian curvature of each of surfaces

given in Theorem 3.4 vanishes identically.

Figure 4. A type II TF-minimal surfaces parametrized by (3.44).

Figure 5. A type II TF-minimal surfaces parametrized by (3.45) and (3.46).
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