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Abstract. In this study, we present some new consequences and exercises of homogenized

quasilinear spaces. We also research on the some characteristics of the homogenized quasi-

linear spaces. Then, we introduce the concept of equivalent norm on a quasilinear space.

As in the linear functional analysis, we obtained some results with equivalent norms defined

in normed quasilinear spaces.
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1. Introduction

In the 1986, Aseev [1] presented the quasilinear spaces and normed quasilinear spaces

which are generalization of linear spaces and normed linear spaces, respectively. The biggest

difference between quasilinear space and linear space is that it has a partial order relation. He

gave some properties and some results which are quasilinear provisions of some conclusions

in classical linear functional analysis. Later, in [1], he presented the some new concepts in

normed quasilinear spaces. Further, in ([7], [10], [11], [12], [2], [9], [8] etc.), they have proposed

a series of new concepts and new results of quasilinear spaces. In [7], they introduced the

concept of proper quasilinear space which is a new notion of quasilinear functional analysis.
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In the same study, they presented concept of dimension of a quasilinear space which are

very meaningful to improvement of quasilinear algebra.

In the light of all these studies, in [6], we extended the notion of inner product spaces to

the quasilinear conditions. After giving this new definition, we obtained some new concepts

on inner product quasilinear spaces such as Hilbert quasilinear spaces and some orthogonality

concepts. Further, in [6], we examined the sample of quasilinear spaces ”IRn” interval space

and we presented the quasilinear spaces Is, Ic0, Il∞ and Il2. Also, we have studied to clarify

geometric properties of inner product quasilinear spaces in [13]. Furthermore, we tried to

enlarge the results in quasilinear functional analysis in [3], [4] and [5].

In this paper, we present some new conclusions of homogenized quasilinear space. Also, we

obtain some results with considerable advantages about features of homogenized quasilinear

spaces. Furthermore, we obtain some results with equivalent norms in a normed quasilinear

space.

2. Preliminaries

In this section, we give some definitions and results on quasilinear spaces given by Aseev

[1].

Definition 2.1. [1] A quasilinear space over a field R is a set Q with a partial order relation

”⪯” with the operations of addition Q × Q → Q and scalar multiplication R × Q → Q

satisfying the following conditions:

(Q1) q ⪯ q,

(Q2) q ⪯ z, if q ⪯ w and w ⪯ z,

(Q3) q = w, if q ⪯ w and w ⪯ q,

(Q4) q + w = w + q,

(Q5) q + (w + z) = (q + w) + z,

(Q6) there exists an element θ ∈ Q such that q + θ = q,

(Q7) α · (β · q) = (α · β) · q,

(Q8) α · (q + w) = α · q + α · w,

(Q9) 1 · q = q,

(Q10) 0 · q = θ,

(Q11) (α+ β) · q ⪯ α · q + β · q,

(Q12) q + z ⪯ w + v, if q ⪯ w and z ⪯ v,

(Q13) α · q ⪯ α · w, if q ⪯ w
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for every q, w, z, v ∈ Q and every α, β ∈ R.

The considerable instance which is a quasilinear space is the set of all closed intervals of

R with the relation ” ⊆ ”, algebraic sum operation M +N = {m+ n : m ∈ M, n ∈ N} and

the real-scalar multiplication λ ·M = {λm : m ∈ M} . We indicate this set by ΩC(R). Also,

the set of all compact subsets of R is Ω(R).

Let Q be a quasilinear space and W ⊆ Q. Then W is called a subspace of Q, whenever W

is a quasilinear space with the same partial order relation and the restriction of the operations

on Q to W . An element q ∈ Q is said to be symmetric if −q = q, where −q = (−1) · q, and

Qd denotes the set of all symmetric elements of Q.

Theorem 2.1. W is a subspace of a quasilinear space Q if and only if, for every, q, w ∈ W

and α, β ∈ R, α · q + β · w ∈ W [12].

Definition 2.2. [1] Let Q be a quasilinear space. A function ∥.∥Q : Q −→ R is named a

norm if the following circumstances hold:

(NQ1) ∥q∥Q > 0 if q ̸= 0,

(NQ2) ∥q + w∥Q ≤ ∥q∥Q + ∥w∥Q ,

(NQ3) ∥α · q∥Q = |α| · ∥q∥Q ,

(NQ4) if q ⪯ w, then ∥q∥Q ≤ ∥w∥Q ,

(NQ5) if for any ε > 0 there exists an element qε ∈ Q such that, q ⪯ w+qε and ∥qε∥Q ≤ ε

then q ⪯ w for any elements q, w ∈ Q and any real number α ∈ R.

Let Q be a normed quasilinear space. Hausdorff metric on Q is defined by the equality

hQ(q, w) = inf {r ≥ 0 : q ⪯ w + zr1, w ⪯ q + zr2, ∥zri ∥ ≤ r} .

Since q ⪯ w + (q − w) and w ⪯ q + (w − q), the quantity hQ(q, w) is well-defined for any

elements q, w ∈ Q, and

hQ(q, w) ≤ ∥q − w∥Q .

Example 2.1. Let X be a Banach space. A norm on Ω(X) is defined by

∥A∥Ω(X) = sup
a∈A

∥a∥X .

Then Ω(X) and ΩC(X) are normed quasilinear spaces. The Hausdorff metric is described as

ordinary:

hΩC(X)(A,B) = inf{r ≥ 0 : A ⊂ B + Sr(θ), B ⊂ A+ Sr(θ)},
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where Sr(θ) demonstrates a closed ball of radius r about θ ∈ X [1].

Definition 2.3. Let Q be a quasilinear space, M ⊆ Q and m ∈ M . The set

FM
m = {z ∈ Mr : z ⪯ m}

is called floor in M of m. If M = Q, then it is called floor of m and written Fm in place of

FM
m [7].

Definition 2.4. Let Q be a quasilinear space and M ⊆ Q. Then the set

FQ
M =

⋃
m∈M

FQ
m

is called floor in Q of M and is indicated by FQ
M [7].

Definition 2.5. Let Q be a quasilinear space. Q is called solid-floored quasilinear space

whenever

y = sup {m ∈ Qr : m ⪯ y}

for all y ∈ Q. Other than, Q is called non solid-floored quasilinear space [7].

Example 2.2. Ω(R) and ΩC(R) are solid-floored quasilinear space. However, singular sub-

space of ΩC(R) is non-solid floored quasilinear space. For example,

sup
{
m : m ∈ ((ΩC(R))s ∪ {0})r , m ⊆ y

}
= {0} ≠ y

for element y = [−2, 2] ∈ (ΩC(R))s∪{0} . Also, we can not find any element m ∈ ((ΩC(R))s ∪ {0})r
such that m ⊆ z for z = [1, 3] ∈ (ΩC(R))s ∪ {0} .

Definition 2.6. Let Q be a quasilinear space. Consolidation of floor of Q is the smallest

solid-floored quasilinear space Q̂ containing Q, that is, if there exists another solid-floored

quasilinear space W containing Q then Q̂ ⊆ W [13].

Q̂ = Q for some solid-floored quasilinear space Q. Besides, ̂ΩC(Rn)s = ΩC(Rn). For a

quasilinear space Q, the set

F Q̂
y =

{
z ∈

(
Q̂
)
r
: z ⪯ y

}
.

is the floor of Q in Q̂.
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Definition 2.7. Let Q be a quasilinear space. A mapping ⟨ , ⟩ : Q×Q → Ω(R) is called an

inner product on Q if for any q, w, z ∈ Q and α ∈ R the following conditions hold:

(IPQ1) If q, w ∈ Qr then ⟨q, w⟩ ∈ ΩC(R)r ≡ R,

(IPQ2) ⟨q + w, z⟩ ⊆ ⟨q, z⟩+ ⟨w, z⟩ ,

(IPQ3) ⟨α · q, w⟩ = α · ⟨q, w⟩ ,

(IPQ4) ⟨q, w⟩ = ⟨w, q⟩,

(IPQ5) ⟨q, q⟩ ≥ 0 for q ∈ Xr and ⟨q, q⟩ = 0 ⇔ q = 0,

(IPQ6) ∥⟨q, w⟩∥Ω(R) = sup
{
∥⟨a, b⟩∥Ω(R) : a ∈ F Q̂

q , b ∈ F Q̂
w

}
,

(IPQ7) if q ⪯ w and u ⪯ v then ⟨q, u⟩ ⊆ ⟨w, v⟩ ,

(IPQ8) if for any ε > 0 there exists an element qε ∈ Q such that q ⪯ w + qε and

⟨qε, qε⟩ ⊆ Sε (θ) then q ⪯ w.

A quasilinear space with an inner product is called an inner product quasilinear space [6].

Example 2.3. ΩC(R), is an example of inner product quasilinear space with

⟨A,B⟩ = {ab : a ∈ A, b ∈ B}.

For any two elements q, w of an inner product quasilinear space Q, we have

∥⟨q, w⟩∥Ω(R) ≤ ∥q∥Q ∥w∥Q .

Every inner product quasilinear space Q is a normed quasilinear space with the norm

described by

∥q∥ =
√
∥⟨q, q⟩∥Ω(R)

for every q ∈ Q.

Definition 2.8. An element q of the inner product quasilinear space Q is said to be orthogonal

to an element w ∈ Q if

∥⟨q, w⟩∥Ω(R) = 0.

From here, we can call that q and w are orthogonal and we show q ⊥ w [6].

An orthonormal set M ⊂ Q is an orthogonal set in Q whose elements have norm 1, that

is, for every q, w ∈ M

∥< q,w >∥Ω(R) =


0, q ̸= w

1, q = w .
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Definition 2.9. A⊥, is called the orthogonal complement of A and is showed by

A⊥ = {q ∈ Q : ∥⟨q, w⟩∥
Ω(R)

= 0, w ∈ A}.

For any subset A of an inner product quasilinear space Q, A⊥ is a closed subspace of Q

[6].

Example 2.4. Let X = (X1, X2, . . . , Xn) ∈ IRn and Y = (Y1, Y2, . . . , Yn) ∈ IRn. The

algebraic sum operation on IRn is defined by

X + Y = (X1 + Y1, X2 + Y2, . . . , Xn + Yn)

and multiplication by a real number α ∈ R is defined by

α ·X = (α ·X1, α ·X2, . . . , α ·Xn) .

If we will be assumed that the partial order on IRn is given by

X ≤ Y ⇔ Xi ⪯ Yi 1 ≤ i ≤ n

then IRn is quasilinear space according to the above processes. Furthermore, different two

norm on IRn are defined by

∥X∥ = ∥(X1, X2, . . . , Xn)∥ = sup
1≤i≤n

∥Xi∥IR

and

∥X∥2 =

(
n∑

i=1

∥Xi∥2IR

) 1
2

.

The quasilinear space IRn, with the inner product

⟨X,Y ⟩ =
n∑

i=1

⟨Xi, Yi⟩IR

is an inner product quasilinear space.

The quasilinear spaces IRn and ΩC(Rn) are different from each other. For instance; while

the set A =
{
(q, w) : q2 + w2 ≤ 1

}
is element of ΩC(R2), it is not element of IR2. Further,

B = ([1, 3] , {4}) ∈ IR2 but B /∈ ΩC(R2). Thus, IRn and ΩC(Rn) are two distinct instances

of quasilinear spaces.
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3. Main Results

In this section, we give the concept of homogenized quasilinear space by [5]. Then, we

give new findings about this concept.

Definition 3.1. Let Q be a quasilinear space. Q is called homogenized quasilinear space

if for all q ∈ Q and αβ ≥ 0 the following circumstance is satisfied:

(α+ β) · q = α · q + β · q.

Obviously, every vector space is a homogenized quasilinear space. However, the inverse is

false.

Theorem 3.1. ΩC(Q) is a homogenized quasilinear space for every normed quasilinear space

Q. However, Ω(Q) is not homogenized quasilinear space.

Proof. Since ΩC(Q) is a quasilinear space, we have (α+ β) · A ⊆ α · A+ β · A from

(Q11) for every A ∈ ΩC(Q). Now, we only prove the converse. Let a ∈ α ·A+β ·A for every

A ∈ ΩC(Q). Then, we obtain

a = α · q + β · w

for a q, w ∈ A. From here, we can write

a = (α+ β)

[
α

α+ β
· q + β

α+ β
· w
]
.

If t = α
α+β and k = β

α+β , there is two different cases since αβ ≥ 0:

i) If α ≤ α+ β for α, β ∈ R+, then we get α
α+β ≤ 1 and 0 ≤ α

α+β .

ii) If α+ β ≤ α for α, β ∈ R−, then we get 1 ≥ α
α+β and 0 ≤ α

α+β .

From i) and ii), we obtain 0 ≤ t ≤ 1. Further, clearly t+k = 1. According to the definition

of convexity on quasilinear spaces, we get α
α+β · q + β

α+β · w ∈ A. So, we show that

a = (α+ β) · z ∈ A

for a z ∈ A.

Example 3.1. Ω (R) is a non-homogenized quasilinear space. Consider the element A =

{1, 2, 3} ∈ Ω (R). Clearly, 2·A = {2, 4, 6} . But A+A = {2, 3, 4, 5, 6}. Therefore 2·A ̸= A+A

for α = 1 and β = 1. This shows us that Ω (R) is not a homogenized quasilinear space.

Theorem 3.2. Let Q be a homogenized inner product quasilinear space and q ∈ Qd. Then

there exists at least one w ∈ X such that q = w − w.
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Proof. We know that (α+ β)·w = α·w+β ·w for every w ∈ Q and α, β ∈ R+. Further

q = −q and q = q since q is a symmetric element of Q. Same time, we get q + q = q − q.

From here, we obtain q = q
2 − q

2 since 2 · q = q − q. This complete the proof.

Proposition 3.1. Let Q be a homogenized quasilinear space and q ∈ Q. Then Fq is convex

subset of Q.

Proof. Let Q be a homogenized quasilinear space. From Definition 2.3, we have

Fq = {a ∈ Qr : a ⪯ q}

for a q ∈ Q. Thus, we obtain

a ⪯ q and b ⪯ q

for every a, b ∈ Fq. From (Q13), we have

γ · a ⪯ γ · q and (1− γ) · b ⪯ (1− γ) · q

for every 0 ⪯ γ ⪯ 1. Hence,

γ · a+ (1− γ) · b ⪯ γ · q + (1− γ) · q.

Since, Q is a homogenized quasilinear space,

γ · q + (1− γ) · q = (γ + 1− γ) · q = q

for every 0 ⪯ γ ⪯ 1. Therefore, we get

γ · a+ (1− γ) · b ⪯ q.

Thus, γ · a+ (1− γ) · b ∈ Fq.

Remark 3.1. Floor of an element of an inner product quasilinear space Q is convex if and

only if this inner product quasilinear space Q is homogenized. If Q is not homogenized in the

Proposition 3.1, then Fq is not convex since (α+ β) · q ̸= α · q + β · q.

Example 3.2. IRn is a homogenized inner product quasilinear space. In [6], we showed that

IRn is an inner product quasilinear space with

⟨X,Y ⟩ =
n∑

i=1

⟨Xi, Yi⟩IR .
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For every X ∈ IRn and αβ ≥ 0, we can write

(α+ β) ·X = (α+ β) · (X1, X2, . . . , Xn)

= ((α+ β) ·X1, (α+ β) ·X2, . . . , (α+ β) ·Xn) .

Then, we obtain

(α+ β) ·X = (α ·X1 + β ·X1, α ·X2 + β ·X2, . . . , α ·Xn + β ·Xn)

= (α ·X1, α ·X2, . . . , α ·Xn) + (β ·X1, β ·X2, . . . , β ·Xn)

= α ·X + β ·X

since IR is a homogenized quasilinear space.

Example 3.3. All interval sequence spaces Is, all bounded interval sequence spaces Il∞ =

{X = (Xn) ∈ IR∞ : |(Xn)| ≤ ∞} and all convergent interval sequence spaces

Ic0 = {X = (Xn) ∈ IR∞ : (Xn) → 0}

are further example of homogenized quasilinear spaces.

Before giving the equivalent norms on the qasilinear spaces, we will give an example to

cartesian product of quasilinear spaces.

Example 3.4. Let Q be the Cartesian product of quasilinear spaces Q1, Q2, ..., Qn, that is,

Q = Q1 ×Q2 × ...×Qn. The space Q is a quasilinear space with the algebraic sum operation

(q1, q2, ..., qn) + (w1, w2, ..., wn) = (q1 + w1, q2 + w2 + ...+ qn + wn) ,

real scalar multiplication

α · (q1, q2, ..., qn) = (α · q1, α · q2, ..., α · qn)

and order relation

(q1, q2, ..., qn) ⪯ (w1, w2, ..., wn) ⇔ q1 ⪯ w1, q2 ⪯ w2, ..., qn ⪯ wn

for every (q1, q2, ...qn) , (w1, w2, ...wn) ∈ Q1 ×Q2 × ...×Qn = Q.

Example 3.5. Let Q and W be the normed quasilinear spaces with ∥·∥1 and ∥·∥2 , respectively.

Define Q×W = {z = (q, w) : q ∈ Q and w ∈ W} . The functions

∥z∥ = max (∥q∥1 , ∥w∥2) (3.1)
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∥z∥0 = ∥q∥1 + ∥w∥2 (3.2)

defines norms on Q×W. Then Q×W is normed quasilinear space.

Proposition 3.2. Let ∥·∥1 be a norm on quasilinear space Q and ∥·∥2 be a norm on quasi-

linear space W . From Example 3.5, we have Z = Q ×W is normed quasilinear space with

norms (3.1) and (3.2). Let {(qn, wn)} be sequence in Q ×W . The following conditions are

satisfied:

i) The sequence {(qn, wn)} is convergent to {(q, w)} in Z if and only if {qn} is convergent

to q in Q and {wn} is convergent to w in W.

ii) The sequence {(qn, wn)} is Cauchy sequence in Z if and only if {qn} is Cauchy sequence

in Q and {wn} is Cauchy sequence in W.

Proof. Suppose that (qn, wn) → (q, w) ∈ Z. Then corresponding to each ϵ > 0, ∃

n0 ∈ N such that the following inequalities hold for n > n0 :

(qn, wn) ⪯ (q, w) + aϵ1,n, (q, w) ⪯ (qn, wn) + aϵ2,n,
∥∥aϵi,n∥∥ ≤ ϵ.

Here, aϵ1,n =
(
bϵ1,n, c

ϵ
1,n

)
and aϵ2,n =

(
bϵ2,n, c

ϵ
2,n

)
. Since Z is quasilinear space, we get

qn ⪯ q + bϵ1,n, q ⪯ qn + bϵ2,n

and

wn ⪯ w + cϵ1,n, w ⪯ wn + cϵ2,n.

Also, since
∥∥∥aϵi,n∥∥∥ = max

(∥∥∥bϵi,n∥∥∥
1
,
∥∥∥cϵi,n∥∥∥

2

)
≤ ϵ or

∥∥∥aϵi,n∥∥∥
0
=
∥∥∥bϵi,n∥∥∥

1
+
∥∥∥cϵi,n∥∥∥

2
≤ ϵ, we obtain∥∥∥bϵi,n∥∥∥

1
≤ ϵ and

∥∥∥cϵi,n∥∥∥
2
≤ ϵ according to (3.1) and (3.2). This proves that the sequence {qn}

is convergent to q in Q and the sequence {wn} is convergent to w in W. The opposite can be

shown in a similar way.

Let {(qn, wn)} be a Cauchy sequence in Z. For an arbitrary ϵ > 0 there exists a n0 ∈ N

such that

(qn, wn) ⪯ (qm, wm) + aϵ1,n, (qm, wm) ⪯ (qn, wn) + aϵ2,n,
∥∥aϵi,n∥∥ ≤ ϵ

for all m,n > n0, and thus also

qn ⪯ qm + bϵ1,n, qm ⪯ qn + bϵ2,n

and

wn ⪯ wm + cϵ1,n, wm ⪯ wn + cϵ2,n.
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Further, we obtain
∥∥∥bϵi,n∥∥∥

1
≤ ϵ and

∥∥∥cϵi,n∥∥∥
2
≤ ϵ for two norms defined in (3.1) and (3.2) since∥∥∥aϵi,n∥∥∥ ≤ ϵ. Now, let {qn} is Cauchy sequence in Q and {wn} is Cauchy sequence in W. Then

for any ϵ > 0 there exists a n0 ∈ N such that

qn ⪯ qm + bϵ1,n, qm ⪯ qn + bϵ2,n,
∥∥bϵi,n∥∥1 ≤ ϵ

and

qn ⪯ qm + cϵ1,n, qm ⪯ qn + cϵ2,n,
∥∥cϵi,n∥∥2 ≤ ϵ

for all n,m > n0. Since Q and W are quasilinear space, we get

(qn, wn) ⪯
(
qm + bϵ1,n, wm + cϵ1,n

)
= (qm, wm) +

(
bϵ1,n, c

ϵ
1,n

)
,

(qm, wm) ⪯
(
qn + bϵ2,n, wn + cϵ2,n

)
= (qn, wn) +

(
bϵ2,n, c

ϵ
2,n

)
.

Consequently, we obtain
∥∥∥(bϵi,n, cϵi,n)∥∥∥ ≤ ϵ because

∥∥∥bϵi,n∥∥∥
1
≤ ϵ and

∥∥∥cϵi,n∥∥∥
2
≤ ϵ. This com-

pletes the proof.

Theorem 3.3. Let Q1, Q2, ..., Qn be Banach quasilinear spaces over the same scalar field R

with norm ∥·∥i (1 ≤ i ≤ n), respectively. Then the product space Q = Q1 ×Q2 × ...×Qn is

Banach quasilinear space with norm

∥q∥ = max
1⪯k⪯n

(∥qk∥k) .

Proof. Let qk =
((
q11, q

1
2, ..., q

1
n

)
,
(
q21, q

2
2, ..., q

2
n

)
, ...,

(
qk1 , q

k
2 , ..., q

k
n

)
, ...
)
be a Cauchy

sequence in Q. For ϵ > 0, there exists a number n0 such that for k,m > n0 there are

elements aϵ1,n, b
ϵ
2,n ∈ Q for which(

qk1 , q
k
2 , ..., q

k
n

)
⪯ (qm1 , qm2 , ..., qmn ) + (ai)

ϵ
1,k,m ,

(qm1 , qm2 , ..., qmn ) ⪯
(
qk1 , q

k
2 , ..., q

k
n

)
+ (ai)

ϵ
2,k,m ,∥∥∥(ai)ϵj,k,m∥∥∥ ≤ ϵ.

From here, we get∥∥∥(qk1 , qk2 , ..., qkn)− (qm1 , qm2 , ..., qmn )
∥∥∥ = max

1⪯i⪯n

∥∥∥qki − qmi

∥∥∥
i
→ 0

(k,m → ∞). Hence,
∥∥qki − qmi

∥∥
i
→ 0 for every 1 ≤ i ≤ n when k,m → ∞. This proves that

the
(
qki
)
is a Cauchy sequence in Qi for every 1 ≤ i ≤ n. Since Qi is Banach,

(
qki
)
converges

to a qi in Qi, (k → ∞) . Note that this implies that for ϵ > 0 there exists a n0 such that for

k > n0 :

qki ⪯ qi + (ai)
ϵ
1,k , qi ⪯ qki + (ai)

ϵ
2,k ,

∥∥∥(ai)ϵj,k∥∥∥
i
≤ ϵ
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for every 1 ⪯ i ⪯ n. Since∥∥∥qk − q
∥∥∥ =

∥∥∥(qk1 , qk2 , ..., qkn)− (q1, q2, ..., qn)
∥∥∥

= max
1⪯i⪯n

(∥∥∥qki − qi

∥∥∥
i

)
≤ ϵ,

we have qk → q ∈ Q, (k → ∞) . Consequently, Q is Banach quasilinear space.

Proposition 3.3. If Q1, Q2, ..., Qn are solid-floored quasilinear space then Q = Q1 × Q2 ×

...×Qn is solid-floored quasilinear space.

Proof. Let Qi is solid-floored quasilinear space for every 1 ≤ i ≤ n. From the

Definition 2.5, we have

qi = sup {wi ∈ (Qi)r : wi ⪯ qi}

for every qi ∈ Qi. Since Q is a quasilinear space, we obtain

(w1, w2, ..., wn) ⪯ (q1, q2, ..., qn)

such that (w1, w2, ..., wn) = w ∈ Qr and (q1, q2, ..., qn) = q ∈ Q. From here, we have

q = sup {(w1, w2, ..., wn) ∈ Qr : (w1, w2, ..., wn) ⪯ (q1, q2, ..., qn)} .

Now, we introduce the concept of equivalent norms on the same quasilinear space. Also,

we concentrate on the Hausdorff metric properties for two equivalent norms that are defined

on a quasilinear space.

Definition 3.2. A norm ∥·∥ on a normed quasilinear space Q is said to be equivalent to a

norm ∥·∥0 on Q if there are positive real numbers a and b such that for all q ∈ Q we have

a ∥q∥0 ≤ ∥q∥ ≤ b ∥q∥0 .

Example 3.6. The following norms on IR2 = {(X1, X2) : X1, X2 ∈ ΩC (R)} are equivalent:

∥(x, y)∥ = ∥x∥+ ∥y∥

∥(x, y)∥1 = max {∥x∥ , ∥y∥} .

Theorem 3.4. Let Q be a quasilinear space and ∥·∥ and ∥·∥1 be equivalent norms on Q. The

sequence {qn} is convergent to q in normed quasilinear space (Q, ∥·∥) if and only if {qn} is

convergent to q in (Q, ∥·∥1) .
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Proof. Suppose that {qn} → q in normed quasilinear space (Q, ∥·∥) . Then for every

ϵ > 0 there exists an N ∈ N such that:

qn ⪯ q + qϵ1,n, q ⪯ qn + qϵ2,n,
∥∥qϵi,n∥∥ ≤ ϵ

M

∀n ≥ N and M ∈ N+. Since the norms ∥·∥ and ∥·∥1 are equivalent, we have∥∥qϵi,n∥∥1 ≤ M
∥∥qϵi,n∥∥ ≤ ϵ.

Hence {qn} → q in (Q, ∥·∥1) .

Conversely, let {qn} → q in (Q, ∥·∥1). Then for every ϵ > 0 there exists an index N such

that

qn ⪯ q + qϵ1,n, q ⪯ qn + qϵ2,n,
∥∥qϵi,n∥∥1 ≤ ϵ

∀n ≥ N. Since the norms are equivalent, we get

m ∥q∥ ≤ ∥q∥1 ≤ ϵ.

Hence, {qn} is convergent to q in (Q, ∥·∥) .

Theorem 3.5. Let Q be a quasilinear space and ∥·∥ and ∥·∥1 be equivalent norms on Q. The

sequence {qn} is Cauchy sequence in normed quasilinear space (Q, ∥·∥) if and only if {qn} is

Cauchy sequence in (Q, ∥·∥1) .

Proof. Let {qn} be a Cauchy sequence in (Q, ∥·∥) . For an arbitrary ϵ > 0 there exists

a n0 ∈ N such that

qn ⪯ qm + aϵ1,n, qm ⪯ qn + aϵ2,n,
∥∥aϵi,n∥∥ ≤ ϵ

M

for all n,m > n0. Similar way to the above theorem, we obtain
∥∥∥aϵi,n∥∥∥

1
≤ M

∥∥∥aϵi,n∥∥∥ ≤ ϵ. This

proves that the sequence {qn} is Cauchy sequence in (Q, ∥·∥1). The proof of opposite can be

proved by similar way.

Theorem 3.6. Let Q be a quasilinear space and ∥·∥ and ∥·∥1 be equivalent norms on Q.

(Q, ∥·∥) is complete if and only if (Q, ∥·∥1) is complete.

Proof. Let (Q, ∥·∥) be a complete and ∥·∥ and ∥·∥1 be equivalent norms on Q. If {qn}

is a Cauchy sequence in (Q, ∥·∥1) , then for an arbitrary ϵ > 0 there exists a n0 ∈ N such that

qn ⪯ qm + aϵ1,n, qm ⪯ qn + aϵ2,n,
∥∥aϵi,n∥∥ ≤ ϵ
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for all n,m > n0. From Theorem 3.5, we have {qn} is a Cauchy sequence in (Q, ∥·∥1). We

obtain qn → q ∈ Q from the completeness of (Q, ∥·∥) . From Theorem 3.4, we get {qn, n ∈ N}

is convergent to q in (Q, ∥·∥1) which proves completeness of (Q, ∥·∥1) . The converse can be

proved similarly.

Corollary 3.1. If two norms ∥·∥ and ∥·∥0 on a quasilinear space Q are equivalent, then

∥qn − q∥ → 0 if and only if ∥qn − q∥0 → 0 for any sequence (qn) in Q and any q ∈ Q.

If Q is finite dimensional normed quasilinear space, then any two norms on Qr are equiv-

alent since Qr is a normed linear subspace of Q.

4. Conclusion

In this paper, we define the notion of homogenized quasilinear space as a new concept in

quasilinear spaces. We also research on the some properties of the homogenized quasilinear

spaces. Then, we introduce the concept of equivalent norm on a quasilinear space. As in the

linear functional analysis, we obtained some results related to equivalent norms defined in

normed quasilinear spaces.
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İnönü University, Department of Mathematics, Malatya, Turkey


	1. Introduction
	2. Preliminaries
	3. Main Results
	4. Conclusion
	References

