International Journal of Maps in Mathematics
Volume 4, Issue 2, 2021, Pages:107-120
ISSN: 2636-7467 (Online)
www.journalmim.com

ON TRANS-SASAKIAN 3-MANIFOLDS WITH RESPECT TO THE SCHOUTEN-VAN KAMPEN CONNECTION

SEMRA ZEREN (D) AND AHMET YILDIZ © *

Abstract. The object of the present paper is to characterize trans-Sasakian 3-manifolds with respect to the Schouten-van Kampen connection. Also, we consider Ricci solitons, η-Ricci solitons and Yamabe solitons of a trans-Sasakian 3-manifold with respect to the Schouten-van Kampen connection. Then we give an example of a trans-Sasakian 3-manifold with respect to the Schouten-van Kampen connection.
Keywords: Schouten-van Kampen connection, trans-Sasakian manifolds, semi-symmetry, Ricci semi-symmetry, almost Ricci soliton, almost η-Ricci soliton, almost Yamabe soliton. 2010 Mathematics Subject Classification: 53C15, 53C25, 53A30.

1. Introduction

In [19], Oubina defined a new class of almost contact metric structure, which is said to be trans-Sasakian structure of type (α, β). In [7, Chinea and Gonzales introduced two subclasses of trans-Sasakian structures which contain the Kenmotsu and Sasakian structures. Trans-Sasakian structures of type $(\alpha, 0),(0, \beta)$ and $(0,0)$ are α-Sasakian, β-Kenmotsu and cosymplectic, respectively [3, 14].

The Schouten-van Kampen connection defined as adapted to a linear connection for studying non holonomic manifolds and it is one of the most natural connections on a differentiable manifold [2, 13, 23]. Solov'ev studied hyperdistributions in Riemannian manifolds using the Schouten-van Kampen connection [24, 25, 26, 27]. Then Olszak studied the Schouten-van

Received:2021.01.16
Revised:2021.03.05
Accepted:2021.03.18

* Corresponding author

Semra Zeren; zerensemra@hotmail.com; https://orcid.org/0000-0003-0083-3507
Ahmet Yıldız; a.yildiz@inonu.edu.tr; https://orcid.org/0000-0002-9799-1781

Kampen connection to almost (para) contact metric structures [18]. In recent times, Perktaş and Yildiz studied some symmetry conditions and some soliton types of quasi-Sasakian manifolds and f-Kenmotsu manifolds with respect to the Schouten-van Kampen connection [21, 22].

Let (M, g) be a Riemannian manifold. Then the metric g is called a Ricci soliton if [12]

$$
\begin{equation*}
L_{X} g+2 R i c+2 \delta g=0, \tag{1.1}
\end{equation*}
$$

where L is the Lie derivative, Ric is the Ricci tensor, X is a complete vector field and δ is a constant on M. In [8], Cho and Kimura given the notion of η-Ricci solitons. The manifold (M, g) is called an η-Ricci soliton if there exist a smooth vector field X such that the Ricci tensor satisfies

$$
\begin{equation*}
L_{X} g+2 R i c+2 \delta g+2 \mu \eta \otimes \eta=0, \tag{1.2}
\end{equation*}
$$

where and μ is also constant on M. Note that Ricci solitons and η-Ricci solitons are said to be shrinking, steady and expanding according as δ is negative, zero and positive, respectively.

In [12], Hamilton defined Yamabe flow to solve the Yamabe problem. The Yamabe soliton comes from the blow-up procedure along the Yamabe flow, so such solitons have been studied intensively [1, 5, 6, 10, 17.

A Yamabe soliton on a Riemannian manifold (M, g) satisfying [1]

$$
\begin{equation*}
\frac{1}{2}\left(L_{X} g\right)=(\tau-\delta) g \tag{1.3}
\end{equation*}
$$

where τ is the scalar curvature of M. Moreover, if (M, g) is of constant scalar curvature τ, then the Riemannian metric g is called a Yamabe metric. Yamabe solitons are said to be shrinking, steady and expanding according as δ is positive, zero and negative, respectively.

This paper is organized as follows: After preliminaries, we give some basic information about the Schouten-van Kampen connection and trans-Sasakian manifolds. Then we adapte the Schouten-van Kampen connection on trans-Sasakian 3-manifolds. In section 4, we consider Ricci semisymmetric trans-Sasakian 3-manifolds with respect to the Schouten-van Kampen connection. In the last section, firstly we study Ricci solitons, η-Ricci solitons and Yamabe solitons of a trans-Sasakian 3-manifold with respect to the Schouten-van Kampen connection. Then we give an example of a trans-Sasakian 3-manifold with respect to the Schouten-van Kampen connection.

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g), that is, ϕ is $(1,1)$-tensor field, ξ is a vector field, η is a 1 -form and g is the compatible Riemannian metric such that

$$
\begin{gather*}
\phi^{2}(U)=-U+\eta(U) \xi, \quad \eta(\xi)=1, \quad \phi \xi=0, \quad \eta \circ \phi=0 \tag{2.4}\\
g(\phi U, \phi V)=g(U, V)-\eta(U) \eta(V) \tag{2.5}\\
g(U, \phi V)=-g(\phi U, V), \quad g(U, \xi)=\eta(U) \tag{2.6}
\end{gather*}
$$

for all $U, V \in T M$ [3]. The fundamental 2-form Φ of the manifold is defined by

$$
\begin{equation*}
\Phi(U, V)=g(U, \phi V) \tag{2.7}
\end{equation*}
$$

This may be expressed by the condition (4]

$$
\begin{equation*}
\left(\nabla_{U} \phi\right) V=\alpha(g(U, V) \xi-\eta(V) U)+\beta(g(\phi U, V) \xi-\eta(V) \phi U) \tag{2.8}
\end{equation*}
$$

for smooth functions α and β on M. Here we say that the trans-Sasakian structure is of type (α, β). From the formula 2.8 it follows that

$$
\begin{gather*}
\nabla_{U} \xi=-\alpha \phi U+\beta(U-\eta(U) \xi), \tag{2.9}\\
\left(\nabla_{U} \eta\right) V=-\alpha g(\phi U, V)+\beta g(\phi U, \phi V) . \tag{2.10}
\end{gather*}
$$

An explicit example of trans-Sasakian 3-manifolds was constructed in [15]. In 9], the Ricci tensor and curvature tensor for trans-Sasakian 3-manifolds were studied and their explicit formulae were given.

From [9] we know that for a trans-Sasakian 3-manifold

$$
\begin{gather*}
2 \alpha \beta+\xi \alpha=0 \tag{2.11}\\
\operatorname{Ric}(U, \xi)=\left(2\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \eta(U)-U \beta-(\phi U) \alpha \tag{2.12}\\
\left.\operatorname{Ric}(U, V)=\frac{\tau}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right) g(U, V)-\left(\frac{\tau}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(U) \eta(V) \\
-(V \beta+(\phi V) \alpha) \eta(U)-(U \beta+(\phi U) \alpha) \eta(V) \tag{2.13}
\end{gather*}
$$

and

$$
\begin{align*}
R(U, V) W= & \left(\frac{\tau}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right)(g(V, W) U-g(U, W) V) \\
& -g(V, W)\left[\left(\frac{\tau}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(U) \xi\right. \\
& -\eta(U)(\phi g r a d \alpha-\operatorname{grad} \beta)+(U \beta+(\phi U) \alpha) \xi] \\
& +g(U, W)\left[\left(\frac{\tau}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(V) \xi\right. \\
& -\eta(V)(\phi g r a d \alpha-\operatorname{grad} \beta)+(V \beta+(\phi V) \alpha) \xi] \tag{2.14}\\
& -[(W \beta+(\phi W) \alpha) \eta(V)+(V \beta+(\phi V) \alpha) \eta(W) \\
& \left.+\left(\frac{\tau}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(V) \eta(W)\right] U \\
& +[(W \beta+(\phi W) \alpha) \eta(U)+(U \beta+(\phi U) \alpha) \eta(W) \\
& \left.+\left(\frac{\tau}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(U) \eta(W)\right] V
\end{align*}
$$

where Ric is the Ricci tensor, R is the curvature tensor and τ is the scalar curvature of the manifold M, respectively.

If α and β are constants, then equations (2.11)-2.14 become

$$
\begin{align*}
& R(U, V) W=\left(\frac{\tau}{2}-2\left(\alpha^{2}-\beta^{2}\right)\right)(g(V, W) U-g(U, W) V) \\
&-\left(\frac{\tau}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right)(g(V, W) \eta(U) \xi-g(U, W) \eta(V) \xi \tag{2.15}\\
&+\eta(V) \eta(W) U-\eta(U) \eta(W) V), \\
& R i c(U, V)=\left(\frac{\tau}{2}-\left(\alpha^{2}-\beta^{2}\right)\right) g(U, V) \tag{2.16}\\
&-\left(\frac{\tau}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(U) \eta(V), \\
& R i c(U, \xi)=2\left(\alpha^{2}-\beta^{2}\right) \eta(U), \tag{2.17}\\
& R(U, V) \xi=\left(\alpha^{2}-\beta^{2}\right)(\eta(V) U-\eta(U) V), \tag{2.18}\\
& R(\xi, U) V=\left(\alpha^{2}-\beta^{2}\right)(g(U, V) \xi-\eta(V) U), \tag{2.19}\\
& Q U=\left(\frac{\tau}{2}-\left(\alpha^{2}-\beta^{2}\right)\right) U \tag{2.20}\\
&-\left(\frac{\tau}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(U) \xi
\end{align*}
$$

From (2.11) it follows that if α and β are constants, then the manifold is either α-Sasakian or β-Kenmotsu or cosymplectic, respectively.

On the other hand we have two naturally defined distributions in the tangent bundle $T M$ of M as follows:

$$
\begin{equation*}
H=\operatorname{ker} \eta, \quad V=\operatorname{span}\{\xi\} \tag{2.21}
\end{equation*}
$$

Then we have $T M=H \oplus V, H \cap V=\{0\}$ and $H \perp V$. This decomposition allows one to define the Schouten-van Kampen connection $\tilde{\nabla}$ over an almost contact metric structure. The Schouten-van Kampen connection $\tilde{\nabla}$ on an almost contact metric manifold with respect to Levi-Civita connection ∇ is defined by [24]

$$
\begin{equation*}
\tilde{\nabla}_{U} V=\nabla_{U} V-\eta(V) \nabla_{U} \xi+\left(\nabla_{U} \eta\right)(V) \xi \tag{2.22}
\end{equation*}
$$

Thus with the help of the Schouten-van Kampen connection given by (2.22), many properties of some geometric objects connected with the distributions H, V can be characterized [24, 25, [26]. For example g, ξ and η are parallel with respect to $\tilde{\nabla}$, that is, $\tilde{\nabla} \xi=0, \tilde{\nabla} g=0, \tilde{\nabla} \eta=0$. Also the torsion \tilde{T} of $\tilde{\nabla}$ is defined by

$$
\tilde{T}(U, V)=\eta(U) \nabla_{V} \xi-\eta(V) \nabla_{U} \xi+2 d \eta(U, V) \xi
$$

3. Trans-Sasakian 3-manifolds with respect to the Schouten-van Kampen CONNECTION

Let M be a trans-Sasakian 3-manifold with α and β are constants with respect to the Schouten-van Kampen connection. Then using (2.9) and (2.10) in (2.22), we get

$$
\begin{equation*}
\tilde{\nabla}_{U} V=\nabla_{U} V+\alpha\{\eta(V) \phi U-g(\phi U, V) \xi\}+\beta\{g(U, V) \xi-\eta(V) U\} \tag{3.23}
\end{equation*}
$$

Let R and \tilde{R} be the curvature tensors of the Levi-Civita connection ∇ and the Schouten-van Kampen connection $\tilde{\nabla}$ are given by

$$
R(U, V)=\left[\nabla_{U}, \nabla_{V}\right]-\nabla_{[U, V]}, \quad \tilde{R}(U, V)=\left[\tilde{\nabla}_{U}, \tilde{\nabla}_{V}\right]-\tilde{\nabla}_{[U, V]}
$$

Using (3.23), by direct calculations, we obtain the following formula connecting R and \tilde{R} on a trans-Sasakian 3-manifold

$$
\begin{align*}
\tilde{R}(U, V) W= & R(U, V) W \\
& +\alpha^{2}\{g(\phi V, W) \phi U-g(\phi U, W) \phi V+\eta(U) \eta(W) V \tag{3.24}\\
& -\eta(V) \eta(W) U-g(V, W) \eta(U) \xi+g(U, W) \eta(V) \xi\} \\
& +\beta^{2}\{g(V, W) U-g(U, W) V\} .
\end{align*}
$$

We will also consider the Riemann curvature (0,4)-tensors \tilde{R}, R, the Ricci tensors $\tilde{R} i c$, Ric, the Ricci operators \tilde{Q}, Q and the scalar curvatures $\tilde{\tau}, \tau$ of the connections $\tilde{\nabla}$ and ∇ are given by

$$
\begin{align*}
& \tilde{R}(U, V, W, Z)= R(U, V, W, Z) \\
&+\alpha^{2}\{g(\phi V, W) g(\phi U, Z)-g(\phi U, W) g(\phi V, Z) \\
&+g(V, Z) \eta(U) \eta(W)-g(U, Z) \eta(V) \eta(W) \tag{3.25}\\
&-g(V, W) \eta(U) \eta(Z)+g(U, W) \eta(V) \eta(Z)\} \\
&+\beta^{2}\{g(V, W) g(U, Z)-g(U, W) g(V, Z)\}, \\
& \tilde{R} i c(V, W)= \operatorname{Ric}(V, W) \\
&+2 \beta^{2} g(V, W)-2 \alpha^{2} \eta(V) \eta(W), \tag{3.26}\\
& \tilde{Q} U= Q U+2 \beta^{2} U-2 \alpha^{2} \eta(U) \xi, \tag{3.27}\\
& \tilde{\tau}=\tau-2 \alpha^{2}+6 \beta^{2}, \tag{3.28}
\end{align*}
$$

respectively, where $\tilde{R}(U, V, W, Z)=g(\tilde{R}(U, V) W, Z)$ and $R(U, V, W, Z)=g(R(U, V) W, Z)$.
4. Ricci Semisymetric trans-Sasakian 3-manifolds with respect to the Schouten-van Kampen connection

In this section, we study Ricci semisymetric trans-Sasakian 3-manifolds with α and β are constants with respect to the Schouten-van Kampen connection.

If a trans-Sasakian 3-manifold with respect to the Schouten-van Kampen connection is Ricci semisymmetric then we can write

$$
\begin{equation*}
(\tilde{R}(U, V) \cdot \tilde{R} i c)(W, Y)=0 \tag{4.29}
\end{equation*}
$$

which turns to

$$
\begin{equation*}
\tilde{R} i c(\tilde{R}(U, V) W, Y)+\tilde{R} i c(W, \tilde{R}(U, V) Y)=0 \tag{4.30}
\end{equation*}
$$

Using (3.26) in 4.30), we obtain

$$
\begin{align*}
& \operatorname{Ric}(\tilde{R}(U, V) W, Y)-2 \alpha^{2} \eta(\tilde{R}(U, V) W) \eta(Y)+2 \beta^{2} g(\tilde{R}(U, V) W, Y) \\
& +\operatorname{Ric}(W, \tilde{R}(U, V) Y)-2 \alpha^{2} \eta(\tilde{R}(U, V) Y) \eta(W)+2 \beta^{2} g(W, \tilde{R}(U, V) Y) \tag{4.31}\\
= & \operatorname{Ric}(\tilde{R}(U, V) W, Y)+\operatorname{Ric}(W, \tilde{R}(U, V) Y)=0 .
\end{align*}
$$

Now using (3.24) in 4.31), we get

$$
\begin{align*}
& \operatorname{Ric}(R(U, V) W, Y)+\operatorname{Ric}(W, R(U, V) Y)+\alpha^{2}\{g(\phi V, W) \operatorname{Ric}(\phi U, Y) \\
& -g(\phi U, W) \operatorname{Ric}(\phi V, Y)+\operatorname{Ric}(V, Y) \eta(U) \eta(W)-\operatorname{Ric}(U, Y) \eta(V) \eta(W) \\
& +g(U, W) \eta(V) \operatorname{Ric}(Y, \xi)-g(V, W) \eta(U) \operatorname{Ric}(Y, \xi)+g(\phi V, Y) \operatorname{Ric}(\phi U, W) \\
& -g(\phi U, Y) \operatorname{Ric}(\phi V, W)+\operatorname{Ric}(V, W) \eta(U) \eta(Y)-\operatorname{Ric}(U, W) \eta(V) \eta(Y) \tag{4.32}\\
& +g(U, Y) \eta(V) \operatorname{Ric}(W, \xi)-g(V, Y) \eta(U) \operatorname{Ric}(W, \xi)\} \\
& +\beta^{2}\{g(V, W) \operatorname{Ric}(Y, U)-g(U, W) \operatorname{Ric}(Y, V) \\
& +g(V, Y) \operatorname{Ric}(W, U)-g(U, Y) \operatorname{Ric}(W, V)\}=0 .
\end{align*}
$$

Let $\left\{e_{i}\right\},(1 \leq i \leq 3)$, be an orthonormal basis of the tangent space at any point of M. Then the sum for $1 \leq i \leq 3$ of the relation 4.32 for $U=Y=e_{i}$ gives

$$
\begin{align*}
& \operatorname{Ric}\left(R\left(e_{i}, V\right) W, e_{i}\right)+\operatorname{Ric}\left(W, R\left(e_{i}, V\right) e_{i}\right) \\
& +\alpha^{2}\{\operatorname{Ric}(V, W)-\tau \eta(V) \eta(W)\} \\
& +2 \alpha^{2}\left(\alpha^{2}-\beta^{2}\right)\{3 \eta(V) \eta(W)-g(V, W)\} \tag{4.33}\\
& +\beta^{2}\{\tau g(V, W)-3 \operatorname{Ric}(V, W)\}=0
\end{align*}
$$

which is equal to

$$
\begin{align*}
& \lambda\{\tau g(V, W)-3 \operatorname{Ric}(V, W)\}+2 \mu\left(\alpha^{2}-\beta^{2}\right) \eta(V) \eta(W) \\
& +\mu \operatorname{Ric}(V, W)-2 \mu\left(\alpha^{2}-\beta^{2}\right) g(V, W)+4 \mu\left(\alpha^{2}-\beta^{2}\right) \eta(V) \eta(W) \\
& -\mu \tau \eta(V) \eta(W) \tag{4.34}\\
& +\alpha^{2}\{\operatorname{Ric}(V, W)-\tau \eta(V) \eta(W)\} \\
& +2 \alpha^{2}\left(\alpha^{2}-\beta^{2}\right)\{3 \eta(V) \eta(W)-g(V, W)\} \\
& +\beta^{2}\{\tau g(V, W)-3 \operatorname{Ric}(V, W)\}=0
\end{align*}
$$

where $\lambda=\frac{\tau}{2}-2\left(\alpha^{2}-\beta^{2}\right)$ and $\mu=\frac{\tau}{2}-3\left(\alpha^{2}-\beta^{2}\right)$. After some calculations we have

$$
\begin{aligned}
& {\left[-3\left(\lambda+\beta^{2}\right)+\left(\mu+\alpha^{2}\right)\right] \operatorname{Ric}(V, W)} \\
& +\left[\left(\lambda+\beta^{2}\right) \tau-2\left(\mu+\alpha^{2}\right)\left(\alpha^{2}-\beta^{2}\right)\right] g(V, W) \\
& +\left[6\left(\mu+\alpha^{2}\right)\left(\alpha^{2}-\beta^{2}\right)-\left(\lambda+\beta^{2}\right) \tau\right] \eta(V) \eta(W)=0
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\operatorname{Ric}(V, W)=\left[\frac{\tau}{2}-\left(\alpha^{2}-\beta^{2}\right)\right] g(V, W)+\left[3\left(\alpha^{2}-\beta^{2}\right)-\frac{\tau}{2}\right] \eta(V) \eta(W) \tag{4.35}
\end{equation*}
$$

Hence M is an η-Einstein manifold with respect to the Levi-Civita connection. Now using (4.35) in (3.26), we have

$$
\tilde{R} i c(V, W)=\left[\frac{\tau}{2}-\alpha^{2}+3 \beta^{2}\right] g(V, W)-\left[\frac{\tau}{2}-\alpha^{2}+3 \beta^{2}\right] \eta(V) \eta(W) .
$$

Thus M is also an η-Einstein manifold with respect to the Schouten-van Kampen connection. Therefore we have the following:

Theorem 4.1. Let M be a trans-Sasakian 3-manifold with respect to the Schouten-van Kampen connection. If M is Ricci semisymmetric with respect to the Schouten-van Kampen connection then M is an η-Einstein manifold with respect to the Schouten-van Kampen connection and Levi-Civita connection.

5. Soliton types on trans-Sasakian 3-manifolds with respect to the Schouten-van Kampen connection

In this section we study Ricci solitons, η-Ricci solitons and Yamabe solitons on a transSasakian 3-manifold with α and β are constants with respect to the Schouten-van Kampen connection.

In a trans-Sasakian 3-manifold M endowed with respect to the Schouten-van Kampen connection bearing an Ricci soliton, we can write

$$
\begin{equation*}
\left(\tilde{L}_{X} g+2 \tilde{R} i c+2 \delta g\right)(U, V)=0 \tag{5.36}
\end{equation*}
$$

Using (3.23) in (5.36), since $\tilde{\nabla} g=0$ and $\tilde{T} \neq 0$, we have

$$
\left(\tilde{L}_{X} g\right)(U, V)=g\left(\nabla_{U} X, V\right)+g\left(U, \nabla_{V} X\right)=\left(L_{X} g\right)(U, V),
$$

that is,

$$
\begin{equation*}
g\left(\nabla_{U} X, V\right)+g\left(U, \nabla_{V} X\right)+2 \tilde{R} i c(U, V)+2 \delta g(U, V)=0 . \tag{5.37}
\end{equation*}
$$

Putting $X=\xi$ in (5.37), we obtain

$$
\begin{equation*}
g\left(\nabla_{U} \xi, V\right)+g\left(U, \nabla_{V} \xi\right)+2 \tilde{R} i c(U, V)+2 \delta g(U, V)=0 . \tag{5.38}
\end{equation*}
$$

Now using (2.9) in (5.38), we get
$g(-\alpha \phi U+\beta(U-\eta(U) \xi), V)+g(U,-\alpha \phi V+\beta(V-\eta(V) \xi)+2 \tilde{R} i c(U, V)+2 \delta g(U, V)=0$,
i.e.,

$$
\begin{equation*}
\tilde{R} i c(U, V)=-(\beta+\delta) g(U, V)+\beta \eta(U) \eta(V) . \tag{5.39}
\end{equation*}
$$

Thus M is an η-Einstein manifold with respect to the Schouten-van Kampen connection. Also using (3.26) in (5.39), we get

$$
\operatorname{Ric}(U, V)=-\left(2 \beta^{2}+\beta+\delta\right) g(U, V)+\left(\beta+2 \alpha^{2}\right) \eta(U) \eta(V)
$$

Hence M is an η-Einstein manifold with respect to the Levi-Civita connection. Thus we have the following:

Theorem 5.1. Let M be a trans-Sasakian 3-manifold bearing a Ricci soliton (ξ, δ, g) with respect to the Schouten-van Kampen connection. Then M is an η-Einstein manifold both with respect to the Schouten-van Kampen connection and Levi-Civita connection.

Putting $V=\xi$ and using (3.26) in 5.39, we give the following:
Corollary 5.1. A Ricci soliton (ξ, δ, g) on a trans-Sasakian 3-manifold M with respect to the Schouten-van Kampen connection is always steady.

On the other hand, from (2.16) and (3.26), it is easy to see that a trans-Sasakian 3manifold M is always η-Einstein with respect to the Schouten-van Kampen connection of the form $\tilde{R} i c=\gamma g+\sigma \eta \otimes \eta$, where $\gamma=-\sigma=\frac{\tau}{2}-\alpha^{2}+3 \beta^{2}$. Then, we write

$$
\begin{equation*}
\left(\tilde{L}_{\xi} g+2 \tilde{R} i c+2 \delta g\right)(U, V)=((2 \gamma+2 \delta) g-2 \sigma \eta \otimes \eta)(U, V), \tag{5.40}
\end{equation*}
$$

for all $U, V \in \chi(M)$, which implies that the manifold M admits a Ricci soliton (ξ, δ, g) if $\gamma+\delta=0$ and $\sigma=0$.

Using (5.39), we can also state the following:

Corollary 5.2. The scalar curvature of a trans-Sasakian 3-manifold M bearing a Ricci soliton (ξ, δ, g) with respect to the Schouten-van Kampen connection is $\tilde{\tau}=-3 \delta-2 \beta$.

Now we consider an η-Ricci soliton on a trans-Sasakian 3-manifold M with respect to the Schouten-van Kampen connection. Then

$$
\begin{equation*}
\left(\tilde{L}_{X} g+2 \tilde{R} i c+2 \delta g+2 \mu \eta \otimes \eta\right)(U, V)=0 \tag{5.41}
\end{equation*}
$$

that is,

$$
\begin{equation*}
g\left(\nabla_{U} X, V\right)+g\left(U, \nabla_{V} X\right)+2 \tilde{R} i c(U, V)+2 \delta g(U, V)+2 \mu \eta(U) \eta(V)=0 . \tag{5.42}
\end{equation*}
$$

Putting $X=\xi$ in (5.42), we obtain

$$
\begin{equation*}
\tilde{R} i c(U, V)=-\delta g(U, V)-\mu \eta(U) \eta(V) \tag{5.43}
\end{equation*}
$$

Hence M is an η-Einstein manifold with respect to the Schouten-van Kampen connection. Taking $V=\xi$ in (5.43), we get $\delta+\mu=0$. Using (3.26) in (5.43), we have

$$
\operatorname{Ric}(U, V)=\left[-2 \beta^{2}-\delta\right] g(U, V)+\left[2 \alpha^{2}-\mu\right] \eta(U) \eta(V)
$$

Thus M is an η-Einstein manifold with respect to the Levi-Civita connection. Now we have the following:

Theorem 5.2. Let M be a trans-Sasakian 3-manifold bearing an η-Ricci soliton (ξ, δ, μ, g) with respect to the Schouten-van Kampen connection. Then M is an η-Einstein manifold with respect to the Schouten-van Kampen connection and the Levi-Civita connection.

Again let us consider equations (5.36) and (5.37). Using (3.26), we obtain

$$
g\left(\nabla_{U} X, V\right)+g\left(U, \nabla_{V} X\right)+2 \operatorname{Ric}(U, V)+2\left(2 \beta^{2}+\delta\right) g(U, V)-2 \alpha^{2} \eta(U) \eta(V)=0
$$

Thus we write

$$
\left(L_{X} g\right)(U, V)+2 R i c(U, V)+2\left(2 \beta^{2}+\delta\right) g(U, V)-2 \alpha^{2} \eta(U) \eta(V)=0
$$

This last equation shows that if (X, δ, g) is a Ricci soliton on a trans-Sasakian 3-manifold M with respect to the Schouten-van Kampen connection, then the manifold admits an η-Ricci soliton $\left(X, 2 \beta^{2}+\delta, \alpha^{2}, g\right)$ with respect to the Levi-Civita connection. If $\alpha=0$, then

$$
\left(L_{X} g\right)(U, V)+2 \operatorname{Ric}(U, V)+2\left(2 \beta^{2}+\delta\right) g(U, V)=0
$$

So we have the following:

Corollary 5.3. Let M be a trans-Sasakian 3 -manifold bearing a Ricci soliton (X, δ, g) with respect to the Schouten-van Kampen connection. Then we have: (i) If $\alpha=0$, then M admits a Ricci soliton $\left(X, 2 \beta^{2}+\delta, g\right)$ with respect to the Levi-Civita connection. (ii) If $\alpha \neq 0$, then M admits an η-Ricci soliton $\left(X, 2 \beta^{2}+\delta, \alpha^{2}, g\right)$ with respect to the Levi-Civita connection.

Example 5.1. We consider the 3-dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3}, y \neq 0\right\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^{3}. The vector fields

$$
e_{1}=e^{y} \frac{\partial}{\partial x}, \quad e_{2}=\frac{\partial}{\partial y}, \quad e_{3}=e^{y} \frac{\partial}{\partial z}
$$

are linearly independent at each point of M. Let g be the Riemannian metric defined by

$$
\begin{aligned}
& g\left(e_{1}, e_{3}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=0 \\
& g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1
\end{aligned}
$$

Let η be the 1-form defined by $\eta(Z)=g\left(Z, e_{2}\right)$ for any $Z \in \chi(M)$. Let ϕ be the (1,1)-tensor field defined by $\phi\left(e_{1}\right)=e_{3}, \phi\left(e_{2}\right)=0, \phi\left(e_{3}\right)=-e_{1}$. Then using linearity of ϕ and g we have

$$
\begin{gathered}
\eta\left(e_{2}\right)=1, \quad \phi^{2} W=-W+\eta(W) e_{3}, \\
g(\phi W, \phi Z)=g(W, Z)-\eta(W) \eta(Z),
\end{gathered}
$$

for any $W, Z \in \chi(M)$. Thus for $e_{2}=\xi,(\phi, \xi, \eta, g)$ defines an almost contact metric structure on M. Now, by direct computations we obtain

$$
\left[e_{1}, e_{2}\right]=-e_{1}, \quad\left[e_{2}, e_{3}\right]=e_{3}, \quad\left[e_{1}, e_{3}\right]=0
$$

The Riemannian connection ∇ of the metric tensor g is given by the Koszul's formula which is

$$
\begin{align*}
2 g\left(\nabla_{U} V, W\right)= & U g(V, W)+V g(W, U)-W g(U, V) \tag{5.44}\\
& -g(U,[V, W])-g(V,[U, W])+g(W,[U, V])
\end{align*}
$$

Using (5.44), we obtain

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{1}=e_{2}, & \nabla_{e_{1}} e_{2}=-e_{1}, & \nabla_{e_{1}} e_{3}=0, \\
\nabla_{e_{2}} e_{1}=0, & \nabla_{e_{2}} e_{2}=0, & \nabla_{e_{2}} e_{3}=0, \tag{5.45}\\
\nabla_{e_{3}} e_{1}=0, & \nabla_{e_{3}} e_{2}=-e_{3}, & \nabla_{e_{3}} e_{3}=e_{2} .
\end{array}
$$

By (5.45), we see that the manifold satisfies (2.8) for $U=e_{1}, \alpha=0, \beta=-1$, and $e_{2}=\xi$. Similarly, it can be shown that for $U=e_{2}$ and $U=e_{3}$ the manifold also satisfies (2.8) for $\alpha=0, \beta=-1$, and $e_{2}=\xi$. Hence the manifold is a trans-Sasakian manifold of type $(0,-1)$ [20]. Now we consider the Schouten-van Kampen connection to this example. From (5.45), we have

$$
\begin{array}{ll}
R\left(e_{1}, e_{2}\right) e_{1}=e_{2}, & R\left(e_{1}, e_{2}\right) e_{2}=-e_{1},
\end{array} \quad R\left(e_{1}, e_{2}\right) e_{3}=0, ~ R\left(e_{1}, e_{3}\right) e_{3}=-e_{1}, ~ 子\left(e_{3}, \quad R\left(e_{1}, e_{3}\right) e_{2}, \quad R\left(e_{2}, e_{3}\right) e_{3}=-e_{2} .\right.
$$

Again using (3.23) and (5.45), we obtain

$$
\begin{align*}
& \tilde{\nabla}_{e_{1}} e_{1}=(\beta+1) e_{2}, \quad \tilde{\nabla}_{e_{1}} e_{2}=-(\beta+1) e_{1}+\alpha e_{3}, \\
& \tilde{\nabla}_{e_{1}} e_{3}=-\alpha e_{2}, \quad \tilde{\nabla}_{e_{2}} e_{1}=0, \quad \tilde{\nabla}_{e_{2}} e_{2}=0, \\
& \tilde{\nabla}_{e_{2}} e_{3}=0, \quad \tilde{\nabla}_{e_{3}} e_{1}=\alpha e_{2}, \tag{5.47}\\
& \tilde{\nabla}_{e_{3}} e_{2}=-(\beta+1) e_{3}-\alpha e_{1}, \quad \tilde{\nabla}_{e_{3}} e_{3}=(\beta+1) e_{2} .
\end{align*}
$$

Considering (5.47), we can see that $\tilde{\nabla}_{e_{i}} \xi=0,(1 \leq i \leq 3)$, for $\xi=e_{2}$ and $\alpha=0, \beta=-1$. Hence M is a trans-Sasakian 3-manifold of type $(0,-1)$ with respect to the Schouten-van Kampen connection. Thus from (5.47), we get

$$
\begin{align*}
& \tilde{R}\left(e_{1}, e_{2}\right) e_{1}=\left(1+\alpha^{2}-\beta^{2}\right) e_{2}, \quad \tilde{R}\left(e_{1}, e_{2}\right) e_{2}=-\left(1+\alpha^{2}-\beta^{2}\right) e_{1} \\
& \tilde{R}\left(e_{1}, e_{2}\right) e_{3}=0, \quad \tilde{R}\left(e_{1}, e_{3}\right) e_{1}=\left(1-\alpha^{2}-\beta^{2}\right) e_{3} \\
& \tilde{R}\left(e_{1}, e_{3}\right) e_{2}=0, \quad \tilde{R}\left(e_{1}, e_{3}\right) e_{3}=\left(-1-\alpha^{2}+\beta^{2}\right) e_{1} \tag{5.48}\\
& \tilde{R}\left(e_{2}, e_{3}\right) e_{1}=0, \quad \tilde{R}\left(e_{2}, e_{3}\right) e_{2}=\left(1+\alpha^{2}-\beta^{2}\right) e_{3} \\
& \tilde{R}\left(e_{2}, e_{3}\right) e_{3}=\left(-1+\alpha^{2}+\beta^{2}\right) e_{2}
\end{align*}
$$

Now using (5.48), we see that the non-zero components of the Ricci tensor $\tilde{R} i c$ with respect to the Schouten-van Kampen connection as follows:

$$
\tilde{R} i c\left(e_{1}, e_{1}\right)=-2+2 \beta^{2}, \quad \tilde{R} i c\left(e_{2}, e_{2}\right)=-2-2 \alpha^{2}+2 \beta^{2}, \quad \tilde{R} i c\left(e_{3}, e_{3}\right)=-2+2 \beta^{2}
$$

For any $U, V \in \chi(M)$, we write

$$
\begin{gathered}
U=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3} \\
V=b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}
\end{gathered}
$$

Thus we have

$$
\begin{aligned}
\left(\tilde{L}_{\xi} g\right)(X, Y)+2 \tilde{S}(X, Y)+2 \delta g(X, Y)+2 \mu \eta(X) \eta(Y)= & \left(-2+2 \beta^{2}+\delta\right) a_{1} b_{1} \\
& +\left(-2-2 \alpha^{2}+2 \beta^{2}+\delta+\mu\right) a_{2} b_{2} \\
& +\left(-2+2 \beta^{2}+\delta\right) a_{3} b_{3}
\end{aligned}
$$

If $\delta=2-2 \beta^{2}$ and $\mu=2 \alpha^{2}$, then M admits an η-Ricci soliton (ξ, δ, μ, g) with respect to the Schouten-van Kampen connection.

Finally we study Yamabe solitons on a trans-Sasakian 3-manifold with respect to the Schouten-van Kampen connection. Assume that (M, X, δ, g) is a Yamabe soliton on a transSasakian 3-manifold with respect to the Schouten-van Kampen connection. From (1.3), we can write

$$
\begin{equation*}
\frac{1}{2}\left(\tilde{L}_{X} g\right)(U, V)=(\tilde{\tau}-\delta) g(U, V) \tag{5.49}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\frac{1}{2}\left\{g\left(\tilde{\nabla}_{U} X, V\right)+g\left(U, \tilde{\nabla}_{V} X\right)\right\}=(\tilde{\tau}-\delta) g(U, V) \tag{5.50}
\end{equation*}
$$

Putting $X=\xi$ in (5.50), we obtain $\tilde{\tau}=\delta$, which implies that the following:

Theorem 5.3. The scalar curvature $\tilde{\tau}$ of a trans-Sasakian 3-manifold bearing a Yamabe soliton (M, ξ, δ, g) with respect to the Schouten-van Kampen connection is equal to δ.

So we give the followings:

Corollary 5.4. A trans-Sasakian 3-manifold bearing a Yamabe soliton (M, ξ, δ, g) with respect to the Schouten-van Kampen connection is of constant scalar curvature with respect to the Schouten-van Kampen connection.

Corollary 5.5. If a trans-Sasakian 3-manifold bearing a Yamabe soliton (M, ξ, δ, g) with respect to the Schouten-van Kampen connection, then the Riemannian metric g is a Yamabe metric.

References

[1] Barbosa E., Riberio E. (2013). On conformal solutions of the Yamabe flow, Arch. Math., 101, 79-89.
[2] Bejancu A., Faran H. (2006). Foliations and geometric structures, Math. and its Appl. 580. Springer, Dordrecht.
[3] Blair D. E. (1976). Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics Vol 509. Springer-Verlag, Berlin-New York.
[4] Blair D. E., Oubina J. A. (1990). Conformal and related changes of metric on the product of two almost contact metric manifolds, Publications Matematiques, 34, 199-207.
[5] Cao H. D., Sun X., Zhang Y. (2012). On the structure of gradient Yamabe solitons, Mathematical Research Letters, 19, 767-774.
[6] Chen B. Y., Deshmukh S. (2018). Yamabe and quasi Yamabe solitons on Euclidean submanifolds, Mediterr. J. Math., 15(5), 194, 1-9.
[7] Chinea D., Gonzales J. C. (1990). A classification of almost contact metric manifolds, Ann. Mat. Pura Appl., 156(4), 15-30.
[8] Cho J. C., Kimura M. (2009). Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J., 61(2), 205-212.
[9] De U.C., Tripathi M. M. (2003). Ricci Tensor in 3-dimensional Trans-Sasakian Manifolds. Kyungpook Math. J., 43, 247-255.
[10] Deshmukh S., Chen B. Y. (2018). A note on Yamabe solitons, Balkan J. Geom. Appl., 23(1), 37-43.
[11] Gray A., Hervella L. M. (1980). The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123(4), 35-58.
[12] Hamilton R. S. (1988). The Ricci flow on surfaces, Mathematics and general relativity. Contemp. Math., 71, 237-262.
[13] Ianuş S. (1971). Some almost product structures on manifolds with linear connection, Kodai Math. Sem. Rep., 23, 305-310.
[14] Janssens D., Vanhecke L. (1981). Almost contact structures and curvature tensors, Kodai Math. J., 4(1), 1-27.
[15] Marrero J. C. (1992). The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl., 162(4), 77-86.
[16] Marrero J. C., Chinea D. (1989). On trans-Sasakian manifolds in Proceedings of the XIV ${ }^{\text {th }}$ SpanishPortuguese Conference on Mathematics. Vol. I-III. (Spanish). Puerto de la Cruz, Yniv. La Laguna, La Laguna, 655-659.
[17] Neto, B. L. (2017). A note on (anti-)self dual quasi Yamabe gradient solitons, Results in Math., 71, 527-533.
[18] Olszak Z. (2013). The Schouten-van Kampen affine connection adapted an almost (para) contact metric structure, Publ. De L'inst. Math., 94, 31-42.
[19] Oubina J. A. (1985). New classes of almost contact metric structures, Publ. Mat. Debrecen., 32(3-4), 187-193.
[20] Pahan A.S., Bhattacharyya B. A. (2016). Some properties of three-dimensional trans-Sasakian manifolds with a semi-symmetric metric connection, Lobachevskii J. of Math., 37(2), 177-184.
[21] Perktaş S. Y., Yıldız A. (2020). On quasi-Sasakian 3-manifolds with respect to the Schouten-van Kampen connection, Int. Electronic J. of Geom., 13(2), 62-74.
[22] Perktaş S. Y., Yıldız A. (2021). On f-Kenmotsu 3-manifolds with respect to the Schouten-van Kampen connection, Turkish J. of Math., 45(1), 387-409.
[23] Schouten J., Van Kampen E. (1930). Zur Einbettungs-und Krümmungsthorie nichtholonomer Gebilde, Math. Ann., 103, 752-783.
[24] Solov'ev A. F. (1978). On the curvature of the connection induced on a hyperdistribution in a Riemannian space, Geom. Sb., 19, 12-23, (in Russian).
[25] Solov'ev A. F. (1979). The bending of hyperdistributions,Geom. Sb. 20, 101-112 (in Russian).
[26] Solov'ev A. F. (1982). Second fundamental form of a distribution, Mat. Zametki, 35, 139-146.
[27] Solov'ev A. F. (1984). Curvature of a distribution, Mat. Zametki, 35, 111-124.

