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EDITORIAL:

DEDICATED TO PROFESSOR SADIK KELEŞ ON THE OCCASION OF

HIS RETIREMENT

BAYRAM SAHIN

This special issue of International Journal of Maps in Mathematics (IJMM) is dedicated

to Professor Sadık Keleş of Inonu University, Turkey, on the occasion of his retirement.

I am honored to have the opportunity to write a few words about respected Professor

Sadık Keleş, whom I have seen very valuable contributions from the beginning of my academic

career.

Professor Keleş was born in Tokat, Turkey in 1952 and graduated from the Department of

Mathematics and Astronomy of Ankara University with a BS in 1975 and a PhD from Fırat

University in 1982 under the supervision of Professor H. Hilmi Hacısalihoḡlu, respectively.
1
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He began his academic career at Fırat University, Elazıḡ, and completed his PhD there.

Then Professor Keleş was appointed as assistant professor to Inonu University, Malatya

and remained at that institution until December 31, 2019 when he retired as full Professor.

Professor Keleş’s research interests focused on Differential Geometry and he has produced

scientific results in many areas of differential geometry. Throughout his long career, Professor

Keleş contributed to the education of many scientists in the research field of Differential

Geometry. In this respect, Professor Keleş was the advisor of 7 MSc students and 12 doctoral

students.

All who have interacted with Professor Keleş know he is a gentle, friendly, and kind

person. Professor Keleş touched the lives of many young mathematicians in Turkey and has

been an inspiration to their academic career journey. Retirement from the Inonu University

will mean that he will be able to spend more time with his family and his friends.

Thank you for everything Professor Keleş.

Finally, I would like to acknowledge the IJMM Managing Editor, Ass. Professor Arif

Gürsoy (Ege University), and the IJMM Technical Assistants Dr. Ibrahim Senturk (Ege

University) and Deniz Poyraz (Ege University) for their assistance in preparing in this special

issue, and the authors and reviewers who have made invaluable contributions.
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SYMPLECTOSUBMERSIONS

BAYRAM ŞAHIN∗

Abstract. In this paper, we introduce a new submersion between almost symplectic man-

ifolds, give examples and investigate the geometry of the base manifold when the total

manifold has some special cases.

1. Introduction

In Riemannian geometry, there are two basic maps; isometric immersions and Riemannian

submersions. Isometric immersions (Riemannian submanifolds) are basic such maps between

Riemannian manifolds and they are characterized by their Riemannian metrics and Jacobian

matrices. More precisely, a smooth map F : (M, gM ) −→ (N, gN ) between Riemannian man-

ifolds (M, gM ) and (N, gN ) is called an isometric immersion (submanifold) if F∗ is injective

and

gN (F∗X,F∗Y ) = gM (X,Y )

for vector fields X,Y tangent to M ; here F∗ denotes the derivative map. A smooth map

F : (M1, g1) −→ (M2, g2) is called a Riemannian submersion if F∗ is onto and it

Received:2019-07-17 Accepted:2019-10-14

2010 Mathematics Subject Classification.53D05, 53B20.

Key words: Almost symplectic manifold, symplectic manifold, Fedosov manifold, K”ahler manifold, Rie-

manniab submersion

∗ Corresponding author

∗ Dedicated to Professor Sadık Keleş on the occasion of his retirement from Inonu University.
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satisfies the above equation for vector fields tangent to the horizontal space (kerF∗)
⊥. Rie-

mannian submersions between Riemannian manifolds were first studied by O’Neill [8] and

Gray [6]; see also [4].

Submanifolds of complex manifolds ( holomorphic, totally real, CR-submanifold, etc..)

and Riemannian submersions (holomorphic, anti-invariant, semi-invariant etc...) between

complex manifolds have been studied widely, see for instance [11], [4] and [9]. On the other

hand, submanifolds of symplectic manifolds have been also studied by many authors and

this research area is an active research area. But as far as we know, a submersion ana-

log with Riemannian submersion (or holomorphic submersion) has been not studied. By

considering applications of symplectic manifolds and Riemannian submersions [7] in mathe-

matical physics, it would be interesting to consider as analog of holomorphic submersion for

symplectic manifolds.

In this paper, we introduce a new submersion, namely symplectosubmersion, between al-

most symplectic manifolds. We provide examples and check the existence of symplectic con-

nection on the base manifold. We note that, in [3], the authors have considered a submersion

f from an open manifold with a symplectic form Ω to a manifold N with dimN < dimM ,

and they proved that such submersion with symplectic fibres satisfy the h− principle.

2. Preliminaries

A differentiable manifold M is said to be an almost complex manifold if there exists a

linear map J : TM −→ TM satisfying J2 = −id and J is said to be an almost complex

structure of M . The tensor field N of type (1, 2) defined by

NJ (X, Y ) = [JX, JY ]− [X, Y ]− J([X, JY ] + [JX, Y ]), (2.1)

for any X,Y ∈ Γ(TM), is called Nijenhuis tensor field of J . Then, J defines a complex

structure [11] on M if and only if N vanishes on M . Now consider a Riemannian metric g

on an almost complex manifold (M, J). We say that the pair (J, g) is an almost Hermitian

structure on M , and M is an almost Hermitian manifold if

g(J X, J Y ) = g(X, Y ), ∀X,Y ∈ Γ(M). (2.2)

Moreover, if J defines a complex structure on M , then (J, g) and M are called Hermitian

structure and Hermitian manifold, respectively. The fundamental 2-form Ω of an almost
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Hermitian manifold is defined by

Ω(X, Y ) = g(X, JY ), ∀X,Y ∈ Γ(M). (2.3)

A Hermitian metric on an almost complex M is called a Kähler metric and then M is called

a Kähler manifold if Ω is closed, i.e.,

dΩ(X, Y, Z) = 0, ∀X,Y ∈ Γ(M). (2.4)

It is known (see [11]) that the Kählerian condition (2.4) is equivalent to

(∇XJ)Y = 0,∀X,Y ∈ Γ(M), (2.5)

where ∇ is the Riemannian connection of g. We note that submanifolds of an almost Hermit-

ian manifolds are defined with respect to behaviour of the almost complex structure J . We

will not give details of these submanifolds here, we refer the book [2] for various submanifolds

in complex geometry.

Riemannian submersions as a dual notion of isometric immersions have been studied in

complex settings in the early 1970s. As an analogue of holomorphic submanifolds, Watson [10]

defined almost Hermitian submersions between almost Hermitian manifolds and he showed

that the base manifold and each fiber have the same kind of structure as the total space, in

most cases.

A symplectic manifold is an even dimensional differentiable manifold M with a global

2−form Ω which is closed dΩ = 0 and of maximal rank Ωn 6= 0. A Kähler manifold M with

its fundamental 2−form is a symplectic manifold. However, there are symplectic manifolds

that do not admit any complex structures. A pair of a manifold M and non-degenerate form

Ω, not necessarily closed is called an almost symplectic manifold. Given a linear subspace

W of a symplectic vector space (V,Ω), its symplectic orthogonal WΩ is the linear subspace

defined by WΩ = {v ∈ V | Ω(u, v) = 0,∀u ∈ W}. Now, Let (N,Ω) be a 2n-dimensional

symplectic manifold and I : M → N an immersed submanifold of N . Then M is called a

symplectic submanifold if I∗Ω is symplectic, i.e. the induced bilinear form Ω is nondegenerate

and closed on the tangent bundle of the submanifold. M is called an isotropic submanifold

if I∗Ω = 0. M is a Lagrangian submanifold if I∗Ω = 0 and dimM = 1
2N . We note that

since I∗Ω = 0, there is no induced structure. Finally M is called a coisotropic submanifold

if (TpM)Ω ⊆ TpM for every p ∈M , for more information see:[1]
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3. A submersion between almost symplectic manifolds

By inspiring Riemannian submersions, we present the following notion.

Definition 3.1. Let (M,ωM ) and (N,ωN ) be almost symplectic manifolds and F a sub-

mersion. If the following two conditions are satisfied, then F is called symplectosubmersion

between symplectic manifolds;

(S1). The fibers F−1 (q) , q ∈ N, are symplectic submanifolds of M .

(S2). ωN (F∗X,F∗Y ) = ωM (X,Y ) for X,Y ∈ Γ
(
(KerF∗)

⊥).
We first note that, since the fibers are symplectic submanifolds it follows that (KerF∗)

⊥

is a symplectic distribution on M , i.e. (KerF∗)
⊥ ∩KerF∗ = {0}.

We now give two examples of symplectic submersions. But we first recall the notion of

holomorphic submersions [4]. Let (M1, J1, g1) and (M2, J2, g2) be almost Hermition mani-

folds. A surjective map Π : M1 →M2 is called almost Hermitian ( holomorphic) submersion

and an almost complex map; i.e.

Π∗J1 = J2Π∗. (3.6)

Example 3.1. Let (M1, J1, g1) and (M2, J2, g2) be Kähler manifolds and Π : M1 → M2 an

almost Hermitian submersion. Then (M1, J1, g1) and (M2, J2, g2) are symplectic manifolds

with symplectic forms Ω1 = g1 (X, J1Y ) and Ω2 = g2 (U, J2V ) for X,Y ∈ T (M1) and U, V ∈

T (M2). Since Π is an almost complex map, we get

Ω2 (F∗X,F∗Y ) = g2 (F∗X, J2F∗Y )

and

Ω2 (F∗X,F∗Y ) = g2 (F∗X,F∗J1Y ) .

Then Riemannian submersion Π implies that

Ω2 (F∗X,F∗Y ) = g1 (X, J1Y ) .

Hence, we get

Ω2 (F∗X,F∗Y ) = Ω1 (X,Y ) .

On the other hand, since g1 is a Riemannian metric, (KerF∗) is a symplectic distribution.

Example 3.2. Consider the following submersion defined by

F :
(
R4,Ω4

)
→

(
R2,Ω2

)
(x1, x2, x3, x4) →

(
x1 + x2√

2
,
x3 + x4√

2

)
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where Ω4 and Ω2 are canonical symplectic structure of R4 and R2. By direct computation we

have

KerF∗ = Sp

{
X1 =

∂

∂x1
− ∂

∂x2
, X2 =

∂

∂x3
− ∂

∂x4

}
and

(KerF∗)
(Ω4)⊥ = Sp

{
X3 =

∂

∂x1
+

∂

∂x2
, X4 =

∂

∂x3
+

∂

∂x4

}
,

where (Ω4)⊥ denotes the orthogonality with respect to the symplectic form of Euclidean 4−

space. It is easy to see that (KerF∗) and (KerF∗)
⊥ are symplectic subspace of

(
R4,Ω4

)
. On

the other hand, we have

F∗X3 =
√

2
∂

∂y1
, F∗X4 =

√
2

∂

∂y2
.

Then we get

Ω4 (X3, X4) = Ω2 (F∗X3, F∗X4) = 2.

This shows that F is a symplectosubmersion.

It is known that symplectic connection of a symplectic manifold is not unique. In the

sequel we show that if the total manifold of a symplectosubmersion has a unique symplectic

connection, then, the base manifold has also a unique symplectic connection. A symplectic

connection∇ is a connection that is both torsion free and∇ω = 0. We recall that a symplectic

manifold with a fixed symplectic connection is called a Fedosov manifold [5].

Theorem 3.1. Let M1 be a Fedosov manifold and M2 a symplectic manifold. If F : M1 →

M2 is a symplectosubmersion then M2 is also a Fedosov manifold.

Proof. Since M1 is a Fedosov manifold then it has a unique symplectic connection.

Thus we have(
1
∇Xw1

)
(Y, Z) = Xw1 (Y, Z)− w1

(
H

1
∇XY, Z

)
− w1

(
Y,H

1
∇XZ

)
= 0

for X,Y, Z ∈ Γ((KerF∗)
⊥), where H is the projection morphism from TM1 to (KerF∗)

⊥.

Since F is a symplectosubmersion, we obtain

Xw2 (F∗Y, F∗Z)− w2

(
F∗H

1
∇XY, F∗Z

)
− w2

(
F∗Y, F∗H

1
∇XZ

)
=

(
2
∇Xw2

)
(F∗Y, F∗Z) .

Thus, since
1
∇ is unique symplectic connection, it follows that

2
∇ is also a unique symplectic

connection on M2.

We also have the following theorem.
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Theorem 3.2. Let F be a symplectosubmersion from symplectic manifold M1 to an almost

symplectic manifold M2. Then M2 is a symplectic manifold.

Proof. Let X̃, Ỹ and Z̃ be vector fields on an open subset of M2, and X, Y and

Z be their horizontal lifts to M1. Since M1 is a symplectic manifold then there is a closed

nondegenerate 2−form w1 on M1. Thus we get

3dw1 (X,Y, Z) = Xw1 (Y, Z) + Y w1 (Z,X) + Zw2 (X,Y )− w1 ([X,Y ] , Z)

−w1 ([Y,Z] , X)− w1 ([Z,X] , Y ) .

Then symplectosubmersion F implies that

3dw1 (X,Y, Z) = X̃w2

(
Ỹ , Z̃

)
+ Ỹ w2

(
Z̃, X̃

)
+ F∗Zw2

(
X̃, Ỹ

)
−w2

([
X̃, Ỹ

]
, Z̃
)
− w2

([
Ỹ , Z̃

]
, X̃
)
− w2

([
Z̃, X̃

]
, Ỹ
)

= 3dw2

(
X̃, Ỹ , Z̃

)
.

which proves the theorem.

It is known that, if M1 is a Kähler manifold with the Riemannian metric gM1 and complex

structure J . Then (M1,Ω1) is a symplectic manifold with Ω1 = (X,Y ) = g1 (X, JY ). Since

g1 is a Riemannian metric it follows that the Levi-Civita connection ∇ is a unique symplectic

connection. As a result, (M1,Ω) is a Fedosov manifold.

Theorem 3.3. Let (M1, g1) be a Kähler manifold and (M2,Ω2) a symplectic manifold. If F

is a symplectosubmersion from (M1,Ω1) to (M2,Ω2), then (M2,Ω2) is a Fedosov manifold,

where Ω1(X,Y ) = g1 (X, J1Y ) for almost complex structure J1 and vector fields X,Y ∈

Γ(TM1).
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HERMITIAN MANIFOLDS SATISFYING CERTAIN CURVATURE

CONDITIONS

SUNIL K YADAV∗ AND SUDHAKAR K CHAUBEY

Abstract. The object of present paper is to study some geometrical properties of quasi

Einstein Hermitian manifolds (QEH)n, generalized quasi Einstein Hermitian manifolds

G(QEH)n, and pseudo generalized quasi Einstein Hermitian manifolds P (GQEH)n.

1. Introduction

An even dimensional differentiable manifold Mn is said to be a Hermitian manifold if the

complex structure J of type (1, 1) and a pseudo-Riemannian metric g of the manifold M

satisfy

J2 = −I, g(JX, JY ) = g(X,Y ) (1.1)

for all X,Y ∈ χ(M), where χ(M) denotes Lie algebra of the vector fields on M. The notion of

an Einstein manifold was introduced and studied by Albert Einstein for this fact the manifold

is known as an Einstein manifold. In differential geometry and mathematical physics, an

Einstein manifold is a Riemannian or pseudo-Riemannian manifold (Mn, g), n ≥ 2, whose

Ricci tensor bearing the condition

Received:2019-07-13 Revised:2019-10-27 Accepted:2019-11-15

2010 Mathematics Subject Classification. 53C25, 53D15.

Key words: Quasi Einstein manifold, generalized quasi Einstein manifold, pseudo generalized quasi Einstein

manifold, Ricci soliton, Ricci-recurrent, Codazzi type Ricci tensor, Bochner curvature tensor.
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∗ Dedicated to Professor Sadık Keleş on the occasion of his retirement from Inonu University.

10



HERMITIAN MANIFOLDS SATISFYING CERTAIN CURVATURE CONDITIONS 11

S(X,Y ) = αg(X,Y ), (1.2)

where S is the Ricci tensor and α is a non-zero scalar. It plays an important role in Rie-

mannian geometry as well as in the general theory of relativity. From (1.2), we get

r = nα. (1.3)

A non-flat Riemannian manifold whose non-zero Ricci tensor S satisfies

S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) (1.4)

for all X, Y ∈ χ(M) is called a quasi Einstein manifold [3], where α, β are scalars such that

β 6= 0, A is non- zero 1-form defined as g(X, ρ) = A(X) for every vector field X and ρ denotes

unit vector, called generator of the manifold. An n-dimensional quasi Einstein manifold is

denoted by (QE)n. Again from (1.4), we have
r = nα+ β,

S(X, ρ) = (α+ β)A(X), S(ρ, ρ) = (α+ β),

g(Jρ, ρ) = 0, S(Jρ, ρ) = 0.

(1.5)

The Walker space-time is an example of quasi Einstein manifold. Also it can be taken as a

model of the perfect fluid space time in general theory of relativity [16]. A quasi Einstein

manifold has been studied by several authors ([10]-[5], [18], [21], [24], [29]) in different ways.

In 2001, Chaki [4] introduced the notion of generalized quasi Einstein manifold, whereas De

and Ghose [15] gave an example of such manifold and studies its geometrical properties in

2004.

A Riemannian manifold (Mn, g), n ≥ 2, is said to be a generalized quasi Einstein manifold

if a non-zero Ricci tensor S of type (0, 2) satisfies the condition

S(X,Y ) = αg(X,Y ) + β A(X)A(Y ) + γ C(X)C(Y ), (1.6)

where α, β and γ are scalars such that β 6= 0, γ 6= 0, and A and C are non-vanishing 1-forms

such that  g(X, ρ) = A(X), g(X,µ) = C(X),

g(ρ, ρ) = g(µ, µ) = 1,
(1.7)

where ρ and µ are orthogonal unit vectors. Throughout the paper, we denote this manifold

of n-dimensional by G(QE)n.
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From (1.6), we can easily calculate the following:



r = αn+ β + γ,

S(X, ρ) = (α+ β)A(X), S(X,µ) = (α+ γ)C(X),

S(µ, µ) = (α+ γ), S(ρ, ρ) = (α+ β),

g(Jρ, ρ) = g(Jµ, µ) = 0, S(Jρ, ρ) = S(Jµ, µ) = 0.

(1.8)

In 2008, De and Gazi [17] introduced the notion of nearly quasi Einstein manifold. A non-

flat Riemannian manifold (Mn, g), n ≥ 2, is called nearly quasi Einstein manifold if its Ricci

tensor S of the type (0, 2) is not identically zero and bearing the condition

S(X,Y ) = αg(X,Y ) + β E(X,Y ), (1.9)

where α, β are scalars such that β 6= 0 and E is a non-zero symmetric tensor of type (0, 2).

Such manifold is denoted by N(QE)n.

In 2008, Shaikh and Jana [28] introduced the concept of pseudo generalized quasi Einstein

manifold and verified it by suitable non-trivial examples.

A Riemannian manifold (Mn, g), n ≥ 2, is called a pseudo generalized quasi Einstein manifold

if its Ricci tensor S of type (0, 2) is not identically zero bearing the condition

S(X,Y ) = αg(X,Y ) + β A(X)A(Y ) + γ C(X)C(Y ) + λD(X,Y ), (1.10)

where α, β, γ and λ are non-zero scalars; D is a non-zero symmetric tensor of type (0, 2) with

zero trace and A, C are non-vanishing 1-forms such that

 g(X, ρ) = A(X), g(X,µ) = C(X),

D(X, ρ) = 0, g(ρ, ρ) = g(µ, µ) = 1
(1.11)

for any vector fieldX; ρ and µ are mutually orthogonal unit vector fields, called the generators

of the manifold. Such type of manifold is denoted by P (GQE)n. In view of (1.10) and (1.11),

we can easily compute that



r = αn+ β + γ + λD,

S(X, ρ) = (α+ β)A(X), S(X,µ) = (α+ γ)C(X),

S(µ, µ) = (α+ γ) + λD(µ, µ), S(ρ, ρ) = (α+ β) + λD(ρ, ρ),

g(Jρ, ρ) = g(Jµ, µ) = 0, S(Jρ, ρ) = λD(Jρ, ρ), S(Jµ, µ) = λD(Jµ, µ).

(1.12)
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The notion of Bochner curvature tensor was introduced by S. Bochner [2] and is defined as

B(Y, Z, U, V ) = R(Y, Z, U, V )

− 1
2(n+2)



S(Y, V )g(Z,U)− S(Y, U)g(Z, V ) + S(Z,U)g(Y, V )

−S(Z, V )g(Y,U) + S(JY, V )g(JZ,U)− S(JY, U)g(JZ, V )

+S(JZ,U)g(JY, V )− S(JZ, V )g(JY, U)− 2S(JY, Z)g(JU, V )

−2S(JU, V )g(JY, Z)


+ r

(2n+2)(2n+4)

 g(Z,U)g(Y, V )− g(Y,U)g(Z, V ) + g(JZ,U)g(JY, V )

−g(JY, U)g(JZ, V )− 2g(JY, Z)g(JU, V )

 ,

(1.13)

where R and r are the curvature tensor of type (0, 4) and the scalar curvature of manifold,

respectively. In a Hermitian manifold, the Bochner curvature tensor B satisfies the condition

B(X,Y, U,W ) = −B(X,Y,W,U). (1.14)

In a Riemannian manifold (Mn, g), n > 2, the Weyl conformal curvature tensor Ŵ of type

(1, 3) is defined by

Ŵ (X,Y )Z = R(X,Y )Z − 1
n−2{g(Y, Z)QX − g(X,Z)QY + S(Y,Z)X

−S(X,Z)Y }+ r
(n−1)(n−2) {g(Y, Z)X − g(X,Z)Y } ,

(1.15)

where Q is the symmetric endomorphism of the tangent space at each point corresponding

to Ricci tensor S, that is, g(QX,Y ) = S(X,Y ).

The scalar curvature r =
∑n

i=1 S(ei, ei), thus
∑n

i=1(∇XS)(ei, ei) = ∇Xr = dr(X), where

{ei, i = 1, 2, 3, ..., n} is a set of orthonormal vector fields of Mn. Putting Y = Z = ei in

(∇Y S)(X,Z) = g((∇YQ)(X), Z) and taking summation over i, we get

n∑
i=1

(∇eiS)(X, ei) =

n∑
i=1

g((∇eiQ)(X), ei),

(divQ)(X) = tr(Z → (∇ZQ)(X))

=
∑n

i=1 g((∇eiQ)(X), ei).

But it is known that [26] (divQ)(X) = 1
2dr(X). Then

∑n
i=1(∇eiS)(X, ei) = 1

2dr(X) and∑n
i=1(∇eiS)(JX, ei) = 1

2dr(X).

Let (Mn, g) be a Riemannian manifold and ∇ be the Levi-Civita connection, then a Rie-

mannian manifold is said to be locally symmetric if ∇R = 0, that notion has been studied

by different geometers through different approach. The notion of semisymmetry has been

developed by Szabo [30], recurrent manifold by Walker [32], conformally recurrent by Adati
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and Miyazawa [1]. According to Szabo, if the manifold satisfies the condition R ·R = 0, then

it is called semisymmetric manifold.

Definition 1.1. The Einstein tensor E is defined as

E(X,Y ) = S(X,Y )− r

n
g(X,Y ), (1.16)

where S is the Ricci tensor and r is the scalar curvature.

Definition 1.2. A n-dimensional Hermitian manifold is said to be [30]:

(1) Bochner Ricci semisymmetric if it satisfies

(B(X,Y ) · S)(U, V ) = 0, ∀X,Y, U, V ∈ χ(M). (1.17)

(2) Bochner Einstein semisymmetric if it satisfies

(B(X,Y ) · E)(U, V ) = 0, ∀X,Y, U, V ∈ χ(M). (1.18)

(3) Einstein semisymmetric it is satisfies

(R(X,Y ) · E)(U, V ) = 0, ∀X,Y, U, V ∈ χ(M). (1.19)

For a (0, k)-tensor field T on M , k ≥ 1 and a symmetric (0, 2) tensor field A on M, the

(0, k + 2)-tensor field R · T, Q(A, T ) and Q(B, T ) are defined by

(R · T )(X1, ..., Xk;X,Y ) = −T (R(X,Y )X1, ..., Xk)− ...− T (X1, ..., Xk−1, R(X,Y )Xk),

Q(A, T )(X1, ..., Xk;X,Y ) = −T ((X ∧A Y )X1, ..., Xk)− ...− T (X1, ..., Xk−1, (X ∧A Y )Xk),

Q(B, T )(X1, ..., Xk;X,Y ) = −T ((X ∧S Y )X1, ..., Xk)− ...− T (X1, ..., Xk−1, (X ∧S Y )Xk),

where (X ∧A Y ) and (X ∧S Y ) are the endomorphism defined as

(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y, (X ∧S Y )Z = S(Y,Z)X − S(X,Z)Y.

As per our need we recall the notion of the Ricci solitons. It is a natural generalization of

an Einstein metric and is defined on a Riemannian manifold (Mn, g) as:

A Ricci soliton on (Mn, g) is a triplet (g, V, λ) such that

LV g + 2S + 2λg = 0, (1.20)

where V is the potential vector field, λ is a real scalar, S is the Ricci tensor on Mn and LV

is the Lie derivative operator along V. A Ricci soliton is said to be shrinking, steady and

expanding according as λ is negative, zero and positive, respectively [22]. For details, we

refer [9]-[14], [23], [27], [31], [36]-[35] and the references there in.



HERMITIAN MANIFOLDS SATISFYING CERTAIN CURVATURE CONDITIONS 15

Proposition 1.1. Let a Riemannian manifold (Mn, g), n ≥ 2, with Ricci soliton (g, V, λ)

bearing Einstein tensor. If V is solenoid, then (g, V, λ) is shrinking, or steady, or expanding

depending upon the sign of scalar curvature.

2. BOCHNER RICCI SEMISYMMETRIC MANIFOLDS

In this section, we set the following definitions that will be useful to deduce our results.

Definition 2.1. A Hermitian manifold is said to be a quasi Einstein Hermitian manifold if

it satisfies the restriction (1.4).

In our study, we denote the quasi Einstein Hermitian manifold by (QEH)n.

Definition 2.2. A quasi Einstein Hermitian manifold (QEH)n is said to be Bochner Ricci

semisymmetric if it satisfies the condition (1.17).

If we follow Bochner Ricci semisymmetric quasi Einstein Hermitian manifold, then from

(1.4) and (1.17), we get

α {B(X,Y, Z,W ) +B(X,Y,W,Z)}+ β {A(B(X,Y )Z)A(W ) +A(Z)A(B(X,Y )W )} = 0.

(2.21)

Making use of (1.14) in (2.21), we get

β {A(B(X,Y )Z)A(W ) +A(Z)A(B(X,Y )W )} = 0. (2.22)

This implies that either β = 0 or A(B(X,Y )Z)A(W ) + A(Z)A(B(X,Y )W ) = 0. If β = 0

and A(B(X,Y )Z)A(W ) +A(Z)A(B(X,Y )W ) 6= 0, then from (1.4), we get

S(X,Y ) = αg(X,Y ). (2.23)

In view of (1.20) and (2.23), we get

(LV g)(X,Y ) + 2αg(X,Y ) + 2λg(X,Y ) = 0. (2.24)

Putting X = Y = ei in (2.24), where {ei, i = 1, 2, ..., n} denotes a basis of the tangent space

at each point of the manifold, and taking summation over i, 1 ≤ i ≤ n, we get

div V + 2αn+ 2λn = 0. (2.25)

If V is solenoidal, then div V = 0, and hence λ = − r
n . Thus we write the following result.
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Theorem 2.1. Let (g, V, λ) be a Ricci soliton on a quasi Einstein Hermitian manifold

(QEH)n. If (QEH)n is Bochner Ricci semisymmetric and V is solenoidal, then (g, V, λ)

is shrinking, steady and expanding depending upon the sign of the scalar curvature.

Corollary 2.1. Every Bochner Ricci semisymmetric quasi Einstein Hermitian manifold

(QEH)n is either an Einstein manifold or B(X,Y )ρ = 0.

3. BOCHNER EINSTEIN RICCI SEMISYMMETRIC QUASI EINSTEIN

HERMITIAN MANIFOLD (QEH)n

In this section, we are going to deduce some results that are related to Bochner Einstein

Ricci semisymmetric on (QEH)n. Due to this we recall the following definition:

Definition 3.1. A quasi Einstein Hermitian manifold is said to be Bochner Einstein Ricci

semisymmetric quasi Einstein Hermitian manifold (QEH)n if it satisfies the condition (1.18).

If we consider Bochner Einstein Ricci semisymmetric quasi Einstein Hermitian manifold

(QEH)n, then from (1.16) and (1.18), we get

S(B(X,Y )U,W )− r

n
g(B(X,Y )U,W ) + S(U,B(X,Y )W )− r

n
g(U,B(X,Y )W ) = 0. (3.26)

Using (1.4) and (1.14) in (3.26), we get

β {A(B(X,Y )U)A(W ) +A(U)A(B(X,Y )W )} = 0. (3.27)

This implies that either β = 0 or A(B(X,Y )U)A(W ) + A(U)A(B(X,Y )W ) = 0. If β = 0

and A(B(X,Y )U)A(W ) +A(U)A(B(X,Y )W ) 6= 0, then from (1.4) we get

S(X,Y ) = αg(X,Y ). (3.28)

Thus we are in situation to write the following results.

Theorem 3.1. Let (g, V, λ) be a Ricci soliton on a quasi Einstein Hermitian manifold

(QEH)n. If (QEH)n is Bochner Einstein Ricci semisymmetric and V is solenoidal, then

(g, V, λ) is shrinking, steady and expanding according as the scalar curvature is positive, zero

and negative, respectively.

Corollary 3.1. Every Bochner Einstein Ricci semisymmetric quasi Einstein Hermitian man-

ifold (QEH)n is either Einstein manifold or 1-form A satisfies the relation

A(B(X,Y )U)A(W ) +A(U)A(B(X,Y )W = 0.
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4. BOCHNER RICCI SEMISYMMETRIC GENERALIZED QUASI EINSTEIN

MANIFOLD G(QEH)n

In this section, we are going to deduce some results that are related to Bochner curvature

tensor on G(QEH)n. Due to this we recall the following definitions.

Definition 4.1. A Hermitian manifold is said to be generalized quasi Einstein Hermitian

manifold G(QEH)n if it satisfies the equation (1.6).

In our study, we denote the generalized quasi Einstein Hermitian manifold by G(QEH)n.

Definition 4.2. A generalized quasi Einstein Hermitian manifold is said to be a Bochner

Ricci semisymmetric generalized quasi Einstein Hermitian manifold G(QEH)n if it satisfies

the equation (1.17).

Let the generalized quasi Einstein Hermitian manifoldG(QEH)n is Bochner Ricci semisym-

metric, then from the equations (1.6), (1.17) and (1.14), we have

β {A(B(X,Y )U)A(W ) +A(U)A(B(X,Y )W )}

+γ {C(B(X,Y )U)C(W ) + C(U)C(B(X,Y )W )} = 0.
(4.29)

Replacing U = ρ and W = µ in (4.29), we get

βA(B(X,Y )µ) + γ C(B(X,Y )ρ) = 0. (4.30)

Thus equation (4.30) can be written in the form

β B(X,Y, µ, ρ) + γ B(X,Y, ρ, µ) = 0. (4.31)

Again use of (1.14) gives

(β − γ)B(X,Y, µ, ρ) = 0. (4.32)

This implies that either β = γ or B(X,Y, µ, ρ) = 0. If β = γ, then from (1.6), we get

S(X,Y ) = αg(X,Y ) + β E(X,Y ), (4.33)

where E(X,Y ) = A(X)A(Y ) +C(X)C(Y ). This implies that the manifold under considera-

tion is a nearly quasi Einstein manifold. Also in view of (1.20) and (4.33), we get

(LV g)(X,Y ) + 2 {αg(X,Y ) + β E(X,Y )}+ 2λg(X,Y ) = 0. (4.34)
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Putting X = Y = ei in (4.34), where {ei, 1, 2, ..., n} is a basis of the tangent space at each

point of the manifold and taking summation over i, 1 ≤ i ≤ n, we get

div V + αn+ β + λn = 0. (4.35)

If V is solenoidal, then div V = 0, then we get λ =
(γ−r

n

)
. Thus we are in situation to write

the following results.

Theorem 4.1. Let (g, V, λ) be a Ricci soliton on a generalized quasi Einstein Hermitian

manifold G(QEH)n. If G(QEH)n is Bochner Ricci semisymmetric and V is solenoidal, then

(g, V, λ) is shrinking, steady and expanding according as the scalar curvature r > γ, r = γ

and r < γ, respectively.

Corollary 4.1. Every Bochner Ricci semisymmetric generalized quasi Einstein Hermitian

manifold G(QEH)n is either nearly quasi Einstein manifold N(QE)n or B(X,Y, µ, ρ) = 0.

Corollary 4.2. A Bochner Ricci semisymmetric generalized quasi Einstein Hermitian man-

ifold G(QEH)n is a quasi Einstein manifold.

5. BOCHNER EINSTEIN RICCI SEMISYMMETRIC GENERALIZED QUASI

EINSTEIN MANIFOLD G(QEH)n

We recall the following definition as:

Definition 5.1. A generalized quasi Einstein Hermitian manifold is said to be a Bochner

Einstein Ricci semisymmetric generalized quasi Einstein Hermitian manifold G(QEH)n if it

satisfies the equation (1.18).

If we consider a Bochner Einstein Ricci semisymmetric generalized quasi Einstein Her-

mitian manifold, then from the equations (1.6), (1.18) and (1.14), we have

β {A(B(X,Y )U)A(W ) +A(U)A(B(X,Y )W )}

+γ {C(B(X,Y )U)C(W ) + C(U)C(B(X,Y )W )} = 0.
(5.36)

Substituting U = ρ and W = µ in (5.36), we get

βA(B(X,Y )µ) + γC(B(X,Y )ρ) = 0. (5.37)

Thus equation (5.37) can be written in the form

β B(X,Y, µ, ρ) + γ B(X,Y, ρ, µ) = 0. (5.38)
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Again using of (1.14) we have

(β − γ)B(X,Y, µ, ρ) = 0. (5.39)

This implies that either β = γ or B(X,Y, µ, ρ) = 0. If β = γ and B(X,Y, µ, ρ) 6= 0, then

from (1.6) we get

S(X,Y ) = αg(X,Y ) + β E(X,Y ), (5.40)

where E(X,Y ) = A(X)A(Y ) +C(X)C(Y ). This implies that the manifold under considera-

tion is a nearly quasi Einstein manifold. Also in view of (1.20) and (5.40), we get

(LV g)(X,Y ) + 2 {αg(X,Y ) + β E(X,Y )}+ 2λg(X,Y ) = 0. (5.41)

Putting X = Y = ei in (5.41), where {ei, i = 1, 2, ..., n} is a basis of the tangent space at

each point of the manifold and taking summation over i, 1 ≤ i ≤ n, we get

div V + αn+ β + λn. = 0. (5.42)

If V is solenoidal, then div V = 0, and hence we get λ =
(γ−r

n

)
. Thus we are in situation to

write the following results.

Theorem 5.1. Let (g, V, λ) be a Ricci soliton on a generalized quasi Einstein Hermitian man-

ifold G(QEH)n. If G(QEH)n is Bochner Einstein Ricci semisymmetric and V is solenoidal,

then (g, V, λ) is shrinking, steady and expanding according as the scalar curvature r > γ, r = γ

and r < γ, respectively.

Corollary 5.1. Every Bochner Einstein Ricci semisymmetric generalized quasi Einstein

Hermitian manifold G(QEH)n is either Bochner Einstein Ricci semisymmetric nearly quasi

Einstein manifold N(QE)n or B(X,Y, µ, ρ) = 0.

Also, replacing U = W = ρ in (5.36), we get 2βA(B(X,Y )ρ) = 0 this implies that either

β = 0 or B(X,Y )ρ = 0. If β = 0, the from (1.6), we get S(X,Y ) = αg(X,Y ) +γ C(X)C(Y ).

This means that the manifold is a quasi Einstein manifold. In a similar way we can easily

analyze for U = W = µ the manifold is a quasi Einstein manifold. Thus we state the

following result.

Corollary 5.2. A Bochner Einstein Ricci semisymmetric generalized quasi Einstein Her-

mitian manifold G(QEH)n is a quasi Einstein manifold.
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6. BOCHNER EINSTEIN RICCI SEMISYMMETRIC PSEUDO GENERALIZED

QUASI EINSTEIN HERMITIAN MANIFOLDS P (GQEH)n

We set the following definitions.

Definition 6.1. A Hermitian manifold is said to be a pseudo generalized quasi Einstein

Hermitian manifold if it satisfies the equation (1.10). In our study, we denote the pseudo

generalized quasi Einstein Hermitian manifold by P (GQEH)n.

Definition 6.2. A pseudo generalized quasi Einstein Hermitian manifold is said to be a

Bochner Einstein Ricci semisymmetric pseudo generalized quasi Einstein Hermitian manifold

P (GQEH)n if it satisfies the equation (1.18).

We suppose that Bochner Einstein Ricci semisymmetric pseudo generalized quasi Einstein

Hermitian manifold, then from the equations (1.10), (1.18) and (1.14), we have

β {A(B(X,Y )U)A(W ) +A(U)A(B(X,Y )W )}

+γ {C(B(X,Y )U)C(W ) + C(U)C(B(X,Y )W )}

+δ {D(B(X,Y )U,W ) +D(U,B(X,Y )W )} = 0.

(6.43)

Substituting U = ρ andW = µ in (6.43) and we assume thatD(B(X,Y )ρ, µ)+D(ρ,B(X,Y )µ)

= 0, then we get

βA(B(X,Y )µ) + γC(B(X,Y )ρ) = 0. (6.44)

Thus equation (6.44) can be written in the form

β B(X,Y, µ, ρ) + γ B(X,Y, ρ, µ) = 0. (6.45)

Again using (1.14) we have

(β − γ)B(X,Y, µ, ρ) = 0. (6.46)

This implies that either β = γ or B(X,Y, µ, ρ) = 0, therefore we are in situation to write the

following results.

Theorem 6.1. If D(B(X,Y )ρ, µ) = D(ρ,B(X,Y )µ) = 0 in a Bochner Einstein semisym-

metric pseudo generalized quasi Einstein Hermitian manifold, then either the scalars β and

γ are equal or B(X,Y, µ, ρ) = 0.

Again from (6.43) taking U = W = ρ, we get 2βA(B(X,Y )ρ) = 0, this implies that either

β = 0 or B(X,Y, ρ, ρ) = 0. If β = 0 the from (1.10), we get

S(X,Y ) = αg(X,Y ) + γ C(X)C(Y ) + δ D(X,Y ). (6.47)



HERMITIAN MANIFOLDS SATISFYING CERTAIN CURVATURE CONDITIONS 21

Also in view of (1.20) and (6.47), we get

(LV g)(X,Y ) + 2 {αg(X,Y ) + γ C(X)C(Y ) + δ D(X,Y )}+ 2λg(X,Y ) = 0. (6.48)

Putting X = Y = ei, in (6.48), where {ei} is a basis of the tangent space at each point of

the manifold and taking summation over i, 1 ≤ i ≤ n, we get

div V + αn+ γ + λn. = 0. (6.49)

If V is solenoidal then div V = 0, then from (6.49) we get λ = −
(
α+ γ

n

)
. Thus we are in

situation to write the following result.

Theorem 6.2. Let (g, V, λ) is a Ricci soliton in a Bochner Einstein semisymmetric pseudo

generalized quasi Einstein Hermitian manifold with D(B(X,Y )ρ, ρ) = 0, then V is solenoidal

and (g, V, λ) satisfies the following relations.

(1) For expanding α < 0, γ > 0 or α = 0, γ < 0 or α < 0, γ = 0.

(2) For steady α = 0, γ = 0 or α = − r
n , or γ = −αn.

(3) For shrinking α > 0, γ > 0 or α = 0, γ > 0 or α > 0, γ = 0.

Corollary 6.1. If D(B(X,Y )ρ, ρ) = 0 in a Bochner Einstein semisymmetric pseudo gener-

alized quasi Einstein Hermitian manifold, then

S(X,Y ) = αg(X,Y ) + γ C(X)C(Y ) + δ D(X,Y ).

In similar way we can easily analysis for U = W = µ, we yield either γ = 0 or

B(X,Y, µ, µ) = 0. Thus we have similar results as follows.

Corollary 6.2. If D(B(X,Y )µ, µ) = 0 in a Bochner Einstein semisymmetric pseudo gen-

eralized quasi Einstein Hermitian manifold, then

S(X,Y ) = αg(X,Y ) + β A(X)A(Y ) + δ D(X,Y ).

Corollary 6.3. Let (g, V, λ) is a Ricci soliton on a Bochner Einstein semisymmetric pseudo

generalized quasi Einstein Hermitian manifold with D(B(X,Y )µ, µ) = 0, then V is solenoidal

and the Ricci soliton satisfies the following:

(1) For expanding α < 0, β > 0 or α = 0, β < 0 or α < 0, β = 0,

(2) For steady α = 0, β = 0 or α = − r
n , or β = −αn,

(3) For shrinking α > 0, β > 0 or α = 0, β > 0 or α > 0, β = 0.
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7. GEOMETRICAL PROPERTIES

In this section, we discuss the some geometrical results. Let the generator ρ is parallel

vector field then R(X,Y )ρ = 0 which means S(X, ρ) = 0. Therefore from (1.4), we get

S(X, ρ) = (α + β)A(X) = 0, that implies (α + β) = 0. In similar way we can easily prove

(α+ β) = 0, for the generator µ. Therefore we are able to write the following results.

Theorem 7.1. If the generator ρ and µ of a (QEH)n manifold is parallel, then α+ β = 0.

Corollary 7.1. In a (QEH)n manifold Qρ is orthogonal to ρ if and only if α+ β = 0.

Corollary 7.2. If the generators ρ and µ of a G(QEH)n manifold are parallel, then α+β =

0.

Corollary 7.3. In a G(QEH)n manifold Qρ is orthogonal to ρ if and only if α+ β = 0.

Theorem 7.2. Let (g, V, λ) is a Ricci soliton on (QEH)n manifold and the generators ρ

and µ are parallel vector fields. If V is solenoidal, then (g, V, λ) is shrinking or steady or

expanding depending upon the nature of scalar α or β.

Proof. For parallel generators ρ and µ we have α = −β, then from (1.4) we have

S(X,Y ) = α{g(X,Y )−A(X)A(Y )}. (7.50)

In view of (1.20) and (7.50), we get

(LV g)(X,Y ) + 2 {αg(X,Y ) + αA(X)A(Y )}+ 2λg(X,Y ) = 0. (7.51)

Putting X = Y = ei, in (7.51), where {ei} is a basis of the tangent space at each point of

the manifold and taking summation over i, 1 ≤ i ≤ n, we get

div V + αn− α+ λn. = 0. (7.52)

If V is solenoidal then div V = 0. Thus from (7.52), we get λ = −
(
α(n−1)

n

)
. Thus the proof

is completed.

8. EINSTEIN SEMISYMMETRIC GENERALIZED QUASI EINSTEIN

HERMITIAN MANIFOLDS G(QEH)n

In this section, we are going to study Einstein semisymmetric G(QEH)n and deduced

some results. Let R · E = 0. Then we have

E(R(X,Y )U,W ) + S(U,R(X,Y )W = 0. (8.53)
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In view of (1.16) and (8.53), we get

S(R(X,Y )U,W )− r

n
g(R(X,Y )U,W ) + S(U,R(X,Y )W )− r

n
g(U,R(X,Y )W ) = 0. (8.54)

Making use of (1.6) in (8.54), we get

α{g(R(X,Y )U,W ) + g(R(X,Y,W )U}+ β {A(R(X,Y )U)A(W ) +R(X,Y )W )A(U)}

+γ {C(R(X,Y )U)C ′(W ) + C(R(X,Y )W )C(U)}

− r
n
{g(R(X,Y )U,W ) + g(R(X,Y )W,U)} = 0. (8.55)

Replacing W = ρ and U = µ in (8.55), we get βA(R(X,Y )µ = 0. This shows that either β

or A(R(X,Y )µ = 0. In particular, if β = 0 then from (1.6) we observe that the manifold is

a quasi Einstein manifold. We state the following results.

Theorem 8.1. An Einstein semisymmetric G(QEH)n manifold is either quasi Einstein

manifold or A(R(X,Y )µ = 0.

Corollary 8.1. Let (g, V, λ) is a Ricci soliton on an Einstein semisymmetric (QEH)n man-

ifold. If V is solenoidal then the Ricci soliton satisfies the following conditions.

(1) For expanding α < 0, γ > 0, or α = 0, γ < 0, or α < 0, γ = 0.

(2) For steady α = 0, γ = 0, or α = − r
n , or γ = −αn.

(3) For shrinking α > 0, γ > 0, or α = 0, γ > 0, or α > 0, γ = 0.

Theorem 8.2. The necessary condition for a G(QEH)n to be conformally conservative is

2(n+ 1)dα(µ) + (2n+ 1)dβ(µ)− dγ(µ) = 0.

Proof. It is known [20] that for a Riemannian manifold of dimension n > 3 div Ŵ = 0

which implies that

(∇XS)(Y,Z)− (∇ZS)(Y,X) =
1

2(n− 1)
{dr(X)g(Y,Z)− dr(Z)g(X,Y )} . (8.56)

Replacing X = Y = ρ and Z = µ in (8.56), we have

(∇ρS)(ρ, µ)− (∇µS)(ρ, ρ) =
1

2(n− 1)
{dr(ρ)g(ρ, µ)− dr(µ)g(ρ, ρ)} . (8.57)

Making use of (1.7) and (1.8) in (8.57) we get

2(n+ 1)dα(µ) + (2n+ 1)dβ(µ)− dγ(µ) = 0.

This complete the proof.
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9. NATURE OF ASSOCIATED 1-FORM ON G(QEH)n

In the section, we are going to study the behavior of associated 1-form under the restriction

that the associated scalars α, β and γ are constants and deduced the condition for which the

associated 1-forms A, B and C are closed. Due to this we suppose that the manifold satisfies

the Ricci tensor of Codazzi type, that is, the Ricci tensor satisfies

(∇XS)(Y, Z) = (∇Y S)(X,Z). (9.58)

In view of (1.6) and (9.58), we obtain

β {(∇XA)(Y )A(Z) +A(Z)(∇XA)(Z)}+ γ {(∇XC)(Y )C(Z) + C(Y )(∇XC)(Z)}

= β {(∇YA)(X)A(Z) +A(X)(∇YA)(Z)}

+γ {(∇Y C)(X)C(Z) + C(X)(∇Y C)(Z)} . (9.59)

On restricting Z = ρ in (9.59) and suppose that A and C are closed, that is, (∇XA)ρ = 0, ρ

is the unit vector field, we lead

β {(∇XA)(Y )− (∇YA)(X)} = γ {C(X)(∇XC)(ρ)− C(X)(∇Y C)(ρ)} = 0. (9.60)

Suppose that ∇Y ρ⊥µ then ∇Xρ = 0 therefore from (9.60), we get βdA(X,Y ) = 0. This

impels that either β = 0 or dA(X,Y ) = 0. If β = 0 then from (1.6) we infer that the

manifold is a quasi Einstein manifold. Otherwise, if β 6= 0 then dA(X,Y ) = 0, that is 1-form

A is closed.

Theorem 9.1. If a G(QEH)n manifold satisfies Codazzi type of Ricci tensor, then the

associated 1-form A is closed.

Corollary 9.1. If a G(QEH)n manifold satisfies Codazzi type of Ricci tensor, then the

manifold is quasi Einstein, provided the associated 1−form A is not closed.

In particular, if we suppose that the 1-form A is closed, then (∇XA)(Y )−(∇YA)(X) = 0,

this implies that

g(∇Xρ, Y )− g(∇Y ρ,X) = 0. (9.61)

Thus the vector field ρ is irrotational, putting X = ρ in (9.61), we get

g(∇ρρ, Y )− g(∇Y ρ, ρ) = 0. (9.62)
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Since ρ is unit vector field due to this g(∇Y ρ, ρ) = 0, therefore from (9.62), we yield ∇ρρ = 0,

that is the integral curves generated by the vector field ρ are geodesic. Thus we can write

the result as follows:

Theorem 9.2. If a G(QEH)n manifold satisfies Codazzi type of Ricci tensor, then the vector

field ρ is irrotational and the integral curves generated by the vector field ρ are geodesic.

10. RICCI RECURRENT (QEH)n MANIFOLD

Definition 10.1. A Riemannian manifold is said to be Ricci recurrent [25] if the Ricci tensor

S is non-zero and satisfies the restriction

(∇XS)(Y,Z) = F̄ (X)S(Y, Z), (10.63)

where F̄ is non-zero 1-form.

Let the generator ρ is parallel vector field, then ∇Xρ = 0 from which it is known that

R(X,Y )ρ = 0, which gives S(X, ρ) = 0. Therefore from (1.4), we get S(X, ρ) = (α +

β)A(X) = 0 =⇒ (α+ β) = 0. Thus (1.4) reduces to

S(X,Y ) = α{g(X,Y )−A(X)A(Y )}. (10.64)

Taking covariant derivative of (10.64) along Z, we get

(∇ZS)(X,Y ) = dα(Z){g(X,Y )−A(X)A(Y )}. (10.65)

In view of (10.64) and (10.65), we get

(∇ZS)(X,Y ) =
dα(Z)

α
S(X,Y ). (10.66)

Thus we have the following result.

Theorem 10.1. A (QEH)n manifold is Ricci recurrent, provided the generator ρ is parallel.
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f− BIHARMONIC NORMAL SECTION CURVES

FEYZA ESRA ERDOĞAN∗, SELCEN YÜKSEL PERKTAŞ, AND GÜLISTAN POLAT

Abstract. In this paper, We study f− biharmonic and bi−f harmonic normal section

curves. We have obtain sufficient and necessary conditions to be f− biharmonic and bi−f−

harmonic of a 3 - planar normal section curve.

1. Introduction

During the examination of the geometry of submanifolds, the classification of submanifolds

has a great importance in applications. While classifying the submanifolds, many authors

take advantage of distributions on the submanifolds.

Then, they try to simplify the carrying out operations by imposing totally geodesic, totally

umbilical and totally integrability conditions and search for the characteristics of submani-

folds. This is a functional method though, it is time consuming in practice. The most basic

and simplest method for studying submanifold geometry is to study on the curve. In this

respect, Chen ([1],[3]) described the normal section curves and used such curves to examine

the geometry of submanifolds. Chen ([1],[2]), Kim ([4],[5],[6]) and Li and Chen [1] etc.
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created classification of submanifolds with the concept of a normal section curve. On the

other hand the first comprehensive study of harmonic convergence between Riemannian

manifolds was conducted by Eells and Sampson [7]. Then harmonic convergence shed light

on many geometers ([14],[9],[11]), a great number studies have been carried out in this area

and have been one of the areas of great interest until today. Harmonic transformations are

related to variational calculation.

This calculation requires studying with the most appropriate selected objects. This situa-

tion is that the appropriate function selected for roughly harmonic convergence equals zero at

the appropriate point. From this point of view, it is known that the critical points of the vari-

ation functionalities of harmonic convergence identify geodesic curves and minimal surfaces.

Therefore, variations of the harmonic convergence of Riemannian manifolds are investigated

by identifying connections on the energy and tension of convergence, cotangent space and

pull- back tangent bundle in order to study on harmonic convergence of Riemannian man-

ifolds. Eells and Lemaire [14] proposed a k− harmonic convergence in 1993. For k = 2,

Jiang[8] obtained the variation formulas of such convergence. Today, these convergence are

called biharmonic convergence.

As a generalization of harmonic maps, biharmonic maps between Riemannian manifolds

were introduced in [15]. Chen [16] defined biharmonic submanifolds of the Euclidean space

and stated a well-known conjecture: Any biharmonic submanifold of the Euclidean space is

harmonic, thus minimal.

Harmonic maps between Riemannian manifolds were first introduced and studied by Lich-

nerowicz in 1970 (see also [23]). He has also some physical meanings by considering them as

solutions of continuous spin systems and inhomogenous Heisenberg spin systems [22]. More-

over, there is a strong relationship between f−harmonic maps and gradient Ricci solitons

[19].

Biharmonic maps and f−harmonic maps can be associated in two different ways. The

first way put forward by Zhao and Lu [20] by following the concept of biharmonic maps.

The authors extended bienergy functional to bi−f−energy functional and obtained a new

type of harmonic maps called bi−f−harmonic maps. This idea was already considered by

Ouakkas, Nasri and Djaa [18]. The second way is that to extend the f−energy functional

to the f−bienergy functional by following the definition of f−harmonic map, and obtain

another type of harmonic maps which are called f−biharmonic maps as critical points of

f−bienergy functional. As a generalization of biharmonic maps, f−biharmonic of maps was
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introduced by Lu [17]. A differentiable map between Riemannian manifolds is said to be

f−biharmonic if it is a critical point of the f−bienergy functional defined by integral of f

times the square-norm of the tension field, where f is a smooth positive function on the

domain. If f = 1, then f−biharmonic maps are biharmonic. To avoid the confusion with the

types of maps called by the same name in [18] and defined as critical points of the square-

norm of the f−tension field, some authors (see [17], [21]) called the map defined in [12] as

bi−f−harmonic map.

2. Preliminaries

2.1. Normal Section Curves and Curvatures on Riemannian Manifolds

Let γ : I ⊂ R → Em be a unit speed curve in Em. The curve is called Frenet curve of

osculating order r if its higer order derivatives γ′(s), γ′′(s), ..., γ(r)(s) are linearly independent

and γ′(s), γ′′(s), ..., γ(r+1)(s) linearly dependent, for all s ∈ I. For each Frenet curve of

osculating order r, one can associate an orthonormal r−frame v1, v2, ..., vr along γ such that

the Frenet formulas defined by in the usual way

T ′(s) = v1(s) = k1(s)v2(s),

v′2(s) = −k1(s)T (s) + k2(s)v3(s),

... (2.1)

v′i(s) = −ki−1(s)vi−1(s) + ki(s)vi+1(s),

v′i+1(s) = −ki(s)vi(s),

where k1, k2, ..., kr−1 are called the Frenet curvatures. LetM be a differentiable n−dimensional

submanifold in (n+ r)− dimensional Euclidean space En+r. If each normal sections γ of M

is a W−curve of rank r in M then M is called weak helical submanifold of order r. If each

r−planar normal section is a geodesic then the submanifold M is said to have geodesic nor-

mal sections. For every geodesic normal sections of M if it is a W−curve of rank r in M is

called weak geodesic helical submanifold of order r [13]. Assume that γ is a normal section

curve of a differentiable n− dimensional submanifold M in En+2 and M has 3-planar normal
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sections. Then by using Frenet formulas given by (2.1) we write

γ′(s) = T (s) = v1(s),

γ′′(s) = k1(s)v2(s),

γ′′′(s) = −k1(s)T (s) + k′1(s)v2(s) + k1(s)k2(s)v3(s),

γ(ıv)(s) = (−3k1(s)k′1(s))T (s)

+(k
′′
1 (s)− k3

1(s)− k1(s)k2
2(s))v2(s)

+(2k′1(s)k2(s) + k1(s)k′2(s))v3(s).

(2.2)

Hence, from (2.2)if we suppose M has 3-planar normal sections, we find
k3

1(s)(2k′1(s)k2(s) + k1(s)k′2(s)) = 0,

k1(s)k′1(s)((2k′1(s)k2(s) + k1(s)k′2(s)) = 0,

k1(s)k′1(s)((k
′′
1 (s)− k3

1(s)− k1(s)k2
2(s)) + 3k4

1(s)k′1(s) = 0,

(2.3)

for all s ∈ I.

2.2. f - Biharmonic and Bi-f -harmonic maps between Riemannian manifolds

Let (M, g) and (N,h) be Riemannian manifolds and Ψ : (M, g) −→ (N,h) be a smooth map.

The tension field of Ψ is given by τ(Ψ) = trace5 dΨ, where 5dΨ is the second fundamental

form of Ψ defined by

5dΨ(X,Y )= 5Ψ
XdΨ(Y )−dΨ(5M

X Y ) (2.4)

∆ΨV = −
m∑
i=1

{
∇Ψ
ei∇

Ψ
eiV −∇

Ψ
∇M

ei
ei
V
}
, V ∈ Γ

(
Ψ−1TN

)
(2.5)

where ∇Ψ is the pull-back connection on the pull-back bundle Ψ−1TN and {ei}mi =1 is an

orthonormal frame on M. Let M be a Riemannian manifold and γ : I →M be a differentiable

curve parameterized by arc length. By using the definition of the tension field, we have

τ(γ) ≡ ∇γ∂
∂s

dγ

(
∂

∂s

)
= ∇TT, (2.6)

where T = γ′. In this case biharmonic equation [7] for the curve γ reduces to

∇3
TT −R (T,∇TT )T = 0, (2.7)

that is, γ is called a biharmonic curve if it is a solution of the equation (2.7).

The map Ψ is a f -harmonic map with a differentiable function f : M → R, if it is a

critical point of f -energy

Ef (Ψ) =
1

2

∫
Ω

f |dΨ|2 dvg, (2.8)
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where Ω is a compact domain of M . The Euler-Lagrange equatiom of Ef (Ψ) is,

τf (Ψ) = fτ(Ψ) + dΨ(gradf) = 0, (2.9)

where τf (Ψ) is the f−tension field of Ψ. The map Ψ is said to be f -biharmonic, if it is a

critical point of the f -bienergy functional

E2,f (Ψ) =
1

2

∫
Ω

f |τ(Ψ)|2 vg (2.10)

where Ω is a compact domain of M . The Euler-Langrange equation for the f−bienergy

functional is given by

τ2,f (Ψ) = fτ2(Ψ) + ∆fτ(Ψ) + 2∇Ψ
(gradf)τ(Ψ) = 0, (2.11)

where τ2.f (Ψ) is the f -bitension field of Ψ. If an f -biharmonic map is neither harmonic

nor biharmonic then we call it by proper f -biharmonic and if f is a constant, then an

f -biharmonic map turns into a biharmonic map.

Bi-f -harmonic maps Ψ : (M, g) −→ (N,h) between two Riemannian manifolds are critical

points of the bi-f -energy functional:

Ef,2(Ψ) =
1

2

∫
Ω

|τf (Ψ)|2 vg, (2.12)

where Ω is a compact domain of M . The corresponding Euler-Lagrance equation is

τf,2(Ψ) = −trace(∇Ψf(∇Ψτf (Ψ))− f∇Ψ
∇M τf (Ψ) + fRN (τf (Ψ), dΨ)dΨ) = 0, (2.13)

where τf (Ψ) is the f -tension field of Ψ. τf,2(Ψ) is called the bi-f -tension field of the map Ψ.

3. f - Biharmonic and bi-f -harmonic Normal Section Curves

An important special case of f - biharmonic maps is an f - biharmonic curve. Let γ = γ(s)

be a differentiable curve on N parameterized by arclength s ∈ (a, b), where a, b ∈ R. Then,

putting e1 = ∂
∂s as an orthonormal frame on ((a, b)), ds2), we write dγ(e1) = dγ( ∂∂s) = γ′.

Thus, the tension field of the curve is given by

τ(γ) = ∇γe1dγ(e1) = ∇Nγ′γ′. (3.1)

It is also easy to see that for a function f : (a, b) → (0,∞), ∆f = f ′′ and ∇γgradfτ(γ) =

f ′∇Nγ′∇Nγ′γ′. If we put them in the f -biharmonic map equation,

f(∇Nγ′∇Nγ′∇Nγ′γ′ −RN (γ′,∇Nγ′γ′)γ′) + 2f ′∇Nγ′∇Nγ′γ′ + f ′′∇Nγ′γ′ = 0 (3.2)

the biharmonicity equation of γ is obtained (see [9]).
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Let Nn(c) be a Riemannian space form and γ : (a, b)→ Nn(c) be a curve with arclength

parametrization. Let {Fi, i = 1, 2, ..., n} be the Frenet frame along the curve γ(s), which is

obtained as the orthonormalisation of the n−tuple {∇(k)
∂
∂s

dγ( ∂∂s) | k = 1, 2, ..., n}. Then we

have the following Frenet formula along the curve γ given by

∇γ∂
∂s

F1 = k1F2,

∇γ∂
∂s

Fi = −ki−1Fi−1 + kiFi+1, ∀i = 2, 3, ..., n− 1, (3.3)

∇γ∂
∂s

Fn = −kn−1Fn−1,

where {k1, k2, ..., kn−1} are the curvatures of γ. Using the Frenet formulas one finds the

tension and the bitension fields of γ, respectively, as follows:

τ(γ) = ∇Nγ′γ′ = k1F2, (3.4)

τ2(γ) = −3k1k
′
1F1 + (k′′1 − k1k

2
2 − k3

1 + k1c)F2 (3.5)

+(2k′1k2 + k1k
′
2)F3 + k1k2k3F4. (3.6)

Substituting these into the f -biharmonic curve equation (3.2) and comparing the coeffi-

cients of both sides we say that γ is an f -biharmonic curve if and only if

3k1k
′
1f + 2f

′
k2

1 = 0,

fk′′1 − fk3
1 − fk1k

2
2 + fck1 + 2f

′
k′1 + f ′′k1 = 0,

fk
′
1k2 + f(k1k2)′ + f ′k1k2 = 0,

k1k2k3 = 0,

(3.7)

(for details, we refer [9]).

Case 3.1. If k1 = constant 6= 0, then the first equation of (3.7) implies that f is constant

and the curve γ is biharmonic. Also, if k2 = constant 6= 0, then the first and third equations

(3.7) imply that f is constant and thus the curve γ is biharmonic again.

Case 3.2. If k1 = constant 6= 0 and k2 = 0, then the f -biharmonic curve equation (3.7) is

equivalent to  f
′
k2

1 = 0,

−fk3
1 + fck1 + f ′′k1 = 0.

(3.8)

Here we conclude

Theorem 3.1. If k1 = constant 6= 0 and k2 = 0, then γ is an f -biharmonic curve if and

only if f is a non-zero constant function and γ is a curve with k1 =
√
c.
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Case 3.3. If k1 = constant 6= 0 and k2 = constant 6= 0. In this case the f− biharmonic

curve equation (3.7) is equivalent to
f
′
k2

1 = 0,

fk3
1 + fk1k

2
2 − fck1 = 0,

k3 = 0.

(3.9)

Then we give the following conclusion

Theorem 3.2. If k1 = constant 6= 0 and k2 = constant 6= 0, then γ is an f -biharmonic

curve if and only if f is a non-zero constant function, γ is a helix and k3 = 0.

Case 3.4. If k1 6= constant and k2 = constant 6= 0. In this case from the f -biharmonic

curve equation (3.7) we obtain that f = 0, which is impossible.

So we have

Theorem 3.3. If k1 6= constant and k2 = constant 6= 0, there does not exist an f-biharmonic

curve.

Case 3.5. If k1 6= constant and k2 6= constant, then the system (3.7) is equivalent to

f2k3
1 = c2

1,

(fk1)′′ = fk1(k2
1 + k2

2 − c),

f2k2
1k2 = c2,

k3 = 0.

(3.10)

Solving the first equation of (3.10), we find f = c1k
−3/2
1 .Substituting the first equation

into the third one in (3.10) we have k2/k1 = c3 . Therefore, we conclude that

Theorem 3.4. If k1 6= constant and k2 6= constant, then γ is a f -biharmonic curve if and

only if f = c1k
−3/2
1 , k2/k1 = c3, k3 = 0.

Now we shall examine necessary and sufficient conditions for a normal section curve γ

to be f - biharmonic in the Riemannian space form N(c). Note that we concentrate on

non-geodesic cases:

Theorem 3.5. Let M be an n−dimensional submanifold of Riemannian space form N(c),

(dimN = (n+ 3)) and γ be the normal section curve of M with k1 = constant 6= 0, k2 = 0.

Then M has planar normal sections if and only if the normal section curve γ of M is an

f−biharmonic curve satisfying f is a non-zero constant function and k1 =
√
c.
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Theorem 3.6. Let M be an n-dimensional submanifold of Riemannian space form N(c),

(dimN = (n + 3)) and γ be the normal section curve of M with k1 = constant 6= 0 and

k2 = constant 6= 0.Then M has planar normal sections if and only if the normal section

curve γ of M is an f− biharmonic curve satisfying f is a non-zero constant function and

k2
1 + k2

2 = c, k3 = 0.

Theorem 3.7. Let M be an n−dimensional submanifold of Riemannian space form N(c),

(dimN = (n + 3)) and γ be the normal section curve of M with k1 6= constant and k2 6=

constant. Then M has planar normal sections if and only if the normal section curve γ of

M is an f− biharmonic curve satisfying f = c1k
−3/2
1 and k2/k1 = c3, k3 = 0.

Next we shall investigate bi−f−harmonicity of planar normal sections curves.

Let γ : I →M(c) be a differentiable curve in a Riemannian manifold M(c), parameterized

by its arclength. Then γ is a bi-f -harmonic curve if and only if (for details, see [12])

−3k1k
′
1f

2 − 4k2
1ff

′ + ff ′′′ + f ′f ′′ = 0,

−k3
1f

2 − k1k
2
2f

2 + k′′1f
2 + 4k′1ff

′ + 3k1ff
′′ + 2k1(f ′)2 + ck1f

2 = 0,

2k′1k2f + k1k
′
2f + 4k1k2f

′ = 0,

k1k2k3 = 0.

(3.11)

We assume that γ : I → En is a differentiable curve in the n−dimensional Euclidean

space, defined on an open real interval I and parameterized by its arclength. Since En is a

Riemannian space form with c = 0, from the bi−f−harmonic curve equation given by (3.11)

we have [12]

Theorem 3.8. Let γ : I → En be a curve in the n-dimensional Euclidean space parameter-

ized by its arclength. Then γ is a bi−f−harmonic curve if and only if

−3k1k
′
1f

2 − 4k2
1ff

′ + ff ′′′ + f ′f ′′ = 0,

−k3
1f

2 − k1k
2
2f

2 + k′′1f
2 + 4k′1ff

′ + 3k1ff
′′ + 2k1(f ′)2 = 0,

2k′1k2f + k1k
′
2f + 4k1k2f

′ = 0,

k1k2k3 = 0.

(3.12)

Case 3.6. If k1 = constant 6= 0 and k2 = 0, then (3.12) reduces to

−4k2
1ff

′ + ff ′′′ + f ′f ′′ = 0, (3.13)

−k2
1f

2 + 3ff ′′ + 2(f ′)2 = 0.
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From the second equation above we obtain

f ′(5k2
1f

2 + 2f ′′) = 0, (3.14)

via the first equation of system (3.14) and we get

Theorem 3.9. Let γ : I → En be a curve in the n-dimensional Euclideanspace, parameter-

ized by its arclength, with k1 = constant 6= 0 and k2 = 0. Then γ is a bi−f−harmonic curve

if and only if either f is a constant function or f is given by

f(s) = c1 cos(

√
5

2
k1s) + c2 sin(

√
5

2
k1s), (3.15)

for s ∈ I and c1, c2 ∈ R.

Case 3.7. If k1 = constant 6= 0 and k2 = constant 6= 0, then (3.12) reduces to

−4k2
1ff

′ + ff ′′′ + f ′f ′′ = 0, (3.16)

−k2
1f

2 − k2
2f

2 + 3k1ff
′′ + 2k1(f ′)2 = 0,

f ′ = 0,

k3 = 0,

and we conclude

Theorem 3.10. Let γ : I → En be a curve in the n-dimensional Euclidean space, param-

eterized by its arclength, with k1 = constant 6= 0 and k2 = 0. Then γ is a bi−f−harmonic

curve if and only if the curvatures k1 and k2 satisfy:

−3k1k
′
1f

2 − 4k2
1ff

′ + ff ′′′ + f ′f ′′ = 0, (3.17)

−k3
1f

2 + k
′′
1f

2 + 4k′1ff
′ + 3k1(f ′)2 = 0. (3.18)

Let us examine necessary and sufficient conditions for which normal section curve γ be

bi-f - harmonic in the Riemannian space form. If we search non-geodesic solution.

Theorem 3.11. Let N be a submanifold of M(c). Then N has 3-planar normal sections

bi-f−harmonic for f(s) = c1 cos(
√

5
2k1s) + c2 sin(

√
5
2k1s) if and only if curvatures of planar

normal section curves are k1 = constant 6= 0 and k2 = 0 being solution of system (3.14).
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Theorem 3.12. Let N be a submanifold of M(c). Then N has 3-planar normal sections bi-

f−harmonic if and only if curvatures of planar normal section curves are k1 = constant 6= 0

and k2 = 0 satisfy;

−3k1k
′
1f

2 − 4k2
1ff

′ + ff ′′′ + f ′f ′′ = 0, (3.19)

−k3
1f

2 + k
′′
1f

2 + 4k′1ff
′ + 3k1(f ′)2 = 0. (3.20)
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EXPONENTIAL DECAY FOR A THERMO-VISCOELASTIC BRESSE

SYSTEM WITH SECOND SOUND AND DELAY TERMS

MOHAMED HOUASNI∗, SALAH ZITOUNI, AND RACHIDA AMIAR

Abstract. In this paper, we consider a thermo-viscoelastic Bresse system with second

sound and delay terms, where the heat flux is given by Cattaneo’s law. Regardless of the

speeds of wave propagation and the stable number, which is introduced in [14, 15], we

prove an exponential stability result using energy method under suitable assumptions on

the weights of the delays and the frictionals damping.

1. Introduction

In the present paper, we consider the following thermo-viscoelastic Bresse system with

second sound and delay terms

ρ1ϕtt − k (ϕx + ψ + lω)x − k0l (ωx − lϕ) + µ1ϕt + µ2ϕt (x, t− τ1) = 0,

ρ2ψtt − bψxx + k (ϕx + ψ + lω) + δ
∫ t
0 g (t− s)ψxx (x, s) ds+ γθx = 0,

ρ1ωtt − k0 (ωx − lϕ)x + kl (ϕx + ψ + lω) + λ1ωt + λ2ωt (x, t− τ2) = 0,

ρ3θt + qx + γψtx = 0,

αqt + βq + θx = 0,

(1.1)
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with the initial data and boundary conditions

ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) , ψ (x, 0) = ψ0 (x) , ψt (x, 0) = ψ1 (x) ,

ω (x, 0) = ω0 (x) , ωt (x, 0) = ω1 (x) , θ (x, 0) = θ0 (x) , θt (x, 0) = θ1 (x) ,

q (x, 0) = q0 (x) , qt (x, 0) = q1 (x) .

ϕ (0, t) = ψx (0, t) = ωx (0, t) = θ (0, t) = ω (L, t) = ψ (L, t) = ϕx (L, t) = q (L, t) = 0,

ϕt (x, t− τ1) = f0 (x, t− τ1) , (x, t) ∈ (0, L)× (0, τ1) ,

ωt (x, t− τ2) = f̃0 (x, t− τ2) , (x, t) ∈ (0, L)× (0, τ2) .

(1.2)

where (x, t) ∈ (0, L)× R+, ρ1, ρ2, ρ3, α, β, k, k0, l, b, δ, γ, µ1, λ1 are positive constants, µ2 and

λ2 are real numbers, τ1, τ2 > 0 represent the time delays, θ is the difference temperature, q is

the heat flux and g is a positive function satisfying some conditions to be determined later.

Originally, the Bresse system consists of three wave equations where the main variables

describing the longitudinal, vertical and shear angle displacements, which can be represented

as (see [6]): 
ρ1ϕtt = Qx + lN + F1,

ρ2ψtt = Mx −Q+ F2,

ρ1ωtt = Nx − lQ+ F3,

(1.3)

where in our work

M = bψx − δ
∫ t

0
g (t− s)ψx (., s) ds, N = k0 (ωx − lϕ) , Q = k (ϕx + ψ + lω) ,

F1 = −µ1ϕt − µ2ϕt (., t− τ1) , F2 = 0, and F3 = −λ1ωt − λ2ωt (., t− τ2) .

N , Q and M denote the axial force, the shear force and the bending moment. By ω, ϕ, and

ψ, we are denoting the longitudinal, vertical and shear angle displacements. Here ρ1 = ρA,

ρ2 = ρl, b = EI, k0 = EA, k = k0GA and l = R−1. For material properties, we use ρ for

density, E for the modulus of elasticity, G for the shear modulus, k for the shear factor, A

for the cross-sectional area, I for the second moment of area of the cross-section and R for

the radius of curvature and we assume that all this quantities are positives. Also by Fi we

are denote external forces. The Bresse system ( 1.3), is more general than the well-known

Timoshenko system where the longitudinal displacement ω is not considered (l = 0).

The issue of existence and stability of Bresse system has attracted a great deal of attention

in the last decades (e.g. [1, 2, 3, 6, 10, 11, 12, 16, 17, 18, 21, 22]). In the absence of viscoelastic

damping (g = 0), frictionals damping µ1 = λ1 = 0 and delay terms µ2 = λ2 = 0, Keddi et
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al. [14] studied the following one-dimensional thermoelastic Bresse system

ρ1ϕtt − k (ϕx + ψ + lω)x − k0l (ωx − lϕ) = 0,

ρ2ψtt − bψxx + k (ϕx + ψ + lω) + γθx = 0,

ρ1ωtt − k0 (ωx − lϕ)x + kl (ϕx + ψ + lω) = 0,

ρ3θt + qx + γψtx = 0,

τqt + βq + θx = 0,

(1.4)

where the heat conduction is given by Cattaneo’s law effective in the shear angle displacement.

They established the well-posedness of the system and proved, under a condition on the

parameters ζ, k and k0, which is

ζ :=

(
1− τkρ3

ρ1

)(ρ1
k
− ρ2

b

)
− τγ2

b
= 0 and k = k0,

that the system was exponentially stable depending on the stable number of the system, and

showed that in general, the system was polynomially stable if ζ 6= 0 and k = k0. Li et al.

[15] extended this last result to the following Bresse system with delay

ρ1ϕtt − k (ϕx + ψ + lω)x − k0l (ωx − lϕ) + µϕt (x, t− τ0) = 0,

ρ2ψtt − bψxx + k (ϕx + ψ + lω) + γθx = 0,

ρ1ωtt − k0 (ωx − lϕ)x + kl (ϕx + ψ + lω) = 0,

ρ3θt + qx + γψtx = 0,

τqt + βq + θx = 0.

(1.5)

They proved that the system is well-posed by using the semigroup method, and under a

similar condition on the precedent parameters, that is

ζ :=

(
τ − ρ1

kρ3

)(ρ2
b
− ρ1

k

)
− τγ2ρ1

bkρ3
= 0 and k = k0,

they showed that the dissipation induced by the heat is strong enough to exponentially

stabilize the system in the presence of a ”small” delay when the stable number is zero.

Motivated by the works mentioned above, we investigate system (1.1) under suitable as-

sumptions and show that even in the presence of the viscoelastic term (g 6= 0), the frictionals

damping (λ1, µ1 6= 0) and the second delay term (λ2 6= 0), we can establish an exponential

decay result regardless of the stable number ζ. Introducing the viscoelastic term together

with the frictionals damping in the internal feedback of thermoelastic Bresse system with

second sound makes our problem different from those considered so far in the literature. We

prove our result by using the energy method together with some hypotheses on the weights

of the delays and the frictionals damping as well the relaxation function g.
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This paper is organized as follows: In Section 2, we introduce some assumptions needed

in our work. In section 3, we shall give some technical lemmas and state with proof our main

result.

2. Preliminaries

In this section, we present some materials needed in the proof of our results. We also

state, without proof, a local existence result for problem (1.1). The proof can be established

by using Faedo–Galerkin method [7]. Throughout this paper, c or C represents a generic

positive constant and is different in various occurrences.

We shall use the following assumptions:

(A1) g : R+ → R+ is a differentiable function such that

g(0) > 0, b− δ
∫ ∞
0

g(s)ds = b− δg1 = l > 0, (2.6)

(A2) There exists a non-increasing differentiable function η : R+ → R+ such that

g′(t) ≤ −η(t)g(t), t ≥ 0 and

∫ ∞
0

η(t)dt = +∞. (2.7)

Remark 2.1. Since g is positive and g(0) > 0 then for any t0 > 0 we have

∫ t

0
g (s) ds ≥

∫ t0

0
g (s) ds = g0 > 0, ∀t ≥ t0. (2.8)

We introduce the new variable as in [20]

z1(x, ρ, t) = ϕt(x, t− τ1ρ), x ∈ (0, L), ρ ∈ (0, 1), t > 0, (2.9)

z2(x, ρ, t) = ωt(x, t− τ2ρ), x ∈ (0, L), ρ ∈ (0, 1), t > 0. (2.10)

Then, we have

τz1t(x, ρ, t) + z1ρ(x, ρ, t) = 0, x ∈ (0, L), ρ ∈ (0, 1), t > 0,

τz2t(x, ρ, t) + z2ρ(x, ρ, t) = 0, x ∈ (0, L), ρ ∈ (0, 1), t > 0.
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Hence, problem (1.1)-(1.2) is equivalent to the following system, where (x, ρ, t) ∈ (0, L) ×

(0, 1)× R+

ρ1ϕtt − k (ϕx + ψ + lω)x − k0l (ωx − lϕ) + µ1ϕt + µ2z1(x, 1, t) = 0,

τ1z1t(x, ρ, t) + z1ρ(x, ρ, t) = 0,

ρ2ψtt − bψxx + k (ϕx + ψ + lω) + δ
∫ t
0 g (t− s)ψxx (x, s) ds+ γθx = 0,

ρ1ωtt − k0 (ωx − lϕ)x + kl (ϕx + ψ + lω) + λ1ωt + λ2z2(x, 1, t) = 0,

τ2z2t(x, ρ, t) + z2ρ(x, ρ, t) = 0,

ρ3θt + qx + γψtx = 0,

αq + βq + θx = 0,

(2.11)

with the following initial data and boundary conditions

ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) ,

ψ (x, 0) = ψ0 (x) , ψt (x, 0) = ψ1 (x) ,

ω (x, 0) = ω0 (x) , ωt (x, 0) = ω1 (x) ,

q (x, 0) = q0 (x) , qt (x, 0) = q1 (x) ,

θ (x, 0) = θ0 (x) , θt (x, 0) = θ1 (x) ,

z1(x, ρ, 0) = f0(x,−ρτ1), z2(x, ρ, 0) = f̃0(x,−ρτ2)

z1(x, 0, t) = ϕt(x, t), z2(x, 0, t) = ωt(x, t)

ϕ (0, t) = ψx (0, t) = ωx (0, t) = θ (0, t) = 0,

ω (L, t) = ψ (L, t) = ϕx (L, t) = q (L, t) = 0,

x ∈ (0, L),

x ∈ (0, L),

x ∈ (0, L),

x ∈ (0, L),

x ∈ (0, L),

(x, ρ) ∈ (0, L)× (0, 1)

(x, t) ∈ (0, L)× (0,+∞),

t ∈ (0,+∞),

t ∈ (0,+∞).

(2.12)

Along this paper, we use the following notations

(f � v)(t) =
∫ t
0 f(t− s) (v(t)− v(s)) ds, ∀v ∈ L2(0, L),

(f ◦ v)(t) =
∫ t
0 f(t− s)(v(s)− v(t))2ds.

The energy functional associated to (2.11)-(2.12), is

E(t) =
1

2

∫ L

0

{
ρ1ϕ

2
t + ρ2ψ

2
t + ρ1ω

2
t + ρ3θ

2 + αq2 +

(
b− δ

∫ t

0
g(s)ds

)
ψ2
x

}
dx

+
1

2

∫ L

0

{
ξ1

∫ 1

0
z21(x, ρ, t)dρ+ ξ2

∫ 1

0
z22(x, ρ, t)dρ+ k (ϕx + ψ + lω)2

}
dx

+
1

2

∫ L

0

{
k0 (ωx − lϕ)2 + δ(g ◦ ψx)

}
dx (2.13)

we denote E(t) = E (t, ϕ, ψ, ω, θ, q, z1, z2) and E(0) = E
(

0, ϕ0, ψ0, ω0, θ0, q0, f0, f̃0

)
for sim-

plicity of notations.
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For state a local existence result, we introduce the vector function Φ = (ϕ, u, ψ, v, ω, w, θ

, q, z1, z2)
T , where u = ϕt, v = ψt and w = ωt, using the standard Lebesgue space L2(0, L)

and the Sobolev space H1
0 (0, L) with their usual scalar products and norms for define the

space H as follows

H := H1
∗ (0, L)× L2(0, L)×

[
H̃1
∗ (0, L)× L2(0, L)

]2
×
[
L2(0, L)

]2 × [L2((0, L)× (0, 1))
]2
,

where

H1
∗ (0, L) =

{
f ∈ H1(0, L), f (0) = 0

}
,

H̃1
∗ (0, L) =

{
f ∈ H1(0, L), f (L) = 0

}
,

H2
∗ (0, L) = H2(0, L) ∩H1

∗ (0, L),

H̃2
∗ (0, L) = H2(0, L) ∩ H̃1

∗ (0, L).

Proposition 2.1. Let Φ0 = (ϕ0, ϕ1, ψ0, ψ1, ω0, ω1, θ0, q0, f0, f̃0)
T ∈ H be given. Assume that

(A1), (A2), µ1 > |µ2| and λ1 > |λ2| are satisfied. Then Problem (2.11)-(2.12) possesses a

unique global (weak) solution satisfying

Φ = (ϕ, u, ψ, v, ω, w, θ, q, z1, z2)
T ∈ C (R+;H) .

3. Exponential stability

In this section, we state and prove our exponential decay result for the energy of the

solution of system (1.1)-(1.2), using the Lyapunov functional which is equivalent to the

energy functional. To achieve our goal, we need the following technical lemmas.

The two inequalities in the following lemma are introduced in [8] and [13] respectively.

Lemma 3.1. For any function g ∈ C([0,+∞),R+) and any v ∈ L2(0, L) we have

[g � v(t)]2 dx ≤
(∫ t

0
g(s)ds

)
g ◦ v(t), ∀t ≥ 0, (3.14)

∫ L

0

(∫ t

0
g(t− s)vx(s)ds

)2

dx ≤ 2g1

∫ L

0
g ◦ vxdx+ 2g1

∫ L

0
v2xdx. (3.15)

Lemma 3.2. (Poincaré-type Scheeffer’s inequality, [19]): Let h ∈ H1
0 (0, L). Then it

holds ∫ L

0
|h|2 dx ≤ c

∫ L

0
|hx|2 dx, c =

L2

π2
. (3.16)

Lemma 3.3. [10] There exists a positive constant c such that the following inequality holds

for every (ϕ,ψ, ω) ∈
[
H1

0 (0, L)
]3

∫ L

0
(ϕ2

x + ψ2
x + ω2

x)dx ≤ c
∫ L

0

[
bψ2

x + k(ϕx + ψx + ωx)2 + k0(ωx − lϕ)2
]
dx. (3.17)
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Lemma 3.4. Let (ϕ,ψ, ω, θ, q, z1, z2) be the solution of (2.11)-(2.12). Then the energy func-

tional satisfies, for some n0, n
′
0 > 0,

E ′(t) ≤ −β
∫ L

0
q2dx+

δ

2

∫ L

0
(g
′ ◦ ψx)dx− δ

2
g(t)

∫ L

0
ψ2
xdx− n0

(∫ L

0
ϕ2
tdx+

∫ L

0
z21(x, 1, t)dx

)
−n′0

(∫ L

0
ω2
t dx+

∫ L

0
z22(x, 1, t)dx

)
≤ 0

where

τ1 |µ2| < ξ1 < τ1(2µ1 − |µ2|) and τ2 |λ2| < ξ2 < τ2(2λ1 − |λ2|). (3.18)

Proof. Multiplying Equation (2.11)1 by ϕt , (2.11)3 by ψt, (2.11)4 by ωt, (2.11)6 by

θt and (2.11)7 by q, then integrating over (0, L). Next, multiplying (2.11)2 by (ξ1/τ1)z1 and

(2.11)5 by (ξ2/τ2)z2 and integrating over (0, L)× (0, 1) with respect to ρ and x, we get

1

2

d

dt

∫ L

0

{
ρ1ϕ

2
t + ρ2ψ

2
t + ρ1ω

2
t + ρ3θ

2 + bψ2
x

}
dx (3.19)

+
1

2

d

dt

∫ L

0

{
k (ϕx + ψ + lω)2 + k0 (ωx − lϕ)2 + αq2

}
dx

= −µ1
∫ L

0
ϕ2
t − λ1

∫ L

0
ω2
t − µ2

∫ L

0
z1(x, 1, t)ϕtdx− β

∫ L

0
q2dx

−λ2
∫ L

0
z2(x, 1, t)ωtdx− δ

∫ L

0
ψt

∫ t

0
g(t− s)ψxx(s)dsdx,

and

ξ1
τ1

∫ L

0

∫ 1

0
z1z1ρ(x, ρ, t)dρdx =

ξ1
τ1

∫ L

0

∫ 1

0

d

2dρ
z21(x, ρ, t)dρdx (3.20)

=
ξ1
2τ1

∫ L

0
[z21(x, 1, t)− z21(x, 0, t)]dx

=
ξ1
2τ1

∫ L

0
z21(x, 1, t)dx− ξ1

2τ1

∫ L

0
ϕ2
tdx,

ξ2
τ2

∫ L

0

∫ 1

0
z2z2ρ(x, ρ, t)dρdx =

ξ2
τ2

∫ L

0

∫ 1

0

d

2dρ
z22(x, ρ, t)dρdx (3.21)

=
ξ2
2τ2

∫ L

0
[z22(x, 1, t)− z22(x, 0, t)]dx (3.22)

=
ξ2
2τ2

∫ L

0
z22(x, 1, t)dx− ξ2

2τ2

∫ L

0
ω2
t dx. (3.23)

Now, we estimate the last term on the left-hand side of (3.19).

δ

∫ L

0
ψt(t)

∫ t

0
g(t− s)ψxx(s)dsdx =

δ

2

d

dt

∫ L

0
(g ◦ ψx)dx+

δ

2
g(t)

∫ L

0
ψ2
x(t)dx (3.24)

−δ
2

d

dt

(∫ t

0
g(s)ds

∫ 1

0
ψ2
x(t)dx

)
− δ

2

∫ L

0
(g
′ ◦ ψx)dx.
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We have also

−µ2
∫ L

0
z1(x, 1, t)ϕtdx ≤ |µ2|

2

(∫ L

0
ϕ2
tdx+

∫ L

0
z21(x, 1, t)dx

)
,

−λ2
∫ L

0
z2(x, 1, t)ωtdx ≤ |λ2|

2

(∫ L

0
ω2
t dx+

∫ L

0
z22(x, 1, t)dx

)
.

So, we conclude

E ′(t) ≤ δ

2

∫ L

0
(g
′ ◦ ψx)dx− δ

2
g(t)

∫ L

0
ψ2
xdx−

(
µ1 −

ξ1
2τ1
− |µ2|

2

)∫ L

0
ϕ2
tdx

−
(
λ1 −

ξ2
2τ2
− |λ2|

2

)∫ L

0
ω2
t dx−

(
ξ1
2τ1
− |µ2|

2

)∫ L

0
z21(x, 1, t)dx

−
(
ξ2
2τ2
− |λ2|

2

)∫ L

0
z22(x, 1, t)dx.

Using (3.18), we have, for some n0, n
′
0 > 0,

E ′(t) ≤ δ

2

∫ L

0
(g
′ ◦ ψx)dx− δ

2
g(t)

∫ L

0
ψ2
xdx− n0

(∫ L

0
ϕ2
tdx+

∫ L

0
z21(x, 1, t)dx

)
−n′0

(∫ L

0
ω2
t dx+

∫ L

0
z22(x, 1, t)dx

)
≤ 0.

Lemma 3.5. Let (ϕ,ψ, ω, θ, q, z1, z2) be a solution of (2.11)-(2.12). Then the functional

I1(t) = −ρ2
∫ L

0
ψt

(∫ t

0
g(t− s)(ψ(t)− ψ(s)ds

)
dx (3.25)

satisfies for any δ
′
> 0

I ′1(t) ≤ −ρ2
(
g0 − δ

′
)∫ L

0
ψ2
t dx+

(
b2 + δ2g21 − 2bδg0

)
δ
′
∫ L

0
ψ2
xdx

+kδ
′
∫ L

0
(ϕx + ψ + lω)2 dx− ρ2g (0)

4δ′

∫ L

0

(
g′ ◦ ψx

)
dx

+C
(
δ
′
)∫ L

0
g ◦ ψxdx+

1

2

∫ L

0
θ2dx. (3.26)

Proof. Taking the derivative of I1, using the third equation in (2.11), we obtain

I ′1(t) = −ρ2
∫ L

0
ψt
(
g′ � ψ

)
dx− ρ2

(∫ t

0
g (s) ds

)∫ L

0
ψ2
t dx (3.27)

+

(
b− δ

∫ t

0
g (s) ds

)∫ L

0
(g � ψx)ψxdx+ k

∫ L

0
(ϕx + ψ + lw) (g � ψ) dx

+δ

∫ L

0
(g � ψx)2 dx−

∫ L

0
θ (g � ψx) dx.

By using Young’s inequality, and (3.14), we get, for any δ
′
> 0

δ

∫ L

0
(g � ψx)2 dx ≤ δg1

∫ L

0
(g ◦ ψx) dx (3.28)
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−
∫ L

0
ψt
(
g′ � ψ

)
dx ≤ δ′

∫ L

0
ψ2
t dx−

ρ2g (0)

4δ′

∫ L

0

(
g′ ◦ ψx

)
dx (3.29)

k

∫ L

0
(ϕx + ψ + lw) (g � ψ) dx ≤ kδ′

∫ L

0
(ϕx + ψ + lw)2 dx+

g1k

4δ′

∫ L

0
(g ◦ ψx) dx (3.30)

(
b− δ

∫ t

0
g (s) ds

)∫ L

0
(g � ψx)ψxdx ≤

(
b2 + δ2g21 − 2bδg0

)
δ
′
∫ L

0
ψ2
xdx

+
g1
4δ′

∫ L

0
(g ◦ ψx) dx (3.31)

−
∫ L

0
θ (g � ψx) dx ≤ 1

2

∫ L

0
θ2dx+

g1
2

∫ L

0
(g ◦ ψx) dx. (3.32)

Combining (3.27)-(3.32), the result follows.

Lemma 3.6. Let (ϕ,ψ, ω, θ, q, z1, z2) be the solution of (2.11)-(2.12), then for ε1, ε2, ε3 > 0,

the functional

I2(t) = −ρ2ρ3
γ

∫ L

0
θ

∫ x

0
ψt(y)dydx (3.33)

satisfies the estimate

I ′2(t) ≤ −ρ2
γ

∫ L

0
ψ2
t dx+ ε1

∫ L

0
(ϕx + ψ + lω)2 dx+ c

(
1

ε1
+

1

ε2
+

1

ε3
+ 1

)∫ L

0
θ2dx

+ (ε2 + 2g1ε3)

∫ L

0
ψ2
xdx+ c

∫ L

0
q2dx+ 2g1ε3

∫ L

0
g ◦ ψxdx. (3.34)

Proof. A simple differentiation of I2, then exploiting the third and sixth equations

in (2.11), leads to

I ′2(t) = −ρ2
∫ L

0
ψ2
t dx+ ρ3

∫ L

0
θ2dx− ρ2

γ

∫ L

0
qψtdx−

bρ3
γ

∫ L

0
θψxdx

−kρ3
γ

∫ L

0
(ϕx + ψ + lω)

∫ x

0
θ(y)dydx+

δρ3
γ

∫ L

0
θ

∫ t

0
g(t− s)ψxdsdx.

Estimate (3.34) follows by using Cauchy–Schwarz and Young’s inequalities.

Lemma 3.7. Let (ϕ,ψ, ω, θ, q, z1, z2) be the solution of (2.11)-(2.12), then for ε4 > 0, the

functional

I3(t) = αρ3

∫ L

0
θ

∫ x

0
q(y)dydx (3.35)

satisfies the estimate

I ′3(t) ≤ −
ρ3
2

∫ L

0
θ2dx+ δ

′
∫ L

0
ψ2
t dx+ c

(
1 +

1

4δ′

)∫ L

0
q2dx. (3.36)
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Proof. A simple differentiation of I3, then exploiting the last two equations in (2.11),

leads to

I ′3(t) = −ρ3
∫ L

0
θ2dx+ α

∫ L

0
q2dx+ αγ

∫ L

0
qψtdx− βρ3

∫ L

0
θ

∫ x

0
q(y)dydx.

Estimate (3.36) follows by using Cauchy–Schwarz and Young’s inequalities.

Lemma 3.8. Let (ϕ,ψ, ω, θ, q, z1, z2) be the solution of (2.11)-(2.12), then for δ
′
> 0, the

functional

I4(t) = ρ1

∫ L

0
ϕt

(
ϕ+

∫ x

0
ψ(y)dy

)
dx (3.37)

satisfies the estimate

I ′4(t) ≤ −k
2

∫ L

0
(ϕx + ψ + lω)2 dx− lk0

2

∫ L

0
(ωx − lϕ)2 dx+ δ

′
c

∫ L

0
ψ2
t dx

+

(
c+

1

4δ′

)∫ L

0
ϕ2
tdx+ c

∫ L

0
z21(x, 1, t)dx. (3.38)

Proof. A simple differentiation of I4, then exploiting the first equation in (2.11),

leads to

I ′4(t) = ρ1

∫ L

0
ϕt

∫ x

0
ψt(y)dydx− µ2

∫ L

0

(
ϕ+

∫ x

0
ψ(y)dy

)
z1(x, 1, t)dx

−k
∫ L

0
(ϕx + ψ + lω)2 dx+ ρ1

∫ L

0
ϕ2
tdx− lk0

∫ L

0
(ωx − lϕ)2 dx

−µ1
∫ L

0
ϕt

(
ϕ+

∫ x

0
ψ(y)dy

)
dx.

Using Cauchy–Schwarz, Poincaré and Young’s inequalities gives (3.38).

Lemma 3.9. Let (ϕ,ψ, ω, θ, q, z1, z2) be the solution of (2.11)-(2.12), then for δ
′
, ε4 > 0,

the functional

I5(t) = ρ2

∫ L

0
ψψtdx (3.39)

satisfies the estimate

I ′5(t) ≤
(
− b

2
+
δ2

4δ′
+
γ2

ε4
+ 2g1δ

′
)∫ L

0
ψ2
xdx+ 2g1δ

′
∫ L

0
(g ◦ ψx) dx

+ρ2

∫ L

0
ψ2
t dx+

k2

b

∫ L

0
(ϕx + ψ + lω)2 dx+ ε4

∫ L

0
θ2dx. (3.40)
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Proof. A simple differentiation of I5, then exploiting the first equation in (2.11),

leads to

I ′5(t) = − b
2

∫ L

0
ψ2
xdx+ ρ2

∫ L

0
ψ2
t dx+ γ

∫ L

0
θψxdx

−k
∫ L

0
(ϕx + ψ + lω)ψdx+ δ

∫ L

0
ψx

∫ t

0
g(t− s)ψxdsdx.

Using (3.14), (3.15), Cauchy–Schwarz, Poincaré and Young’s inequalities gives (3.40).

Lemma 3.10. Let (ϕ,ψ, ω, θ, q, z1, z2) be the solution of (2.11)-(2.12) and for k = k0 and

δ
′
> 0, the functional

I6(t) = −ρ1
∫ L

0
ϕt (ωx − lϕ) dx− ρ1

∫ L

0
ωt (ϕx + ψ + lω) dx (3.41)

satisfies the estimate

I ′6(t) ≤
(

2δ
′ − k0l

)∫ L

0
(ωx − lϕ)2 dx+

(
ρ1l +

µ21
4δ′

)∫ L

0
ϕ2
tdx (3.42)

+
(
kl + 2δ

′
)∫ L

0
(ϕx + ψ + lω)2 dx+

(
ρ21
4δ′

+
λ21
4δ′
− ρ1l

)∫ L

0
ω2
t dx

+δ
′
∫ L

0
ψ2
t dx+

µ22
4δ′

∫ L

0
z21(x, 1, t)dx+

λ22
4δ′

∫ L

0
z22(x, 1, t)dx.

Proof. A simple differentiation of I6, using the first and fourth equations in (2.11),

leads to

I ′6(t) = −k0l
∫ L

0
(ωx − lϕ)2 dx+ ρ1l

∫ L

0
ϕ2
tdx+ kl

∫ L

0
(ϕx + ψ + lω)2 dx

−ρ1l
∫ L

0
ω2
t dx− ρ1

∫ L

0
ωtψtdx+ µ1

∫ L

0
ϕt (ωx − lϕ) dx+ λ1

∫ L

0
ωt (ϕx + ψ + lω) dx

+µ2

∫ L

0
z1(x, 1, t) (ωx − lϕ) dx+ λ2

∫ L

0
z2(x, 1, t) (ϕx + ψ + lω) dx.

Using Young’s inequality for the last five terms in the right-hand side gives (3.42) under the

condition k = k0.

Lemma 3.11. Let (ϕ,ψ, ω, θ, q, z1, z2) be a solution of (2.11)-(2.12). Then the functional

I7 (t) = −ρ1
∫ L

0
(ϕϕt + ωωt) dx−

µ1
2

∫ L

0
ϕ2dx− λ1

2

∫ L

0
ω2dx
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satisfies, for c > 0, the estimate

I ′7(t) ≤ −ρ1
∫ L

0
ϕ2
tdx− ρ1

∫ L

0
ω2
t dx+ c

∫ L

0
(ϕx + ψ + lω)2 dx (3.43)

+c

∫ L

0
(ωx − lϕ)2 dx+ c

∫ L

0
ψ2
xdx+

µ22
2

∫ L

0
z21(x, 1, t)dx

+
λ22
2

∫ L

0
z22(x, 1, t)dx. (3.44)

Proof. Taking the derivative of I7, by using equations in (2.11), we get

I ′7(t) = −ρ1
∫ L

0
ϕ2
tdx− ρ1

∫ L

0
ω2
t dx+ k

∫ L

0
(ϕx + ψ + lω)2 dx (3.45)

+k0

∫ L

0
(ωx − lϕ)2 dx− k

∫ L

0
(ϕx + ψ + lw)ψdx

+µ2

∫ L

0
ϕz1(x, 1, t)dx+ λ2

∫ L

0
ωz2(x, 1, t)dx, (3.46)

according to (3.17), we have the following relation where c is a positive constant∫ L

0

[
ϕ2
x + ψ2

x + ω2
x

]
dx ≤ c

∫ L

0

[
(ϕx + ψ + lω)2 + (ωx − lϕ)2 + ψ2

x

]
dx. (3.47)

We obtain the result by using (3.47) and Young’s inequality.

Lemma 3.12. Let (ϕ,ψ, ω, θ, q, z1, z2) be the solution of (2.11)-(2.12). Then the functional

I8 defined by

I8(t) = τ1

∫ L

0

∫ 1

0
e−2τ1ρz21(x, ρ, t)dρdx (3.48)

satisfies

I ′8(t) ≤ −2I8(t)− C1

∫ L

0
z21(x, 1, t)dx+

∫ L

0
ϕ2
tdx. (3.49)

Proof. By differentiating I8, then by using (2.11)2 and (2.11)5, and integrating by

parts, we get

I ′8(t) = −2

∫ L

0

∫ 1

0
e−2τ1ρz1z1ρ(x, ρ, t)dρdx

= −2τ1

∫ L

0

∫ 1

0
e−2τ1ρz21(x, ρ, t)dρdx−

∫ L

0

∫ 1

0

d

dρ

(
e−2τ1ρz21(x, ρ, t)

)
dρdx

= −2I8(t)−
∫ L

0
e−2τ1z21(x, 1, t)dx+

∫ L

0
ϕ2
tdx.

= −2I8(t)− C1

∫ L

0
z21(x, 1, t)dx+

∫ L

0
ϕ2
tdx

for C1 > 0.



EXPONENTIAL DECAY FOR A THERMO-VISCOELASTIC BRESSE SYSTEM 51

Lemma 3.13. Let (ϕ,ψ, ω, θ, q, z1, z2) be the solution of (2.11)-(2.12). Then the functional

I8 defined by

I9(t) = τ2

∫ L

0

∫ 1

0
e−2τ2ρz22(x, ρ, t)dρdx (3.50)

satisfies

I ′9(t) ≤ −2I9(t)− C2

∫ L

0
z22(x, 1, t)dx+

∫ L

0
ω2
t dx. (3.51)

Proof. By differentiating I8, then by using (2.11)2 and (2.11)5, and integrating by

parts, we get

I ′9(t) = −2

∫ L

0

∫ 1

0
e−2τ2ρz2z2ρ(x, ρ, t)dρdx

= −2τ2

∫ L

0

∫ 1

0
e−2τ2ρz22(x, ρ, t)dρdx−

∫ L

0

∫ 1

0

d

dρ

(
e−2τ2ρz22(x, ρ, t)

)
dρdx

= −2I9(t)−
∫ L

0
e−2τ2z22(x, 1, t)dx+

∫ L

0
ω2
t dx.

= −2I9(t)− C2

∫ L

0
z22(x, 1, t)dx+

∫ L

0
ω2
t dx

for C2 > 0.

Now, we are ready to state and prove the main result of this section. First, we define a

Lyapunov functional L as follows

L(t) = NE(t) +

9∑
i=1

NiIi(t) (3.52)

satisfies, for Ni, i = 1, 2, ..., 9 are positive constants to be proprerly chosen later, with suffi-

ciently large N , one can easily prove that

α1E(t) ≤ L(t) ≤ α2E(t), ∀t ≥ 0 (3.53)

where α1 and α2 are positive constants.

Theorem 3.1. Let (ϕ,ψ, ω, θ, q, z1, z2) be the solution of (2.11)-(2.12) and assume that

(A1), (A2), k = k0, µ1 > |µ2| and λ1 > |λ2| hold. Then, the energy functional (2.13) satisfies,

E(t) ≤ c1e
−c2

∫ t
t0
η(s)ds

, ∀t ≥ 0

where c1 and c2 are positive constants.
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Proof. From the estimates of the previous lemmas we have

L′(t) ≤ {−n0N + cN4 + lρ1N6 − ρ1N7 +N8}
∫ L

0
ϕ2
tdx+

{
−ρ2g0N1 −

ρ2
γ
N2 + ρ2N5

}∫ L

0
ψ2
t dx

+
{
−n′0N − lρ1N6 − ρ1N7 +N9

}∫ L

0
ω2
t dx+ {−βN + cN2 + cN3}

∫ L

0
q2dx

+

{
−N δ

2
g(t) + (ε2 + 2g1ε3)N2 +

(
−b
2

+
γ2

ε4

)
N5 + cN7

}∫ L

0
ψ2
xdx

+

{
N1

2
+ cN2

(
1

ε1
+

1

ε2
+

1

ε3
+ 1

)
− ρ3

2
N3 + ε4N5

}∫ L

0
θ2dx

+

{
− lk0

2
N4 − lk0N6 + cN7

}∫ L

0
(ωx − lϕ)2 dx

+

{
ε1N2 −

k

2
N4 +

k2

b
N5 + lkN6 + cN7

}∫ L

0
(ϕx + ψ + lω)2 dx

+

{
−n0N + cN4 +

µ22
2
N7 − C1N8

}∫ L

0
z21(x, 1, t)dx

+

{
−n′0N +

λ22
2
N7 − C

′
1N9

}∫ L

0
z22(x, 1, t)dx

+ {−mN8}
∫ L

0
z21(x, ρ, t)dx+ {−mN9}

∫ L

0
z22(x, ρ, t)dx

+
{
c(δ
′
N1 + 2g1ε3N2)

}∫ L

0
(g ◦ ψx) dx+N

δ

2

∫ L

0

(
g
′ ◦ ψx

)
dx

+δ
′
∫ L

0

[
(N3 + ρ2N1 + cN4 +N6)ψ

2
t + (2N6 + kN1) (ϕx + ψ + lω)2 + 2N6 (ωx − lϕ)2

+
[(
b2 + δ2 − 2δbg0

)
N1 + 2g1N5

]
ψ2
x + 2g1N5 (g ◦ ψx)

]
dx

+
1

δ′

∫ L

0

[
ρ2g(0)

4
N1

(
g′ ◦ ψx

)
+
N3

4
cq2 +

δ2

4
N5ψ

2
x +

(
ρ21
4

+
λ21
4

)
N6ω

2
t

]
dx

+
1

δ′

∫ L

0

[(
µ21
4
N6 +

N4

4

)
ϕ2
t +

µ22
4
N6z

2
1(x, 1, t) +

λ22
4
N6z

2
2(x, 1, t)

]
dx.

By taking ε2 = ε3 = ε4 = N5 = N6 = N7 = 1, N1 = N2 and N8 = N9, we arrive at

L′(t) ≤ {−n0N + cN4 + lρ1 − ρ1 +N8}
∫ L

0
ϕ2
tdx+

{(
−ρ2g0 −

ρ2
γ

)
N1 + ρ2

}∫ L

0
ψ2
t dx

+
{
−n′0N − lρ1 − ρ1 +N8

}∫ L

0
ω2
t dx+ {−βN + cN2 + cN3}

∫ L

0
q2dx

+

{
−N δ

2
g(t) + (1 + 2g1)N1 +

−b
2

+ γ2 + c

}∫ L

0
ψ2
xdx

+

{(
1

2
+ c

(
1

ε1
+ 3

))
N1 −

ρ3
2
N3 + 1

}∫ L

0
θ2dx

+

{
− lk0

2
N4 − lk0 + c

}∫ L

0
(ωx − lϕ)2 dx
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+

{
ε1N1 −

k

2
N4 +

k2

b
+ lk + c

}∫ L

0
(ϕx + ψ + lω)2 dx

+

{
−n0N + cN4 +

µ22
2
− C1N8

}∫ L

0
z21(x, 1, t)dx

+

{
−n′0N +

λ22
2
− C ′1N8

}∫ L

0
z22(x, 1, t)dx

+ {−mN8}
(∫ L

0
z21(x, ρ, t)dx+

∫ L

0
z22(x, ρ, t)dx

)
+
{(
c(δ
′
) + 2g1

)
N1

}∫ L

0
(g ◦ ψx) dx+N

δ

2

∫ L

0

(
g
′ ◦ ψx

)
dx

+δ
′
C1(N1, N3, N4)E(t)− 1

δ′
C2(N1, N3, N4)E

′
(t).

Let us choose N4 large enough such that

− lk0
2
N4 − lk0 + c < 0.

Picking N4 and choose N1 large enough so that(
−ρ2g0 −

ρ2
γ

)
N1 + ρ2 < 0,

choose ε1 small enough so that

ε1N1 −
k

2
N4 +

k2

b
+ lk + c < 0.

Next, we select N3 large enough such that(
1

2
+ c

(
1

ε1
+ 3

))
N1 −

ρ3
2
N3 + 1 < 0.

Finally, we choose N sufficiently large to satisfy

−n0N + cN4 +N8 + ρ1 (l − 1) < 0, − n′0N − C
′
1N8 +

λ22
2 < 0.

−n′0N +N8 − ρ1 (l + 1) < 0, − n0N + cN4 − C1N8 +
µ22
2 < 0,

−βN + cN1 + cN3 < 0, −N δ
2g(t) + (1 + 2g1)N1 + −b

2 + γ2 + c < 0.

Therefore, (3.54) takes the form

L′(t) ≤ −
[
C0 − C1 (N1, N3, N4) δ

′
]
E(t)− C2 (N1, N3, N4)

δ′
E ′(t) + C3

∫ L

0
(g ◦ ψx)dx

for some positive constants C0, C1, C2, C3. At this point, we take δ
′
< C0

C1
, then for some

m0 > 0, we obtain

L′(t) ≤ −m0E(t) + C3

∫ L

0
(g ◦ ψx)dx− C2

δ′
E ′(t). (3.54)
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Multiplying (3.54) by η(t) gives

η(t)L′(t) ≤ −m0η(t)E(t) + C3η(t)

∫ L

0
(g ◦ ψx)dx− C2

δ′
η(t)E ′(t). (3.55)

The second term can be estimated, using (A2), as follows

C3η(t)

∫ L

0
(g ◦ ψx)dx = C3η(t)

∫ L

0

∫ t

0
g(t− s) (ψx(t)− ψx(s))2 dsdx

≤ −2C3

β
E ′(t),

so for some C4 > 0, (3.55) becomes as follows

η(t)L′(t) ≤ −m0η(t)E(t)− C ′4E(t)− C2

δ′
η(t)E ′(t). (3.56)

We have

F(t) = η(t)

(
L(t) +

C2

δ′
E(t)

)
∼ E(t)

Therefore, using (3.56) and the fact that η
′
(t) ≤ 0, we arrive at,

F ′(t) = η
′
(t)

(
L(t) +

C2

δ′
E(t)

)
+ η(t)

(
L′(t) +

C2

δ′
E ′(t)

)
≤ η(t)

(
L′(t) +

C2

δ′
E ′(t)

)
.

So

F ′(t) ≤ −m0η(t)E(t)− C ′4E(t).

Now, we set

G(t) = F(t) + C4E(t) ∼ E(t),

gives

G′(t) = F ′(t) + C4E
′
(t) ≤ −m0η(t)E(t). (3.57)

A simple integration of (3.57) over (t0, t) leads to

G(t) ≤ G(t0)e
−m0

∫ t
t0
η(s)ds

. (3.58)

Recalling (3.53) and estimate (3.58) completes the proof.
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Faculté des Sciences et de la Technologie, Université Djilali Bounaama, Route Theniet El
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Abstract. In our present investigation, we use the Faber polynomial expansions to find

upper bounds for the n− th (n ≥ 4) coefficients of general subclass of analytic bi-univalent

functions. In certain cases, our estimates improve some of those existing coefficient bounds.

1. Introduction

Let A denote the class of all function f(z) which are analytic in the open unit disk

E = {z : |z| < 1} and has the Taylor-Maclaurin series expansion of the form:

f(z) = z +
∞∑
n=2

anz
n. (1)

By S we mean the subclass A consisting of univalent functions. The every univalent function

f ∈ S has an inverse f−1 which is defined as:

f−1(f(z)) = z, z ∈ E,

and

f(f−1(w)) = w, |w| < r0(f), r0(f) ≥ 1

4
,
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where

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + ....

= w +

∞∑
n=2

Anw
n. (2)

A function f ∈ A is said to be bi-univalent in E if both f and f−1 are univalent in E. Let

Σ denote the class of analytic and bi-univalent functions in E given by the Taylor-Maclaurin

series expansion (1). Some examples of functions in the class Σ are given below:

h1(z) =
z

1− z
, h2(z) = − log(1− z), h3(z) =

1

2
log

(
1 + z

1− z

)
, z ∈ E.

However, the famous Koebe function k(z) = z
(1−z)2 is not in Σ, for more details we refer

[32]. For f ∈ Σ, Levin [22] showed that |a2| < 1.51 and Brannan and Clunie [6] proved

that |a2| ≤
√

2. Netanyahu [27] showed that max |a2| = 4
3 . Brannan and Taha [7] introduced

certain subclass of the bi-univalent functions. For a brief history and interesting examples of

bi-univalent functions we refer, [5, 12, 13, 18, 21, 22, 23, 24, 25, 26, 28, 32].

Not much is known about the bounds on the general coefficient |an| for n ≥ 4. Here, in

this paper, we use the Faber polynomial expansions for a subclass of analytic bi-univalent

functions to determine estimates for the general coefficient bounds |an| for n ≥ 4.

The Faber polynomials introduced by Faber [11] play an important role in various areas of

mathematical sciences, especially in geometric function theory. In the literature, there are

only a few works determining the general coefficient bounds |an| for the analytic bi-univalent

functions given by (1) using Faber polynomial expansions see [16, 15, 19]. A very little is

known about the bounds of Maclaurin’s series coefficient |an| for n ≥ 4 by using a Faber

polynomials we refer [4, 2, 8, 9, 14, 17, 31, 30, 34].

Firstly, we consider class of analytic bi-univalent functions defined by Bulut [8] and class

of analytic bi-univalent functions defined by Jahangiri and Hamidi [20]. The purpose of

this article is to extend the work of [8, 20] by using well known Faber polynomials. In this

paper, we use the Faber polynomial expansions to obtain bounds for the general coefficients

|an| of bi-univalent functions in Nµ
Σ(δ, λ, α, β) as well as providing estimates for the initial

coefficients of these functions.

2. The class Nµ
Σ(δ, λ, α, β)
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Definition 1.1. A function f ∈ Σ, 0 ≤ δ ≤ 1, λ ≥ 1, µ ≥ 0, and 0 ≤ β ≤ 1 we introduce a

new class of bi-univalent functions Nµ
Σ(δ, λ, α, β) as f ∈ Nµ

Σ(δ, λ, α, β) if and only if

Re

[
(1− δ)

{
(1− λ)

(
f(z)

z

)µ
+ λf

′
(z)

(
f(z)

z

)µ−1
}

+ δ

(
zf
′
(z)

f(z)

)(
f(z)

z

)β]
> α, (3)

and

Re

[
(1− δ)

{
(1− λ)

(
g(w)

w

)µ
+ λg

′
(w)

(
g(w)

w

)µ−1
}

+ δ

(
wf

′
(w)

f(w)

)(
f(w)

w

)β]
> α,

(4)

where 0 ≤ α < 1, z, w ∈ E, g(w) = f−1(w) is defined by

Remark 1.1. In the following special cases of Definition 1 we show how the class of analytic

bi-univalent functions Nµ
Σ(δ, λ, α, β) for suitable choices of λ, δ, β and µ lead to certain new

as well as known classes of analytic bi-univalent functions studied earlier in the literature.

(i) For δ = 0, we obtain the class of bi-univalent functions introduced by Bulut [8].

(ii) For δ = 1, we obtain the class of bi-univalent functions introduced by Jahangiri and

Hamidi [20].

(iii) For δ = 0 and µ = 1 we obtain the class of bi-univalent function introduced by Frasin

and Aouf [13].

(iv) For δ = 0, λ = 1 and µ = 1 we obtain class of bi-univalent function introduced by

Srivastava et al [33].

(v) For δ = 0, and λ = 1 we have the bi-Bazilevic function class introduced by Prema and

Keerthi [29].

(vi) For δ = 1, and β = 1 we get the class which is consists of functions f ∈ Σ, satisfying

Re
(

(f
′
(z)
)
> α and Re

(
(g
′
(w)
)
> α, where 0 ≤ α < 1, and z, w ∈ E and g = f−1.

2. Main Results

Using the Faber polynomial expansion of functions f ∈ A of the form (1), the coefficients

of its inverse map g = f−1 are given by,

g(w) = f−1(w) = w +

∞∑
n=2

1

n
K−nn−1(a2, a3, ...)w

n,
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where

K−nn−1 =
(−n)!

(−2n+ 1)!(n− 5)!
an−1

2 +
(−n)!

[2(−n+ 1)]!(n− 3)!
an−3

2 a3

+
(−n)!

(−2n+ 3)!(n− 4)!
an−4

2 a4

+
(−n)!

[2(−n+ 2)]!(n− 5)!
an−5

2

[
a5 + (−n+ 2)a2

3

]
+

(−n)!

(−2n+ 5)!(n− 6)!
an−6

2 [a6 + (−2n+ 5)a3a4]

+
∑
j≥7

an−j2 Vj , (4)

such that Vj with 7 ≤ j ≤ n is a homogeneous polynomial in the variables | a2 |, | a3 |, ..... |an| ,

[1]. In particular, the first three terms of K−nn−1 are

1

2
K−2

1 = −a2,

1

3
K−3

2 = 2a2
2 − a3,

1

4
K−4

3 = −(5a3
2 − 5a2a3 + a4). (5)

In general, for any p ∈ N and n ≥ 2, an expansion of Kp
n−1 is as, [2],

Kp
n−1 = pan +

p(p− 1)

2
E2
n−1 +

p!

(p− 3)!3!
E3
n−1 + ...+

p!

(p− n+ 1)!(n− 1)!
En−1
n−1 , (6)

where Epn−1 = Epn−1(a2, a3....) and by [3],

Emn−1(a2, ..., an) =
∞∑
n=2

m!(a2)µ1 ...(an)µn−1

µ1!, ..., µn−1!
, for m ≤ n.

While a1 = 1, and the sum is taken over all nonnegative integer µ1, ..., µn satisfying

µ1 + µ2 + ...+ µn = m,

µ1 + 2µ2 + ...+ (n− 1)µn−1 = n− 1.

Evidently, En−1
n−1(a2, ..., an) = an−1

2 , [4]; or equivalently,

Emn (a1,a2, ..., an) =

∞∑
n=1

m!(a1)µ1 ...(an)µn

µ1!, ..., µn!
, for m ≤ n,
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while a1 = 1, and the sum is taken over all nonnegative integer µ1, ..., µn satisfying:

µ1 + µ2 + ...+ µn = m,

µ1 + 2µ2 + ...+ (n)µn = n.

It is clear that Enn(a1, ..., an) = En1 the first and last polynomials are:

Enn = an1 , E1
n = an.

Theorem 2.1. For 1 ≤ δ ≤ 0, λ ≥ 1, µ ≥ 0, 0 ≤ β ≤ 1 and 0 ≤ α < 1. Let f ∈

Nµ
Σ(δ, λ, α, β), if am = 0; 2 ≤ m ≤ n− 1, then

|an| ≤
2(1− α)

(1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)}
; n ≥ 4. (7)

Proof. For the function f ∈ Nµ
Σ(δ, λ, α, β) of the form (1), we have

(1− δ)

{
(1− λ)

(
f(z)

z

)µ
+ λf

′
(z)

(
f(z)

z

)µ−1
}

+ δ

(
zf
′
(z)

f(z)

)(
f(z)

z

)β

= 1 +
∞∑
n=2

Fn−1(a2, a3...., an)zn−1, (8)

and for its inverse map g = f−1, we have

(1− δ)

{
(1− λ)

(
g(w)

w

)µ
+ λf

′
(w)

(
g(w)

w

)µ−1
}

+ δ

(
wg
′
(w)

g(w)

)(
g(w)

w

)β
= 1 +

∞∑
n=2

Fn−1(A2, A3...., An)wn−1, (9)

where, An = 1
nK
−n
n−1(a2, a3, ...).

F1 = {(1− δ)(µ+ λ) + δ(β + 1)} a2,

F2 = {(1− δ)(µ+ 2λ) + δ(β + 2)}
[

(µ− 1) + (β − 1)

2
a2

2 + a3

]
,

F3 = {(1− δ)(µ+ 3λ) + δ(β + 3)}

 (µ−1)(µ−2)+(β−1)(β−2)
3! a3

2

−{(µ− 1) + (β − 1)} a2a3 + a4

 .
In general

Fn−1(a2, a3...., an) =

 (1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)}

×{(µ− 1)! + (β − 1)!}

×G
 ,

where

G =
∑

i1+2i2+...(n−1)in−1=n−1

(a2)i1ai23 ...(an)in−1

i1!i2!..., in! [{µ− (i1 + i2 + ...in−1)}! + {β − (i1 + i2 + ...in−1)}!]
.
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On the other hand, since f ∈ Nµ
Σ(δ, λ, α, β) and g = f−1 ∈ Nµ

Σ(δ, λ, α, β) by definition, there

exist two positive real-part functions p(z) = 1 +
∞∑
n=1

cnz
n and q(w) = 1 +

∞∑
n=1

cnw
n ∈ A where

Re(p(z)) > 0 and Re(q(w)) > 0 in E, such that

(1− δ)

{
(1− λ)

(
f(z)

z

)µ
+ λf

′
(z)

(
f(z)

z

)µ−1
}

+ δ

(
zf
′
(z)

f(z)

)(
f(z)

z

)β
= α+ (1− α)p(z)

= 1 + (1− α)
∞∑
n=1

K1
n(c1,c2, ..., cn)zn (10)

and

(1− δ)

{
(1− λ)

(
g(w)

w

)µ
+ λf

′
(w)

(
g(w)

w

)µ−1
}

+ δ

(
wg
′
(w)

g(w)

)(
g(w)

w

)β
= α+ (1− α)q(w)

= 1 + (1− α)
∞∑
n=1

K1
n(d1,d2, ..., dn)wn. (11)

Note that, by the Caratheodory lemma [10], |cn| ≤ 2 and |dn| ≤ 2, (n ∈ N). Comparing the

corresponding coefficients of (8) and (10) for any n ≥ 2, we have

Fn−1(a2, a3...., an) = (1− α)K1
n−1(c1,c2, ..., cn−1), n ≥ 2. (12)

Which under the assumption am = 0; 2 ≤ m ≤ n− 1, we have

(1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)} an = (1− α)cn−1, n ≥ 2.

Similarly corresponding coefficients of (9) and (11) we have

Fn−1(A2, A3...., An) = (1− α)K1
n−1(d1,d2, ..., dn−1), n ≥ 2. (13)

Which by the hypothesis, we obtain

(1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)}An = (1− α)dn−1. (14)

Note that for am = 0; 2 ≤ m ≤ n− 1 we have An = −an, and so

(1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)} an = (1− α)cn−1,

−(1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)} an = (1− α)dn−1. (15)
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Now taking the absolute values of equation (14) and (15) and using the fact that |cn−1| ≤ 2

and |dn−1| ≤ 2, we obtain

|an| =
|(1− α)cn−1|

(1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)}

=
|(1− α)dn−1|

(1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)}

≤ 2(1− α)

(1− δ) {µ+ (n− 1)λ}+ δ {β + (n− 1)}

which completes the proof of Theorem 2.1.

Remark 2.1. (i) For δ = 1 in Theorem 2.1 we obtain the estimates |an|, proved by Jahangiri

and Hamidi in [20].

(ii) For δ = 0 in Theorem 2.1 we obtain the estimates |an|, proved by Bulut in [8].

(iii) For δ = 0, µ = 1 in Theorem 1 we obtain the Corollary 1, proved by Bulut in [8].

Theorem 2.2. For 1 ≤ δ ≤ 0, λ ≥ 1, µ ≥ 0, 0 ≤ β ≤ 1 and 0 ≤ α < 1. Let f ∈ Nµ
Σ(δ, λ, α, β).

Then

|a2| ≤
2(1− α)

{(1− δ)(µ+ λ) + δ(β + 1)}
, (1a)

|a3| ≤
4(1− α)2

{(1− δ)(µ+ λ) + δ(β + 1)}2
+

2(1− α)

{(1− δ)(µ+ 2λ) + δ(β + 2)}
, (1b)

∣∣a3 − a2
2

∣∣ ≤ 2(1− α)

{(1− δ)(µ+ 2λ) + δ(β + 2)}
. (1c)

Proof. Replacing n by 2 and 3 in (12) and (13), respectively, we find that

{(1− δ)(µ+ λ) + δ(β + 1)} a2 = (1− α)c1, (16)

{(1− δ)(µ+ 2λ) + δ(β + 2)}
[

(µ− 1) + (β − 1)

2
a2

2 + a3

]
= (1− α)c2, (17)

−{(1− δ)(µ+ 2λ) + δ(β + 2)} a2 = (1− α)d1, (18)

{(1− δ)(µ+ 2λ) + δ(β + 2)}
[

(µ+ 1) + (β + 1)

2
a2

2 − a3

]
= (1− α)d2. (19)
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From (16) and (18) we obtain

|a2| =
∣∣∣∣ (1− α)c1

{(1− δ)(µ+ λ) + δ(β + 1)}

∣∣∣∣ =

∣∣∣∣ (1− α)d1

−{(1− δ)(µ+ λ) + δ(β + 1)}

∣∣∣∣

≤ 2(1− α)

{(1− δ)(µ+ λ) + δ(β + 1)}
. (20)

Adding (17) and (19) we have

[{(1− δ)(µ+ 2λ) + δ(β + 2)} (µ+ β)] a2
2 = (1− α)(c2 + d2). (21)

Using the Caratheodory lemma, we have

|a2| ≤

√
4(1− α)

{(1− δ)(µ+ 2λ) + δ(β + 2)} (µ+ β)
. (22)

Combining inequality (20 ) and (22) we obtain required result (i). Next in order to find the

bound on the coefficient |a3| , we subtract (19) from (17) we thus obtain,

2 {(1− δ)(µ+ 2λ) + δ(β + 2)} (a3 − a2
2) = (1− α)(c2 − d2), (23)

or

a3 = a2
2 +

|(1− α)(c2 − d2)|
2 {(1− δ)(µ+ 2λ) + δ(β + 2)}

. (24)

Substituting the value of a2
2 from (20) into (24), we obtain

a3 =
(1− α)2c2

1

{(1− δ)(µ+ λ) + δ(β + 1)}2
+

(1− α)(c2 − d2)

2 {(1− δ)(µ+ 2λ) + δ(β + 2)}
. (25)

Taking the absolute of (25) and using the Caratheodory lemma we have

|a3| ≤
4(1− α)2

{(1− δ)(µ+ λ) + δ(β + 1)}2
+

2(1− α)

{(1− δ)(µ+ 2λ) + δ(β + 2)}
. (26)

Again substituting the value of a2
2 from (21) into (24), we obtain

a3 =
(1− α)(c2 + d2)

{(1− δ)(µ+ 2λ) + δ(β + 2)} (µ+ β)
+

(1− α)(c2 − d2)

2 {(1− δ)(µ+ 2λ) + δ(β + 2)}
. (27)

Again taking the absolute of (27) and using the Caratheodory lemma we have

|a3| ≤
4(1− α)

{(1− δ)(µ+ 2λ) + δ(β + 2)} (µ+ β)
. (28)

From (26) and (28) we obtain required result (1b). Taking the absolute values of both sides

of the equation (23), we obtain∣∣a3 − a2
2

∣∣ =

∣∣∣∣ 2(1− α)

{(1− δ)(µ+ 2λ) + δ(β + 2)}

∣∣∣∣ ≤ 2(1− α)

{(1− δ)(µ+ 2λ) + δ(β + 2)}
. (29)
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Which is the desired inequality(1c).

Remark 2.2. (i) For δ = 1, µ = 1 in Theorem 2.2 we obtained the estimates |a2| ,
∣∣a3 − a2

2

∣∣
proved by Jahangiri and Hamidi in [20].

(ii) For δ = 0 and β = 1 in Theorem 2.2 we obtain the estimates |a2| and |a3| , proved by

Bulut in [8].

(iii) For δ = 0, β = 1 and µ = 1 in Theorem 2.2 we obtain the estimates |a2| and |a3| of

Corollary 2 proved by Bulut in [8].

(iv) For δ = 0, λ = 1, and β = 1 in Theorem 2.2 we obtain the Corollary 3, proved by Bulut

in [8].

(v) For δ = 1, µ = 1 and β = 1 in Theorem 2.2 we obtain the Corollary 2.2, proved by

Jahangiri and Hamidi in [20].

Letting δ = 1, λ = 1, µ = 1 and β = 0 in Theorem 2.2 we obtain the following corollary for

analytic bi-Starlike functions of order α, 0 ≤ α < 1.

Corollary 2.1. Let f ∈ N1
Σ(1, 1, α, 0) be bi-Starlike of order α in E. Then

|a2| ≤ 2(1− α),

|a3| ≤ 3(1− α),∣∣a3 − a2
2

∣∣ ≤ 1− α.
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