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SOME RESULTS IN THE THEORY OF QUASILINEAR SPACES

HACER BOZKURT AND YILMAZ YILMAZ

Abstract. In this study, we present some new consequences and exercises of homogenized
quasilinear spaces. We also research on the some characteristics of the homogenized quasi-
linear spaces. Then, we introduce the concept of equivalent norm on a quasilinear space.
As in the linear functional analysis, we obtained some results with equivalent norms de ned
in normed quasilinear spaces.

Keywords: Quasilinear space, Normed quasilinear space, Inner product quasilinear space,
Homogenized quasilinear space, Equivalent norms.
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1. Introduction

In the 1986, Aseev [1] presented the quasilinear spaces and normed quasilinear spaces
which are generalization of linear spaces and normed linear spaces, respectively. The biggest
di erence between quasilinear space and linear space is that it has a partial order relation. He
gave some properties and some results which are quasilinear provisions of some conclusions
in classical linear functional analysis. Later, in [1], he presented the some new concepts in
normed quasilinear spaces. Further, in ([7], [10], [21], [22], [2], [9], [8] etc.), they have proposed
a series of new concepts and new results of quasilinear spaces. In [7], they introduced the

concept of proper quasilinear space which is a new notion of quasilinear functional analysis.
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In the same study, they presented concept of dimension of a quasilinear space which are
very meaningful to improvement of quasilinear algebra.

In the light of all these studies, in [6], we extended the notion of inner product spaces to
the quasilinear conditions. After giving this new de nition, we obtained some new concepts
on inner product quasilinear spaces such as Hilbert quasilinear spaces and some orthogonality
concepts. Further, in [6], we examined the sample of quasilinear spaces "IR"" interval space
and we presented the quasilinear spaces Is; Icg; 117 and 1l,. Also, we have studied to clarify
geometric properties of inner product quasilinear spaces in [13]. Furthermore, we tried to
enlarge the results in quasilinear functional analysis in [3], [4] and [5].

In this paper, we present some new conclusions of homogenized quasilinear space. Also, we
obtain some results with considerable advantages about features of homogenized quasilinear
spaces. Furthermore, we obtain some results with equivalent norms in a normed quasilinear

space.

2. Preliminaries

In this section, we give some de nitions and results on quasilinear spaces given by Aseev

[1].

De nition 2.1. [I] A quasilinear space over a eld R is a set Q with a partial order relation
" " with the operations of addition Q Q ¥ Q and scalar multiplication R Q ¥ Q
satisfying the following conditions:

Qg q

Q2)q =z ifg wandw z

(Q3)g=w,ifqg wandw q;

Q4 g+w=w+g;

Q5 g+w+2z)=(q+w)+z

(Q6) there exists an element 2 Q such that q+ =q;

@)  o=C ) g

Q8 @+w)= g+ w

Q91 g=q;

(Q10)0 q= ;

QD (C + ) g g+ q

(Q12)g+z w+v,ifqg wandz v,

(Q13) ¢ w,ifg w
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for every q;w;z;v2Q and every ; 2R.

The considerable instance which is a quasilinear space is the set of all closed intervals of
R with the relation " '; algebraic sum operation M +N =fm+n:m2 M; n2 Ng and
the real-scalar multiplication ™M =f m:m 2 Mg: We indicate this set by ¢(R). Also,
the set of all compact subsets of R is (R).

Let Q be a quasilinear space and W Q. Then W is called a subspace of Q, whenever W
is a quasilinear space with the same partial order relation and the restriction of the operations
on Q to W. An element g 2 Q is said to be symmetric if gqg=aq;where g=( 1) g;and

Qg denotes the set of all symmetric elements of Q.

Theorem 2.1. W is a subspace of a quasilinear space Q if and only if, for every, q;w 2 W

and ; 2R; g+ wZ2W [1Z].

De nition 2.2. [1] Let Q be a quasilinear space. A function k:kQ :Q ¥ Risnamed a
norm if the following circumstances hold:

(NQ1)kgkg >0 if q & 0;

(NQ2) kg + ka quQ + kwkQ ;

(NQ3) k  akg =] | kako;

(NQ4) ifqg w, then kgkg  kwkgq ;

(NQ5) if for any " > 0 there exists an element g+ 2 Q such that;q w+qg- and kq--kQ "

then ¢ w for any elements q;w 2 Q and any real number 2 R.

Let Q be a normed quasilinear space. Hausdor metric on Q is de ned by the equality
ho(g;w) =inffr 0:q9 w+z{,w q+2z5kzjk rg:

Sinceq w+(q w)andw g+ (w q), the quantity hg(q; w) is well-de ned for any

elements q;w 2 Q, and

ho(g;w) kg wkq:
Example 2.1. Let X be a Banach space. A norm on (X) is de ned by
KAK (xy = supkaky :
a2A

Then (X)and c(X) are normed quasilinear spaces. The Hausdor metric is described as
ordinary:

h coo(AB)=inffr 0:A B+S(),B A+S.()g,
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where Sy( ) demonstrates a closed ball of radius r about 2 X [1J.
De nition 2.3. Let Q be a quasilinear space, M Q and m 2 M. The set
FM=fz2M,:z mg

is called oorin M of m. If M = Q, then it is called oor of m and written F, in place of

For [21.
De nition 2.4. Let Q be a quasilinear space and M Q: Then the set

Fo= RS
m2M

is called oor in Q of M and is indicated by F,a [7]:

De nition 2.5. Let Q be a quasilinear space. Q is called solid- oored quasilinear space

whenever
y=supfm2Q,:m yg

for all y 2 Q. Other than, Q is called non solid- oored quasilinear space [7].

Example 2.2. (R) and ¢(R) are solid- oored guasilinear space. However, singular sub-

space of < (R) is non-solid oored quasilinear space. For example,
sup m:m2(( c(R))s [ng)r; m y =f0g&y

forelementy =[ 2;2] 2 ( c(R))s[f0g: Also, we can not nd any elementm 2 (( c(R))s [ f09),
suchthatm z forz=1[1,3]12 ( c(R)); L f0g:

De nition 2.6. Let Q be a quasilinear space. Consolidation of oor of Q is the smallest
solid- oored quasilinear space ® containing Q; that is, if there exists another solid- oored

quasilinear space W containing Q then @ W [13].

@ = Q for some solid- oored quasilinear space Q: Besides, H'R‘l)s = c(RM: For a

quasilinear space Q, the set

is the oor of Q in ®:
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De nition 2.7. Let Q be a quasilinear space. A mappingh; i:Q Q ¥ (R) is called an
inner product on Q if for any q;w;z 2 Q and 2 R the following conditions hold:

(IPQY) Ifq;w 2 Qr then hg;wi 2 c(R)r R;

(IPQ2) hg +w;zi hg;zi+hw;zi;

(IPQ3)h  qg;wi=  hg;wi;

(IPQ4) hg; wi = hw; qi,

(IPQ5) hg;qi Oforg2 Xy and hg;qi=0 , q=0;

(1P Q6) Kig; wik (g = supnkha; bik g :a2Fb2 Ff?o;

(IPQ7) ifg wandu v thenhqg;ui hw;vi;

(IPQ8) if for any " > 0 there exists an element g~ 2 Q such that g w + g+ and
hg«;g-i S-()theng w.

A quasilinear space with an inner product is called an inner product quasilinear space [g].

Example 2.3. ¢ (R); is an example of inner product quasilinear space with
hA;Bi=Tfab:a2 A;b 2 Bg:
For any two elements g; w of an inner product quasilinear space Q, we have
khg; wik R) quQ kka:

Every inner product quasilinear space Q is a normed quasilinear space with the norm
described by
q_—
kgk = khq;qik R)

for every q 2 Q:

De nition 2.8. An element q of the inner product quasilinear space Q is said to be orthogonal
to an element w 2 Q if
khg; wik R) = 0:

From here, we can call that g and w are orthogonal and we show q ? w [6].

An orthonormal set M Q is an orthogonal set in Q whose elements have norm 1; that

is, for every q; w2 M 8
%0; g&EwW
k< q;w >k R) = 1: g=w :

=
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De nition 2.9. A7; is called the orthogonal complement of A and is showed by
A% =fq 2 Q : khq; wik w =0 W2Ag:

For any subset A of an inner product quasilinear space Q; A7 is a closed subspace of Q

[6].

and multiplication by a real number 2 R is de ned by
X=( Xi; Xty Xp):
If we will be assumed that the partial order on IR" is given by
X Y . Xi Y 1 i n

then IR" is quasilinear space according to the above processes. Furthermore, di erent two

norm on IR™ are de ned by

kXk = k(Xy; X250 Xn)k = sup kXik;p

11 n

and
1
X 2
kXk, = kXikir
i=1

NI

The quasilinear space IR", with the inner product

X
i=1

is an inner product quasilinear space.

The quasilinear spaces IR" and ¢ (R") are di erent from each other. For instance; while
the set A= (q;w):g2+w? 1 iselement of ¢(R?); it is not element of IR?. Further,
B =([1;3];f49) 2 IR? but B2 ¢(R?). Thus, IR" and ¢ (R") are two distinct instances

of quasilinear spaces.
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3. Main Results

In this section, we give the concept of homogenized quasilinear space by [5]. Then, we

give new ndings about this concept.

De nition 3.1. Let Q be a quasilinear space. Q is called homogenized quasilinear space

if for all 2 Q and 0 the following circumstance is satis ed:
(+)ag= a+ q.

Obviously, every vector space is a homogenized quasilinear space. However, the inverse is

false.

Theorem 3.1. ¢ (Q) is a homogenized quasilinear space for every normed quasilinear space

Q. However, (Q) is not homogenized quasilinear space.

Proof. Since ¢ (Q) is a quasilinear space, we have ( + ) A A+ A from
(Q11) for every A 2 < (Q). Now, we only prove the converse. Leta2 A+ A for every
A2 ¢(Q). Then, we obtain

a= q+ w

for a q;w 2 A. From here, we can write

a=( + ) T Ot w

Ift= —— and k = ——; there is two di erent cases since 0:
i) If + for ; 2R*;thenweget — land0 —.
i) If + for ; 2R ;thenwegetl ——and0 —.

From i) and ii), we obtain 0 t 1. Further, clearly t+k = 1: According to the de nition

of convexity on quasilinear spaces, we get — q+ —— w 2 A: So, we show that
a=( + ) z2A
foraz 2 A.

Example 3.1. (R) is a non-homogenized quasilinear space. Consider the element A =
f1;2;3g2 (R). Clearly, 2 A=12;4;69: But A+A = 12;3;4;5;69. Therefore 2 A & A+A

for =1and =1. This shows us that (R) is not a homogenized quasilinear space.

Theorem 3.2. Let Q be a homogenized inner product quasilinear space and q 2 Q4. Then

there exists at least one w 2 X such thatq=w w:
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Proof. Weknowthat( + )w= w+ wforeveryw2 Qand ; 2R™. Further
g = gqandqg=qsince g is a symmetric element of Q. Same time, we getg+q =q Q.

From here, we obtain g =3 3 since2 q=gq g. This complete the proof.

Proposition 3.1. Let Q be a homogenized quasilinear space and q 2 Q. Then Fq is convex

subset of Q.

Proof. Let Q be a homogenized quasilinear space. From De nition [2.3, we have
Fe=fa2Qr:a qg

for aq 2 Q. Thus, we obtain

a gandb ¢
for every a;b 2 Fy. From (Q13), we have
a gand 1 ) b (1 ) g
for every 0 1. Hence,
a+(1 )b g+ ) «a
Since, Q is a homogenized quasilinear space,
g+@ )ag=(+1 ) g=g
for every 0 1. Therefore, we get
a+(1 )b aq.
Thus, a+(1 ) b2F,.

Remark 3.1. Floor of an element of an inner product quasilinear space Q is convex if and
only if this inner product quasilinear space Q is homogenized. If Q is not homogenized in the

Proposition 3.1, then Fq is not convex since ( + ) q& g+ .

Example 3.2. IR" is a homogenized inner product quasilinear space. In [6], we showed that
IR" is an inner product quasilinear space with
X
hX:Yi= hXi; Yilg
i=1
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For every X 2 IR" and 0; we can write

(+) X = (+ ) XXz, Xn)

Then, we obtain

(+ ) X = ( Xg+ Xg; Xo+  Xgiiiny Xp+ Xp)
= ( X Xgiiin Xp)+( Xy Xgriino Xn)
= X+ X

since IR is a homogenized quasilinear space.

Example 3.3. All interval sequence spaces Is, all bounded interval sequence spaces 117 =

X =(Xn) 2 IRT :j(Xn)j 1g and all convergent interval sequence spaces
Ico = FX = (Xn) 2 IR : (X,) ¥ 0Og
are further example of homogenized quasilinear spaces.

Before giving the equivalent norms on the gasilinear spaces, we will give an example to

cartesian product of quasilinear spaces.

Example 3.4. Let Q be the Cartesian product of quasilinear spaces Qi; Q2;:::; Qn; that is,

Q=01 Q2 :: Qn:Thespace Q is a quasilinear space with the algebraic sum operation
(025 02; 25 0n) + (W13 W2; 25 Wn) = (G + W1 G2 + W2 + 20+ 0n +Wn)
real scalar multiplication
(A1;02;::500) = (0 G15 G2;55 Gn)
and order relation
(02;02;250n) (W2 W2;iWn) 5 O1 Wi502  W2;i0n Wi
for every (i;d2;::qn); (W1;W2;2wn) 2Q1 Q2 1 Qn=0Q.

Example 3.5. Let Q and W be the normed quasilinear spaces with k k; and k k, ; respectively.

DeneQ W=*%fz=(g;w):q2Q and w2 Wg: The functions

kzk = max (kgk, ; kwk,) 3.1)
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kzk, = kgk, + kwk, (3.2)

de nesnormson Q W: Then Q W is normed quasilinear space.

Proposition 3.2. Let k k; be a norm on quasilinear space Q and k k, be a norm on quasi-
linear space W. From Example 3.5, we have Z = Q W is normed quasilinear space with
norms and . Let f(qn; wn)g be sequence in Q W. The following conditions are
satis ed:

i) The sequence f(qn; wWn)g is convergent to f(q; w)g in Z if and only if fqng is convergent
to g in Q and fwng is convergent to w in W.

ii) The sequence f(gn; Wn)g is Cauchy sequence in Z if and only if fgng is Cauchy sequence

in Q and fwng is Cauchy sequence in W:

Proof. Suppose that (qn;wn) ¥ (q;w) 2 Z. Then corresponding to each >0, 9

No 2 N such that the following inequalities hold for n > ng :

@nswn)  (@wW)+ag.,; (@wW)  (Gn;Wn) + @00 @

Here, a;., = by.niCpy @nd @y = bygiCyoy o Since Z is quasilinear space, we get

On  Q+Dbyn; 0 On+byy

and
Wn W+Cpps W Wp +Coupt

Also, since a;.,, =max by, ; G, , We obtain
b

1 2 0 2
in and ¢, ) according to 1» and 1) This proves that the sequence fgng
is convergent to g in Q and the sequence fw,g is convergent to w in W: The opposite can be

or ai;n = bi;n + Ci;n

shown in a similar way.
Let f(qn;wn)g be a Cauchy sequence in Z. For an arbitrary > 0 there exists a ng 2 N

such that
(@n;wn)  (Om;Wm) +agn; (GmiWm)  (GnsWn) + 80, @in
for all m; n > ng; and thus also
On Om *+ by Om On + D0y

and

Wn  Wm+Cpny Wm Wp+Copt
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Further, we obtain b;., . and ¢;., , for two norms de ned in 1) and 1i since
8jn . Now, let fgng is Cauchy sequence in Q and fwng is Cauchy sequence in W: Then

for any > 0 there exists a ng 2 N such that

n Om + bl;n; Om On+ b2;n; bi;n 1
and
Gn  Om * Ci:ns Om On + Copns Ciin »

for all n;m > ng: Since Q and W are quasilinear space, we get

(Qn; Wn) Om + bl;n; Wm + Cin = (Qm; Wm) + b1;n; Cin
(@m;Wm) On + bz;n; Wn +Coy = (@n;wn) + bz;n; Con -
Consequently, we obtain  b;.,; ¢, because b;., . and ¢, , . This com-

pletes the proof.

Theorem 3.3. Let Qg;Q>;:::; Qn be Banach quasilinear spaces over the same scalar eld R
with norm kk; (1 i n), respectively. Then the product space Q = Q1 Q2 i Qnis

Banach quasilinear space with norm
kgk = 1mlftxn (kakky) :

Proof. Let g = qi;q3; 50 5 02:03; 0502 5o 950k gk oo be a Cauchy
sequence in Q. For > 0, there exists a number ng such that for k;m > ng there are

elements a;.,;b,., 2 Q for which

a5 055 12 O @05 500D + @) 1
@™ a3 5 q) L SR S CT) P
(ai)j;k;m

From here, we get

00z gy (e nan) = max g gt 10
(k;m ¥ 1): Hence, gk g ; ¥ O0foreveryl i nwhenk;m ¥ 1: This proves that
the q{< is a Cauchy sequence in Q; forevery 1 i n: Since Q; is Banach, q}‘ converges
toagjin Qj; (k ¥ 1): Note that this implies that for > 0 there exists a ng such that for
k>ng:

G G+ @) G O+ (@) @i
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forevery 1 i n: Since

k

a“ g9 = dsasinal @no2indn)

— k
= max ¢ @i .
1in i

we have g€ ¥ q 2 Q;(k ¥ 1): Consequently, Q is Banach quasilinear space.

Proposition 3.3. If Qq;Q2;:::; Qn are solid- oored quasilinear space then Q = Q1 Q>

Qn is solid- oored quasilinear space.

Proof. Let Q; is solid- oored quasilinear space for every 1 i n: From the

De nition [2.5, we have
gi = supfwi 2 (Qi), *wi dig
for every g; 2 Qj: Since Q is a quasilinear space, we obtain
(W1 wo;wn) - (d1; G2; 2355 On)
such that (wq; wo; 5 wp) =w 2 Qr and (0z; 02; 33 0n) = q 2 Q: From here, we have
q = sup F(w1; Wo; 15 Wn) 2 Qr (W13 Wo; i Wn) (015 G2; 3555 Gn)g s

Now, we introduce the concept of equivalent norms on the same quasilinear space. Also,
we concentrate on the Hausdor metric properties for two equivalent norms that are de ned

on a quasilinear space.

De nition 3.2. A norm k k on a normed quasilinear space Q is said to be equivalent to a

norm k k, on Q if there are positive real numbers a and b such that for all g 2 Q we have
akgk, kagk bkagk,:
Example 3.6. The following norms on I1R? = f(X1; X2) : X1; X2 2 ¢ (R)g are equivalent:
k(x;y)k = kxk+ kyk
k(x;y)k; = maxTkxk;kykg:

Theorem 3.4. Let Q be a quasilinear space and k k and k k; be equivalent norms on Q: The
sequence fqng is convergent to q in normed quasilinear space (Q;k k) if and only if fqng is

convergent to q in (Q;kky):
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Proof. Suppose that fgng ¥ q in normed quasilinear space (Q; k k) : Then for every

> 0 there exists an N 2 N such that:

Qn q + ql;n; q Qn + q2;n; qi;n M

8n N and M 2 N*: Since the norms k k and k k, are equivalent, we have
Qi;n 1 M Qi;n

Hence fgng ¥ g in (Q;kk;):
Conversely, let fgng ¥ g in (Q;k k;). Then for every > 0 there exists an index N such

that
O 4+ 0;ns @ OGn+ 020 Gin 4

8n  N: Since the norms are equivalent, we get
mkagk  kgk;

Hence, fqng is convergent to q in (Q; k k):

Theorem 3.5. Let Q be a quasilinear space and k k and k k; be equivalent norms on Q: The
sequence fgng is Cauchy sequence in normed quasilinear space (Q;k k) if and only if fgng is

Cauchy sequence in (Q;k k;):

Proof. Let fgng be a Cauchy sequence in (Q; k k) : For an arbitrary > 0 there exists
a ng 2 N such that

On Om + al;n; Om On + aZ;n; ai;n M
for all n;m > ng. Similar way to the above theorem, we obtain a;., . M a, : This
proves that the sequence fqng is Cauchy sequence in (Q; k k;). The proof of opposite can be

proved by similar way.

Theorem 3.6. Let Q be a quasilinear space and k k and k k; be equivalent norms on Q:

(Q; k k) is complete if and only if (Q;k k;) is complete.

Proof. Let (Q; k k) be a complete and k k and k k; be equivalent norms on Q: If fgn,g

is a Cauchy sequence in (Q;k k;); then for an arbitrary > 0 there exists a ng 2 N such that

Gn  Om + 814 Gm  On+ 324 @
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for all n;m > no. From Theorem [3.5, we have fg,g is a Cauchy sequence in (Q;k k;). We
obtaing, ¥ g 2 Q from the completeness of (Q; k k) : From Theorem we get fgn; n 2 Ng
is convergent to g in (Q;k k;) which proves completeness of (Q;k k;): The converse can be

proved similarly.

Corollary 3.1. If two norms kk and k k, on a quasilinear space Q are equivalent, then

kan gk ¥ O if and only if kg, gk, ¥ O for any sequence (gn) in Q and any q 2 Q.

If Q is nite dimensional normed quasilinear space, then any two norms on Q, are equiv-

alent since Qy is a normed linear subspace of Q.

4. Conclusion

In this paper, we de ne the notion of homogenized quasilinear space as a new concept in
quasilinear spaces. We also research on the some properties of the homogenized quasilinear
spaces. Then, we introduce the concept of equivalent norm on a quasilinear space. As in the
linear functional analysis, we obtained some results related to equivalent norms de ned in

normed quasilinear spaces.
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STABILITY OF CERTAIN NEUTRAL TYPE DIFFERENTIAL
EQUATION AND NUMERICAL EXPERIMENT VIA DIFFERENTIAL
TRANSFORM METHOD

YENER ALTUN

Abstract. In this study, we obtain both the asymptotically stability and the numerical
solution of rst order neutral type di erential equation with multiple retarded arguments.
We rst obtain su cient speci ¢ conditions expressed in terms of linear matrix inequality
(LMI) using the Lyapunov method to establish the asymptotic stability of solutions. Sec-
ondly, we use the di erential transform method (DTM) to show numerical solutions. Finally,
two examples are presented to demonstrate the e ectiveness and applicability of proposed
methods by Matlab and an appropriate computer program.

Keywords: Stability, Lyapunov method, LMI, DTM.

2010 Mathematics Subject Classi cation: 34K20, 34K40, 65L10.

1. Introduction

The di erent particular cases of delay di erential equations have been searched by many
researchers for the past few decades. Recently, it can be seen from the related literature
that qualitative properties of various neutral di erential equations have been investigated by
many authors and the researchers have obtained many interesting and important results on
some qualitative properties such as stability, exponentially stability, asymptotically stability,
oscillation, non-oscillations of solutions and etc.(see, |1}, (2, [3 [4, 5, 6] [7, 8, [9, (10} 11}, 12}, 13} [14]).

DTM, which is a semi-analytical-numerical technique, is based on the Taylor series ex-
pansion. The concept of method was rst introduced by Pukhov [15] to solve linear and
nonlinear problems in physical processes, and by Zhou [16] to study electrical circuits. This
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method is advantageous in obtaining numerical, analytical and exact solutions of ordinary
and partial di erential equations it has been widely studied and applied in recent years
(see,[17, [18, [19] [20], 21, [22, 23] 24}, 25]). According to the current techniques in the literature,
DTM is a reliable method that requires less work and does not require linearization.

In this study, we consider the following rst order neutral type di erential equation with

multiple retarded arguments:
VA t
O(:It[X(t)ﬂO(t)X(t )] +af(x(t) +b(Hgx(t ) +c(t) . X(s)ds = 0; (1.1)

where p(t); a(t); b(t);c(t) :[to; L) ¥ [0;1); tp O0; andf; g:< ¥ <withf(0) =0;9(0) =
0 are continuous functions on their respective domains; ; and are positive real constants.

For each solution x(t) of equation|1.1, we assume the existence following initial condition:
X()= () 2[t Hto];

where 2 C([ty H;t];R);H =maxf ; ; g:

De ne
h(x)
% 2 x680
hi(x) = = (1.2)
= dh(0) —
g, X= 0
and

(1.3)

The main purpose and contribution of this work can be summarized as follows aspects:

i. This research on the stability of certain neutral type di erential equation and their
numerical solutions is still at the stage of developing. Therefore, we propose a novel
stability criterion for further improvements.

ii. The proof technique for the asymptotically stability of the equation considered in this
study includes the Lyapunov function method and the LMI technique. Also, DTM
is used to obtain numerical solutions of the equation considered.

iii. The simulations showing the behaviors of the solutions of the equation addressed by
applying the Lyapunov method and the numerical solutions of the equation addressed

using DTM show that the proposed methods are useful and e cient.
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2. Preliminaries and stability results

We suppose that there exist nonnegative constants a;; bj; ci; mj; n; (i = 1;2) and p; such
that fort O;

ar  a(t) az by b(t) by cy c(t) c

(2.9)
PO pi<lympy fi(X) mz N1 gi(x) Nz (2.5)
For convenience, de ne the operator D : < ¥ < as
Z t z t
D(xt) = x(t) + p(Ox(t )

X(s)ds x(s)ds;
t

where ve are positive scalars to be chosen later. From [1.2) and [1.3] equation [1.T can be
readily rewritten as follows for t  0;
d V4 t V4 t
GiX(® +p@Ox(T ) X(s)ds x(s)ds] = (fi(a(® + + )Hx(V)
t t

/t
+x( o )+ x(t ) k@  Pb®mx( ) c®) x(s)ds: (2.6)

t
Theorem 2.1. Let a;; bj; ¢i, mj and n; (i = 1; 2) be nonnegative constants. Then trivial

solution of neutral type di erential equation [2.6] is asymptotically stability if the operator D
is stable and there exist positive constants

, 55 5 and j (=1, 2;:::;5) such that

3

2
11 12 niby 14 15 C1
2
22 23 PiC1
2 34 35 0
= <0; 2.7
3 0 C2
4 C2

2 2 2. _ )
2(mat+ + )+ 1+ 2+ 37+ 4 “°+ 5% = (mia; + + )py;
1= mpa; + 24+

;s =Mpa; +  + 2 =2

where 11 =

1, 23 = P1 Nibips;

2+ nyby and the symbols \ ** shows the elements below the
main diagonal of the symmetric matrix

3y = + naby; 35 =
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Proof. Consider the appropriate Lyapunov functional as
Z t Z t Z t
V() S[Dx)P+ 1 X3(s)ds+ » x%(s)ds + 3 ( t+s)x%(s)ds
t t t
YA t Z t
+ 4 ( t+s)x%(s)ds+ s ( t+5s)x3(s)ds;
t t

where D(X¢) = x(t) + p(t)x(t ) ? X(s)ds ? X(s)ds:

t t
When the time derivative of V (t) along the trajectory of equation [2.6] are calculate, we

obtain
dv z t YA t
— =2[x(t) + p(O)x(t ) x(s)ds X(s)ds]
dt t t
[ (Ea®)+ + )x()+ x(t )+ x(t )
z t
gr(x(t  Nbx( ) c(t) . x(s)ds] + 1[x*(t) Xt )]
z
+ DA Xt )+ 3 (M) 3 t x*(s)ds
Z ‘ Z

+ 4 () 4 x2(s)ds + 5 2x2(t) s x2(s)ds
t t
=( 2f(Xa(t) 2 2 + 1+ o+ 3%+ 4 2+ 5 2D

+2 x(Ox(t ) +2 x(O)x(t ) 2g1(x(t Nb()x(t)x(t )
2c(t)x(t)ztt x(s)ds  2(fi(a(t) + + HpOx@®xt )
+2 pOX(t  )+2 pOx(t x(t )
20:(x(t  Nb(OPOX( Ix(t ) 2p(t)e()x(t )Ztt x(s)ds
Z, Z,

+2(fi(X)a() + + ) x(t) x(s)ds 2 %x(t ) X(s)ds
z, ' z,
2 x(t ) X(s)ds+2 gi(x(t ))b(®x( ) X(s)ds
Z, ' Z ' Z,
+2 c(b) X(s)ds X(s)ds + 2(fy(x)a(t) + + ) x(t) X(s)ds
t 7 . t 7 . t
2 x(t ) t x(s)ds 2 x(t ) t x(s)ds
Z, Zt Z,

+2 gr(x(t Nb(x(t ) X(s)ds+2 c(t) x(s)ds X(s)ds
t t
t
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Zt 7t
DAt ) 2Pt ) 3 XA(s)ds a4 x*(s)ds

Zy

5 x?(s)ds:
t

By using holder inequality we can easily see that

Z Z 2
x?(s)ds x(s)ds ;
t t
Z t Z t 2
x?(s)ds x(s)ds
t t
Z 4 Zy 2
x?(s)ds x(s)ds :
t t

Taking into account conditions 2.4 and [2.5, we have

dv
qt (2mia; 2 2 + 1+ 2+ 32+ 424 5K

+[2 2(mar+ + )px(Dx(t )+ (2 2niby)x(Ox(t )

Zt
2e1x(t)  x(s)ds+ (2 p1 X(t )
t 7 .
+(2 p1 2nibip)x(t  )x(t ) 2Zpicax(t ) X(s)ds
z t tZ t
+2(mea; + 2+ )x(t) x(s)ds 2 x(t ) x(s)ds
t

t
Zt Zt Zt

(2 2 noby)x(t ) X(s)ds+2 ¢ X(s)ds X(s)ds
V4 t z t t t Zt t

+2 C X(s)ds x(s)ds +2(moa; +  + 2)x(t) X(s)ds
t 7 . t t 7 .
2 x(t ) x(s)ds  x3(t ) (2% 2 mb)x(t ) x(s)ds
t t
Z 2 Z 2 Z 2
3 X(s)ds 4 X(s)ds 5 X(s)ds
t t t

The last estimate implies that

dv

T O

#
R R R
where T(t) = x(t) x(t ) x(t ) x(s)ds X(s)ds X(s)ds and s de-
t t t
ned in 271 Thus, [2.7) implied that there exists a positive constant > 0 such that
‘L—‘{ kD(xt)k: Therefore, equation is asymptotically stable according to [[8], Theorem

8.1, pp. 292{293]. This completes the proof.
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Example 2.1. Consider neutral di erential equation [2.6] with

ar=a=1b=b,=05ci=c=0m=my=2;n; =n2, =0:4;jp(t)] p1=0:25<1;
(2.8)
=02, =04:; =03, =01, =03, 1=16; = 3=1:2;; 4=08;, =15
(2.9)
Under the above assumptions, by solving matrix inequality [2.7| using Matlab, we found that
the all eigenvalues of this matrix are -0.3125;-1.1539; -1.1931;-1.4085; -1.5000 and -2.3669:
As a result, it is clear that all the conditions of Theorem hold. This discussion implies

that the zero solution of equation [2.6] is asymptotically stable.

Figure 1. The simulation of the Example [2.1]

3. DTM and Numerical Experiment

The theory of DT can be found in [15] [16]. In this research paper, we will explain brie v.

The DT of function x(t) is de ned as

1 d*%(b) _
X (k) = Koak (3.10)
where x(t)is the original function and X (k) is the transformed function.
Di erential inverse transform of X (k) is de ned as
Kotk gk
x@=_ L dx® (3.11)

KAt
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From and [3.11} if the function x(t) can be expressed in a nite series as follows

X
x() = XEKE=X0)+XDt+X @ +:::; (3.12)
k=0

then it is called series solution of the DTM.
The following fundamental theorems can be easily deduced from equations and
(also see,[17],[20])).

Theorem 3.1. If x(t) = ZW:then X (k) = EEDIX (k+1) = (k+ 1) X (k+1) :
Theorem 3.2. If x(t) = x(t); then X(k) = X(k);where is a constant.

Theorem 3.3. If x(t) =x(t a); a> 0 and reel constant, then
o1

XK= (1) @ Agi kx (i):
i=k k
o 1

P : i .
Theorem 3.4. If &x(t a); then X (k) = (k + 1) (D kKle Aal kK Ix(i):
i=k+1 k+1

R¢ X(k 1)
Theorem 3.5. If x(t) =  x(s)ds, then X (k) = =—; k 1; X(0) =0:

Now, we demonstrate potentiality, advantages and e ectiveness of our method on an

example.

Example 3.1. Under initial condition x (0) = 2:5; we consider the rst order neutral di er-
ential equation [2.6| with [2.8] and [2.9] Taking into account Theorem [3.7] - 3.5, applying DTM

on both sides of equation [3.10] and condition [3.11], we obtain the following recurrence relation

X (0) =2:5;
o] 1
N . i :
(k + DX (k+1)=[ 0:25(k+1) (D' kl@ A0:2" K IX (i) 2X (k)
i=k+1 k+1
O 1

X ik i i K .
0:2 (1) “@ A04' X ()] k=0;1;::6:
i=k k
Using this recurrence relation, the following series coe cients X (k) can be obtained.

For N = 4;
X(1) =-4.256423713, X (2)=4.173891756, X(3)=-3.190591724, X (4)=2.211301195,

X (5) =-1.326780717, X (6)=0.4422602390, X (7)=-0.1263600683, k = 0;1;:::; 6:
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For N = 6;

X (1) =-4.256931168, X (2)=4.169113047, X(3)=-3.134489650, X (4)=2.052537892,
X(5) =-1.272263766, X (6)=0.7624052530, X(7)=-0.3703111229, k = 0;1;::;;6:

For N = 8;

X (1) =-4.256957370, X (2)=4.169240023, X (3)=-3.133772360, X (4)=2.045844921,

X (5) =-1.257197863, X (6)=0.7759998430, X (7)=-0.4899948359, k = 0; 1;:::; 6:
Finally, using above mentioned relations, taking N = 4; 6; 8 and using equation [3.12]
we reach approximate solutions of equation [2.6] with 7 iterations as follows:
N = 4;
XpTm(t) =2:5  4:256423713t + 4:173891756t>  3:190591724t% + 2:211301195t*
1:326780717t° + 4:422602390t°  1:263600683t’;
N = 6;
Xprm(t) =2:5  4:256931168t + 4:169113047t>  3:134489650t> + 2:052537892t*
1:272263766t° + 7:624052530t°  3:703111229t';
N =8;
Xxprm(t) =2:5  4:256957370t + 4169240023t>  3:133772360t° + 2:045844921t*

1:257197863t° + 7:759998430t°  4:899948359t:

As a result, it is seen that in the cases of N = 4; N = 6 and N = 8; our numerical

results are almost the same.
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Figure 2. Comparison between approximate solutions using DTM.

Table 1.

Y. ALTUN

Comparison of numerical results obtained with DTM.

N=4

N =6

N =28

0:0

2:5

2:5

2:5

0:1

2:113114246

2:113056779

2:113055630

0:2

1:793286393

1:793223362

1:793222389

0:3

1:527559403

1:527518365

1:527507432

0:4

1:305682872

1:305711365

1:305609636

0:5

1:119104674

1:119546373

1:118984564

0:6

0:960089977

0:961954349

0:959727281

0:7

0:820903961

0:826068104

0:819026077

0:8

0:692994495

0:703852936

0:684940092

0:9

0:566111176

0:584166389

0:539253944

1:0

0:427296967

0:450060485

0:353162358

4. Conclusions

In this study, we rst derived some novel su cient conditions to prove the asymptotic

stability of solutions the rst order neutral type di erential equation. Subsequently, using
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DTM, we obtained numerical approximations for di erent N ve t by an appropriate computer
program. We constructed the Table [T to make a comparison between the numerical results
for N = 4; N =6 and N = 8: By Matlab and an appropriate computer program, we
provided two examples to show the e ectiveness of proposed method. When the simulations
of Example [2.T and Example 3.1 are examined, the obtained results shows that the proposed
methods are useful and applicable. As a suggestion, the techniques and methods presented

for equation can be improved with di erent situational or time-dependent delays.
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A CONSTRUCTION OF VERY TRUE OPERATOR ON SHEFFER
STROKE MTL-ALGEBRAS

IBRAHIM SENTURK AND TAHSIN ONER

Abstract. In this paper, we introduce She er stroke very true operator on MTL-algebras.
We handle some fundamental properties of this operator. We obtain some equalities and
inequalities which are used in our construction. Moreover, we give some relations among
very true operator, supremum and in mum relations. Finally, we construct bridges among
She er stroke MTL-algebras, BL-algebras, MV-algebras and Godel algebras by using them.
Keywords: She er stroke MTL-algebra, Very True Operator, Reduction, BL-algebra, MV-
algebra, Godel algebra.
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1. Introduction

When a structure is established as a mathematical model, we must rstly throw o re-
dundant statements. For this aim, we venture to give equivalent statements as possible as
with the least number of axioms or the least number of operations and so on. For instance,
Tarski achieved to explain Abelian groups with the least number of axioms from the point
of divisor operator. [19]

The concept of monoidal t-norm-based logic (shortly, MTL) is given by Godo and Esteva
[8]. Montogna and Jenei show that MTL corresponds to the logic of all left continuous t-
norms and their residua [I1]. In accordance wtih these studies, MTL-algebras are de ned
as a counterpart of this logical system [8]. In recent times, the structure of MTL-algebras
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has been supported with important structural works [13, [20]. These works get a constructive
e ect on its algebraic structure. For instance, Vetterlein demonstrate that MTL-algebras
correspond to the positive cone of a partially ordered group [20]. Moreover, he con rm that
this algebra is a commutative, bounded, integral and pre-linear residuated lattice [13]. And,
MTL-algebras are the basis residuated structures having all algebras induced by their residua
and continuous t-norms. So, MTL-algebras have an important position in di erent structures
which are related with fuzzy logic [21].

Oner and Senturk introduced She er stroke basic algebras [14]. She er stroke basic al-
gebras play an important role in great numbers of logics as many-valued Lukasiewicz logics,
non-classical logics, fuzzy logics and etc. This reduction topic is studied in recent times such
as [15]. In harmony with these logical roles, Senturk gives a reduction of MTL-algebras by
means of only She er stroke operation which is called She er stroke MTL-algebras [18].

The notion of "very true™ was rstly established by Hajek giving an answer to the question
"whether any natural axiomatization is possible and how far can even this sort of fuzzy logic
be captured by standard methods of mathematical logic?" [10]. To putinadi erent way, very
true operator is used to reduce the number of possible logical values in many-valued logic.
After this operator was e ectively used in particular tasks in various elds of mathematics
[9, 5, [, 23], this operator has been implemented to other logical algebras such as e ect
algebras [6], commutative basic algebras [3], equality algebras [22], R*-monoids [16], MV-
algebras [12] and so on.

In this paper, we give some fundamental concepts which are needed for our construction
in Section [2 In Section [3, we introduce She er stroke very true operator on She er stroke
MTL-algebras. We handle some fundamental properties of this operator. We obtain some
equalities and inequalities. We give some relations among very true operator, supremum
and in mum. Then, we engaging links among She er stroke MTL-algebras, BL-algebras,
MV-algebras and Godel algebras by using them. In Section [, we brie y mention what we

do during this work.

2. Preliminaries

The basic de nitions, lemmas, theorems and etc. which are used throughout the paper
are given in this section.

The fundamental concepts in this chapter are taken from [17] and [2].
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De nition 2.1. If the binary operations _ and ~ satisfy the following conditions on the
non-empty set L:

(L) k™MI=1~kand k _1=1_k,

L) kr(d~"my=k~"Dmandk _(I_m)y=(k_1I)_m,

(L3) k"k =k and k _k =Kk,

(Ly) kMk_Dh=kand k__ (k™) =k

then L = (L;”;_) is called a lattice.

De nition 2.2. An algebraic structure L = (L;_;”;0;1) is called bounded lattice if it sat-
is es the following properties:

() foreach k2L, k~1=kand k_1=1,

(i) foreach k2L, k~0=0and k_0=k.
The elements 1 is called the greatest element and O is called called the least element of the

lattice.

De nition 2.3. Let the structure L = (L; ;") be a lattice. A mapping k @ k7 is said to
be an antitone involution if it veri es the following conditions:
() k?? =k  (involution),

(i) k limplies 17 k7  (antitone).

De nition 2.4. Let L be a bounded lattice with an antitone involution. If the below condi-
tions

k_k?=1 and k~k?=0;
are satis ed then k? is called the complement of k and the lattice L = (L;_; nN?-0: 1) is also

an ortholattice.

Lemma 2.1. Let L = (L; _;”%;?) be a lattice which veri es the antitone involution condition.
Then the De Morgan laws
K27 =(k_D?7and k? _ 17 = (kD7

are satis ed.

De nition 2.5. [4] Let G = (G;)) be a groupoid. If the following conditions are satis ed,
then the operation j: G G ¥ G is called a She er stroke operation.

(S1) 91j92 = 92j0a;

(52) (91J91)i(91J92) = 01;
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(S3) 01j((92i93)(92J93)) = ((91)92)i(91i92))igs;
(S4) (91i((91J91)j(91j91)))i(91j((91J91)i(92j92))) = 91:

If also the following identity

(S5) 02j(91j(91j91)) = 92j92;

is satis ed, then it is said to be an ortho-She er stroke operation.

Lemma 2.2. [4] Let G = (G;j) be a groupoid with She er stroke operation. Then the
following equalities are veri ed for each g1;02;03 2 G:

(1) (92J92)i(91J(92j93)) = 01,

(i1) (91j91)i92 = 92j(91j92),

(iii) 91j((92i92)i91) = 91j92-

Lemma 2.3. [4] Let G = (G;]) be a groupoid. The binary relation de ned on G as below

01 02 if and only if g1jo> = 91jo1

is a partial order on G.

Lemma 2.4. [4] Let j be a She er stroke operation on G and  order relation of G. Then,

the following equalities:

() 91 g2 if and only if g2jg2  g1j1,

(i) 91j(92J(91J91)) = 91jga is the identity of G,
(iii) g1 g2 implies g2jgs  91jgs, for all g3 2 G,
(iv) g3 giandgs gz imply g1jg2  93jgs

are veri ed.

Lemma 2.5. [14] Let G = (G;]) be a She er stroke basic algebra with the constant element

1. Then, the following identities:

(1) 91j(92j91) =1,
(i) 91j(1j1) =1,
(i) 1j(91jg1) = 01,
(iv) ((91J(92]92))i(92i92))i(92i92) = 91J(92i92),
(V) (92J(91(92J92)))i(91i(92j92)) = 1

are veri ed.

De nition 2.6. [ZI] Let X be a non-empty set, the operations _, , ¥ and ~ be binary

operations on X and the elements 0 and 1 be algebraic constant of X. If the following
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conditions:

(MTLy) CX;7;_;0;1) is a bounded lattice,

(MTL2) (X;~;0;1) is a commutative monoid,

(MTL3) x y X zifandonlyifx~y z,

(MTL) xTy)_(y I x)=1

are satis ed for each x;y;z 2 X, then the algebraic structure X = (X;_;”; ¥;~;0;1) is

called an MTL-algebra.

De nition 2.7. [2I] Let X = (X; _;”; ¥;~;0;1) be an MTL-algebra. Then X is called
(i) a BL-algebra if x "y =x~(x ¥ y) for each x;y 2 X,
(i) an MV-algebra if (x ¥ y) ¥ y=(y ¥ x) ¥ x for each x;y 2 X,

(iii) a Godel algebra if x ~x = x for each x 2 X.

Theorem 2.1. [18] Let X = (X;_;”; ¥;~;0;1) an MT L-algebra. If the operations are
de ned as:

X1 N Xz 1= (((X2)X2)jx1)jX1)i (((X2iX2)jx1)jX1)

X1 _ X2 1= (X1j(X2jX2))j(X2)x2)

X1~ X2 1= (X1)X2)j(X1jX2)

Xy ¥ Xz 1= Xqj(X2jX2)

for each x1; X%, 2 X, then X = (X;j) is a She er stroke reduction of M T L-algebra.

Corollary 2.1. [18] Let X = (X;]) is a She er stroke reduction of MTL-algebra. Then, it

is also a She er stroke basic algebra.

During this paper, She er stroke reduction of MTL-algebras are shortly called She er
stroke MTL-algebras.

3. A Construction of Very True Operator On Sheffer Stroke MTL-Algebras

In this part of the paper, we construct She er stroke very true operator on She er stroke
MTL-algebras. We examine some fundamental properties of this operator. We attain some
equalities and inequalities. Moreover, we give some relations among very true operator,
supremum and in mum. On the other hand, we build links among She er stroke MTL-

algebras, BL-algebras, MV-algebras and Godel algebras by using them.

De nition 3.1. Let M = (M;)) be a She er stroke MT L-algebra. If the following condi-

tions:
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(SVsml) #(1) =1

(SVsm2) #(m) m

(SVsm3) #(mj(njn))  #(mM)j(#(n)j#(n))

(SVsm4) #(m)  #(#(m))

(SVsm5) (#(mj(njn))j#(nj(mjm))j#(nj(mjm))))j#(nj(mjm))j#(nj(mjm))) = 1

are satis ed for each m;n 2 M, then the mapping #: M ¥ M is called a She er stroke very

true operator.

Example 3.1. Let M = f0; k; I; m; n; 1g. The relations of elements in M are given as Figure

and the operation j on this structure is de ned as the Table [1}

1
jl/0O 1 kmn 1
0(f1 1 1 1 1 1
m : I/l m 1 1 m m
ki1 1 n n 1 n
! K mi11n 1 1 1
ni|l 1 1 k k
0 1)1 n | k 0
Figure 1. Hasse Diagram of M Table 1. j operation on M
If the binary operations ~;_;~ and ¥ are de ned as Theorem 2.1, then we have the

following Cayley tables for these operations.

N0 Ik mn 1 |10 I Kk mn 1
0/0 OO O 0O O 0/0 I k mn1
{01 0o 0 I |1 {1 1 1 1 n1
k|00 k k 0 k klk 1 k m 11
and

m|0 0Ok m 0 m mm 1 mm 11
n{0O Il 0 0 n n nilnn 1 1 n1
101 kmn 1 111 1 1 1 11

Table 2. ™ operation on M Table 3. _ operation on M
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~10 1 k mn 1 T /0 I k mn1
0|0 00 O OO o0/1 1 1 1 11
lfo 1 0o o0 I | I''m 1 mm 11
k|0 0 k k 0 k k{nm 1 1 n1
m{0 O0Onm O m and m|l | 1 1 n1
ni0Ol 0mn n nlk 1 k m11
101 kmn 1 110 I k mn1
Table 4. ~ operation on M Table 5. ¥ operation on M

So, the algebraic structure M = (M) is a She er stroke MT L-algebra. If the operation
#:M ¥ M is de ned by

n;, u?Z2fl;ng;
m; X2 fk;mg

then, this mapping is a She er stroke very true operator on M.

Proposition 3.1. Assume that the mapping # : M ¥ M be a She er stroke very true
operator. Then, the following statements

(i) #(0) =0,

(i) m =1 if and only if #(m) =1,

(iii) # is increasing,

(iv) #(mjm)  #(m)j#(m)

hold for each m;n;k 2 L.

Proof. (i) By (SVsm2), we get #(0) 0. Moreover, we have m  #(m) for each
m 2 M. So, we obtain #(0) = 0.

(i) (O:) Itis clear from (SVsm1).

() Assume that #(m) = 1. Since #(m) =1 m 1, we get m=1.

(iii) Assume that m  n. Then, we have mj(njn) = 1. By the help of (SVsm1) and (SVsm3),
we get #(mj(njn)) = #(1) =1  #(M)j#(n)j#(n)) 1. We obtain #(m)j#(n)j#(n)) = 1.

So, we conclude that #(m) #(n), i.e., the mapping # is increasing.
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(iv) Let m be any element of M. Then, we have
#(mjm) = #(mjl)
= #(mj(0j0))
#(M)j(#(0)j#(0))
= #(m)j(0j0)
= #(m)jl
= #(m)j#(m):

So, the inequality #(mjm)  #(m)j#(m) is veri ed for each m 2 M.

Lemma 3.1. Let # : M ¥ M be a She er stroke very true operator. Then, the equality

#(m) = #2(m) is veri ed for each m 2 M.

Proof. Let m be any element of M. By using Proposition (iii) and (SVsml),
we obtain #(#(m)) #(m). From (SVsm4), we have #(m)  #(#(m)). Hence, we obtain
#(m) = #(#(m)) foreach m 2 M.

Lemma 3.2. The following inequalities

FEmM)HM)FEHM)HN))  (mjn)j(mjn)  #(mjn)j#(mjn)

hold for each m;n 2 L.

Proof. Let m and n be any elements of M. By using (SVsm2), we get #(m) m
and #(n) n. From Lemma (i), we have mjn  #(m)j#(n). If we use again the same

step for the last equation, we get the following inequality:
(#mM)#N)FM)#(N))  (mjn)j(mjn): 3.1
By (SVsm?2), we have #(mjn)  mjn. Similarly, we obtain
(mjmj(mjn)  #(mjn)j#(mjn): (3.2)
From Inequalities and (3.2)), we attain our assumption.

Lemma 3.3. The following inequalities
(i) #(mjm)  #(mjn),
(i) #(mjn)j#(mjn)  #(m),
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(iii) #(m)  #((mjn)jn)

hold for each m;n 2 L.

Proof. (i) Let m and n be any two elements of M. Wehavem landn 1. Then,
n 1 ) 1jm njm; (By Lemma [2.4] (iii))
D> mjm njm; (By Lemma[2.5 and Corollary
D> #(mjm) #(mjn): (By Proposition [3.1] (iii))

(ii) We have the inequality mjm  njm from Lemma 3.3 (i). By the help of Lemma[2.4] (i)
and De nition (52), we get (njm)j(njm) m. By increasing property of # mapping, we
conclude that #((njm)j(njm)) #(m) for each m;n 2 M.

(iii) We have n 1 for each n 2 M. We obtain m  (mjn)jn by using Lemma [2.4] (iii),
Lemma [2.5] (iii) and Lemma [2.2] respectively. Since # is an increasing mapping, we obtain
#(m) #((mjn)jn) for each m;n 2 M.

Theorem 3.1. Let#: M ¥ M be a She er stroke very true operator. Let sup and inf be
the least upper bound and greatest lower bound functions, respectively. Then the following

equalities
supf#(m); #(n)g = #(supfm; ng) and inff#(m); #(n)g = #(inffm; ng)
are satis ed for each m;n 2 M.

Proof. Let m;n 2 M and the mapping # : M ¥ M be a She er stroke very true
operator. We have m  supfm;ng and n supfm; ng. Since # is an increasing mapping, we

get#(n) #(supfm;ng) and #(m) #(supfm; ng). Then, we obtain the following inequality
supf#(m); #(n)g  #(supfm; ng) (3.3)

for each m;n 2 M.

Let supf#(m); #(n)g = k for k 2 M. So, we have #(m) k and #(n) k. By the help of
Lemma 3.1 and Proposition (iii), we get #(m)  #(k) and #(n)  #(k). Using again
Proposition (iii), we get m  k and n k. Then, we attain supfm;ng k. From
De nition (SVsm2) and Proposition (iii), we obtain following the inequalities

#(supfm;ng) #(k) k =supf#(m);#(n)g: (3.4)
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From Inequalities and (3.4), we prove that supf#(m); #(n)g = #(supfm; ng) for each
mn2M.

For the in mum part of the proof, we have inffm;ng m and inffm;ng n for each
m;n 2 M. Since # is an increasing mapping, we get #(inffm;ng)  #(m) and #(inffm; ng)

#(n). So, we obtain the following inequality
#(inffm;ng)  inff#(m); #(n)g: (3.5)

By De nition[3.1](SVsm2), we have #(m) mand#(n) n. Then, we get inff#(m); #(n)g
inffm; ng. From Proposition (iii) and Lemma 3.1, we handle #(inff#(m);#(n)g)
##(inffm; ng)), i.e.,

inff#(m); #(n)g  #(inffm; ng): (3.6)

From Inequalities (3.5) and (3.6), we show that inff#(m);#(n)g = #(inffm; ng) for each
mn2M.

Example 3.2. Let M = f0;k;I;m;n;1gand #: M ¥ M be de ned as Example [3.1. Then
we show that Theorem [3.1] is satis ed for each a;b 2 M. If one of fa;bg equals 0 or 1,
the equalities supf#(a); #(b)g = #(supfa; bg) and inff#(a); #(b)g = #(inffa; bg) are obtained
clearly. We examine a 2 fk;l;m;ng and b 2 fk;I;m;ng. So, we need to examine the sets
such as fk;lg, fk; mg, fk;ng, fl; mg, fl;ng and fm; ng.

We analyze for fk;lg:

supf#(K); #()g = supfm; ng = 1 = #(1) = #(supfk; 1g):
inff#(k); #(1)g = inffm; ng = 0 = #(0) = #(inffk; Ig):
We analyze for fk; mg:
supf#(K); #(m)g = supfm; mg = m = #(m) = #(supfk; mg):
inff#(k); #(m)g = inffm; mg = m = #(k) = #(inffk; mg):
We analyze for fk;ng:
supf#(k); #(n)g = supfm; ng = 1 = #(1) = #(supfk; ng):
inff#(k); #(n)g = inffm; ng = 0 = #(0) = #(inffk; ng):
We analyze for fl; mg:

supf#(l); #(m)g = supfn; mg = 1 = #(1) = #(supfl; mg):
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inff#(l); #(m)g = inffn; mg = 0 = #(0) = #(inffl; mg):
We analyze for fl; ng:

supf#(l); #(n)g = supfn; ng = n = #(n) = #(supfl; ng):

inff#(l); #(n)g = inffn; ng = n = #(1) = #(inffl; ng):
We analyze for fm; ng:
supf#(m); #(n)g = supfm; ng = 1 = #(1) = #(supfm; ng):
inff#(m); #(n)g = inffm; ng = 0 = #(0) = #(inffm; nQ):

Corollary 3.1. Let m;n 2 M and the mapping # : M ¥ M be a She er stroke very true

operator. Then the following equalities

supf#(m); #(n)g = #(supf#(m); #(n)g) and inff#(m); #(n)g = #(inff#(m); #(n)g)
are veri ed for each m;n 2 M.

Proof. It is straightforward from Theorem and Proposition (iii).

Theorem 3.2. Let Fixg(M) be the set of the points of M such that #(m) = m. Then, the
equality Fixg(M) = #(M) is satis ed.

Proof. Assume that n 2 #(M). Then, we have any element m of M such that
#(m) = n. Using Lemma [3.1, we obtain #(n) = #(#(m)) = #(m) = n. So, we get n 2

Fixx#(M). Hence, we handle the following relation
#(M) Fixg(M): 3.7

Let n 2 Fixg(M). This means that #(n) = n. Since n 2 M, n = #(n) 2 #(M). Therefore,

we get the following relation
Fixg(M) #(M): (3.8)
From the relations (3.7) and (3.8), we prove that Fixg(M) = #(M).

Example 3.3. Let M = f0;k;I;m;n;1g and #: M ¥ M be de ned as Example H Then,
we have Fixx(M) = f0;n; m;1g and also #(M) = f0;n; m;1g. So, we verify Fixz(M) =
#(M) for Example [3.1]



104 1. SENTURK AND T. ONER

Now, when we consider on Theorem and Theorem [3.2, we can reach the following

corollary.

Corollary 3.2. Let the mapping #: M ¥ M be a She er stroke very true operator. Then

the following equalities

supfF ixz(M)g = #(sup(M)) and inffF ixx(M)g = #(inf(M))

are veri ed.

Lemma 3.4. Letid: M ¥ M be de ned as Id(m) = m for each m 2 M. Then, the mapping

Id is a She er stroke very true operator on M.

Proof. It is clear from De nition [3.I, De nition [2.6) and Theorem 2.1}

Theorem 3.3. Let M = (M;j) be a She er stroke MT L-algebra and the mapping #: M 1

M be a She er stroke very true operator. Then,

(i) M=(M;_;™; 1;~:;0;1) is a BL-algebra if and only if #(inffm; ng) = #((((mjm)jn)jn)
j(((mjm)jn)jn)) for each very true operator # on M and for each m;n 2 M,

(i) M =(M;_;™ 1,~;0;1) isa MV -algebra if and only if #(supfm; ng) = #((mj(njn)j(njn)))
for each very true operator # on M and for each m;n 2 M,

(ilii)y M=(M; ;™ 1,;~;0;1) is a Godel algebra if and only if #(inffm; ng) = (#(m)j#(n))j

(#(m)j#(n)) for each very true operator # on M and for each m;n 2 M,

Proof. The proof is clear from Lemma 3.4/ and Theorem (3.7) in [18].

4. Conclusion

In this paper, we de ne She er stroke very true operator on MTL-algebras. We get some
fundamental properties of this operator. We give some equalities and inequalities which
are used in our construction. Then, we attain some relations among very true operator,
supremum and in mum relations. Finally, we construct paths among She er stroke MTL-
algebras, BL-algebras, MV-algebras and Godel algebras by using them. After this work, we
will use this operator other algebraic structures. By this means, we want to obtain new paths

among new algebraic structures.
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SCHOUTEN-VAN KAMPEN CONNECTION
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Abstract.  The object of the present paper is to characterize trans-Sasakian 3-manifolds

with respect to the Schouten-van Kampen connection. Also, we consider Ricci solitons,
-Ricci solitons and Yamabe solitons of a trans-Sasakian 3-manifold with respect to the

Schouten-van Kampen connection. Then we give an example of a trans-Sasakian 3-manifold

with respect to the Schouten-van Kampen connection.
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1. Introduction

In [19], Oubina de ned a new class of almost contact metric structure, which is said
to be trans-Sasakian structure of type (; ). In [7], Chinea and Gonzales introduced two
subclasses of trans-Sasakian structures which contain the Kenmotsu and Sasakian structures.
Trans-Sasakian structures of type (; 0), (0; ) and (0;0) are -Sasakian, -Kenmotsu and
cosymplectic, respectively [3| [14].

The Schouten-van Kampen connection de ned as adapted to a linear connection for study-
ing non holonomic manifolds and it is one of the most natural connections on a di erentiable
manifold [2, 13, [23]. Solov’ev studied hyperdistributions in Riemannian manifolds using the
Schouten-van Kampen connection [24, [25, [26], [27]. Then Olszak studied the Schouten-van
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Kampen connection to almost (para) contact metric structures [18]. In recent times, Perktas
and Yildiz studied some symmetry conditions and some soliton types of quasi-Sasakian
manifolds and f -Kenmotsu manifolds with respect to the Schouten-van Kampen connection
[21, 22].

Let (M;g) be a Riemannian manifold. Then the metric g is called a Ricci soliton if [12]
Lxg+2Ric+2g =0; (1.1)

where L is the Lie derivative, Ric is the Ricci tensor, X is a complete vector eld and is a
constant on M. In [8], Cho and Kimura given the notion of -Ricci solitons. The manifold
(M;g) is called an -Ricci soliton if there exist a smooth vector eld X such that the Ricci

tensor satis es

Lxg+2Ric+2g +2 =0; (1.2)

where and is also constant on M. Note that Ricci solitons and -Ricci solitons are said to
be shrinking, steady and expanding according as is negative, zero and positive, respectively.

In [12], Hamilton de ned Yamabe ow to solve the Yamabe problem. The Yamabe soliton
comes from the blow-up procedure along the Yamabe ow, so such solitons have been studied
intensively [1I, 5, ©, [10] [17].

A Yamabe soliton on a Riemannian manifold (M;g) satisfying [1]

Cx9=( g (13)

where is the scalar curvature of M. Moreover, if (M;g) is of constant scalar curvature
, then the Riemannian metric g is called a Yamabe metric.Yamabe solitons are said to be
shrinking, steady and expanding according as is positive, zero and negative, respectively.
This paper is organized as follows: After preliminaries, we give some basic information
about the Schouten-van Kampen connection and trans-Sasakian manifolds. Then we adapte
the Schouten-van Kampen connection on trans-Sasakian 3-manifolds. In section 4, we con-
sider Ricci semisymmetric trans-Sasakian 3-manifolds with respect to the Schouten-van Kam-
pen connection. In the last section, rstly we study Ricci solitons, -Ricci solitons and
Yamabe solitons of a trans-Sasakian 3-manifold with respect to the Schouten-van Kampen
connection. Then we give an example of a trans-Sasakian 3-manifold with respect to the

Schouten-van Kampen connection.
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2. Preliminaries
Let M be a connected almost contact metric manifold with an almost contact metric

structure (; ; ;g ), thatis, is (1;1)-tensor eld, is a vector eld, isa 1-form and gis

the compatible Riemannian metric such that

W= U+ U); O=1 =0; =0; (2.4)
g(U; vV )=gU;Vv) (U) (V) (2.5)
gU; V)= g(U;VvV);, aW; )= (), (2.6)

forall U;V 2 TM [3]. The fundamental 2-form  of the manifold is de ned by
(U;V) =9g(U; V) (2.7)
This may be expressed by the condition [4]
ruv)Vv= @UVv) MU+ @uVv) (VU); (2.8)

for smooth functions and on M. Here we say that the trans-Sasakian structure is of type

(; ): From the formula (2.8) it follows that

rv = U + (U ) ); (2.9)

ru)v= g(UV)+g(U V) (2.10)

An explicit example of trans-Sasakian 3-manifolds was constructed in [15]. In [9]; the Ricci
tensor and curvature tensor for trans-Sasakian 3-manifolds were studied and their explicit
formulae were given.

From [9] we know that for a trans-Sasakian 3-manifold

2 + =0 (2.11)

Ric(U; )=@(* % )U) U (U); (2.12)

RicUV) = (5+ (% Hau;V) Ch 32 WU M

VvV +(V)) ) U +(U)) V) (2.13)
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and
RUVIW = (5+2  2( 2 EV;WIU - gUW)V)
oViWIGG+ 32 %) (V)
(U)(grad  grad )+ (U +(U) )]
+HIUWIG+ 32 ) M)
(V)(grad  grad )+(V +(V))] (2.14)
(W +(W) ) (M)+V +(V)) W)
+G+ 32 ) (V) (W)U
HW +(W) ) (U)+U +(U)) W)

O 3C 2 %) U) Wiv;

where Ric is the Ricci tensor; R is the curvature tensor and is the scalar curvature of the
manifold M, respectively.
If and are constants, then equations (2.11)-(2.14) become
RUVIW = (5 2% 2)EV;W)U  gU;W)V)
(G 3C% NEV:W) (V)  gUW) (V) (2.15)
+ (V) W)U (U) (W)V);

Ric(UiV) = (5 (2 2eU:V) (2.16)
G 32 )W V)

Ric(U; )=2( 2 2 (U); (2.17)
RUIV) =(2 (MU U)V); (2.18)
RGUIV=(? 2(UVv)  (VU); (2.19)

QU = (; (* U (2.20)
G 32 ) O:

From (2.11) it follows that if and are constants, then the manifold is either -Sasakian

or -Kenmotsu or cosymplectic, respectively.
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On the other hand we have two naturally de ned distributions in the tangent bundle TM

of M as follows:

H = ker ; V =spanf g (2.21)

Then we have TM = H V,H\ V =f0gand H ? V. This decomposition allows one
to de ne the Schouten-van Kampen connection r~ over an almost contact metric structure.
The Schouten-van Kampen connection r~ on an almost contact metric manifold with respect

to Levi-Civita connection r is de ned by [24]
roV =r yVv (V)I" U +(r U )(V)Z (2.22)

Thus with the help of the Schouten-van Kampen connection given by , many properties
of some geometric objects connected with the distributions H; V can be characterized [24, 25|
26]. For example g, and are parallel with respect to r, thatis, ™ =0,rg=0,7 =0.
Also the torsion T of r is de ned by

TU;V)= (U v M)y +2d (U;V):
3. Trans-Sasakian 3-manifolds with respect to the Schouten-van Kampen
connection

Let M be a trans-Sasakian 3-manifold with and are constants with respect to the

Schouten-van Kampen connection. Then using (2.9) and (2.10) in (2.22)), we get
rgvV=ryv+ f (V)U 9g(UV) g+ fg(U;V) (V)Ug: (3.23)

Let R and R be the curvature tensors of the Levi-Civita connection r and the Schouten-van
Kampen connection r~ are given by
R(U;V)=T[ruirvl r wvp  RWUV)Y=[u;fvl Moy
Using 1) by direct calculations, we obtain the following formula connecting R and R on
a trans-Sasakian 3-manifold
R(U;VW = R(U;V)W
+ %fg(V;W)U g(U;W)V + (U) (W)V (3.24)
V) W)Hu  g(v;w) (U) +g(U;W) (V) g

+ 2fg(V;W)U  g(U;W)Vg:
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We will also consider the Riemann curvature (0; 4)-tensors R; R, the Ricci tensors Ric; Ric,

the Ricci operators Q; Q and the scalar curvatures < of the connections r~ and r are given
by
R(U;V;W;Z) = R(U;V;W:2)
+ 2g(ViW)g(U;Z )  g(UsW )g(V;Z )
+9(V;Z) (U) (W) 9g(U;Z) (V) (W) (3.25)
g(V:W) (U) (Z2) +g(U;W) (V) (2)9

+ 2fg(V;W)g(U;2)  g(U; W)g(V; 2)g;

Ric(V:W) = Ric(V;W)

+2 2g(V;W) 2 % (V) (W); (3.26)
QU=QU+2 2U 2 2 (U); (3.27)
~=  22+6 % (3.28)

respectively, where R(U; V; W; Z2) = g(R(U; V)W; Z) and R(U; V;W;Z) = g(R(U; V)W; 2).
4. Ricci semisymetric trans-Sasakian 3-manifolds with respect to the
Schouten-van Kampen connection

In this section, we study Ricci semisymetric trans-Sasakian 3-manifolds with and are
constants with respect to the Schouten-van Kampen connection.
If a trans-Sasakian 3-manifold with respect to the Schouten-van Kampen connection is

Ricci semisymmetric then we can write
(R(U;V) Ric)(W;Y) =0; (4.29)
which turns to
Ric (R(U; V)W; Y) + Ric(W; R(U; V)Y) = O: (4.30)
Using in (@.30), we obtain
Ric(R(U;VIW;Y) 2 2 (R(U;VIW) (Y) +2 2g(R(U; VIW; Y)
+Ric(W;R(U;V)Y) 2 2 (R(U;V)Y) (W) +2 2g(W;R(U;V)Y) (4.31)

= Ric(R(U: V)W Y) + Ric(W: R(U; V)Y) = 0:
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Now using in (4.31), we get
Ric(R(U; VIW; Y) + Ric(W; R(U; V)Y) + 2fg(V;W )Ric(U;Y )
g(U: W )Ric(V;Y ) +Ric(V:Y) (U) (W) Ric(U:Y) (V) (W)

+(U; W) (V)Ric(Y; )  g(V;W) (U)Ric(Y; )+g(V;Y )Ric(U;W )

g(U; Y )Ric(V;W )+ Ric(V;W) (U) (Y) Ric(U;W) (V) (Y) (4.32)
+g(U;Y) (V)Ric(W; ) g(V;Y) (U)Ric(W; )g
+ 2fg(V;W)Ric(Y;U) g(U;W)Ric(Y;V)
+g(V;Y)Ric(W;U) g(U;Y)Ric(W;V)g=0:
Letfeqg; (1 i 3); be an orthonormal basis of the tangent space at any point of M. Then
the sum for 1 i 3 of the relation for U =Y =g gives
Ric(R(e; V)W, &) + Ric(W; R(ei; V)e)
+ 2fRic(V; W) V) (W)g
+2 2 2 23 (V) (W) g(V;W)g (4.33)
+ 2f g(V;W) 3Ric(V;W)g=0;
which is equal to
fg(Viw) 3Ric(ViW)g+2 (2 %) (V) (W)
+Ric (V;W) 2 (2 HgViW)+4 (2 3 (V) (W)
V) (W) (4.34)

+ 2fRic(V; W) (V) (W)g
+2 22 A3 (V) (W) g(V;W)g

+ 2f g(V;W) 3Ric(V;W)g=0;
where =5 2( 2 ?and =5 3(2 ?2). After some calculations we have

[ 3 + 2 + + Z2]Ric(V;W)
H(+ D 2 + 27 Av;w)

+6( + (2 P + 2 1(V) (W)=0;
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Ric(viw)=[; 2 2Jg(viw)+[ ? 2 -] (V) (W) (4.35)

Hence M is an -Einstein manifold with respect to the Levi-Civita connection. Now using

in (3.26)), we have
Ric(v;W):[E 2 +3 ?g(V; W) [E 243 2] (V) (W):

Thus M isalso an -Einstein manifold with respect to the Schouten-van Kampen connection.

Therefore we have the following:

Theorem 4.1. Let M be a trans-Sasakian 3-manifold with respect to the Schouten-van Kam-
pen connection. If M is Ricci semisymmetric with respect to the Schouten-van Kampen
connection then M is an -Einstein manifold with respect to the Schouten-van Kampen con-

nection and Levi-Civita connection.

5. Soliton types on trans-Sasakian 3-manifolds with respect to the

Schouten-van Kampen connection

In this section we study Ricci solitons, -Ricci solitons and Yamabe solitons on a trans-
Sasakian 3-manifold with and are constants with respect to the Schouten-van Kampen
connection.

In a trans-Sasakian 3-manifold M endowed with respect to the Schouten-van Kampen

connection bearing an Ricci soliton, we can write
(Cx g+ 2Ric +2g)(U;V) =0: (5.36)
Using in (5.36), since g =0 and T & 0, we have
(CxgU;V) =g(r uX;V) +gUir vX) = (Lx 9)(U; V);

that is,

g(r uX;V)+g(U;r vyX)+2Ric(U;V)+2g(U;V) =0: (5.37)
Putting X = in (5.37), we obtain

g(r y;V)+g(Ur v )+2Ric(U;V)+2g(U;V) =0: (5.38)
Now using in (5.38), we get

ot U + U U)yV)+gl; V + (V (V))+2Ric(U;V)+2g(U;V) =0;
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Ric(U;V) = ( + )gU;v)+ (U) (V) (5.39)

Thus M is an -Einstein manifold with respect to the Schouten-van Kampen connection.

Also using in (5.39), we get
Ric(U;V)= (2 2+ + )g(U;V)+( +2 %) (U) (V)

Hence M is an -Einstein manifold with respect to the Levi-Civita connection. Thus we have

the following:

Theorem 5.1. Let M be a trans-Sasakian 3-manifold bearing a Ricci soliton (; ;g ) with
respect to the Schouten-van Kampen connection. Then M is an -Einstein manifold both

with respect to the Schouten-van Kampen connection and Levi-Civita connection.

Putting V = and using (3.26) in (5.39), we give the following:

Corollary 5.1. A Ricci soliton (; ;g ) on a trans-Sasakian 3-manifold M with respect to

the Schouten-van Kampen connection is always steady.

On the other hand, from (2.16) and (3.26), it is easy to see that a trans-Sasakian 3-
manifold M is always -Einstein with respect to the Schouten-van Kampen connection of

the form Ric = g + ,Where = =5  2+3 2 Then, we write
(Cg+2Ric+2g)(U;V)=(2 +2)g 2 (Ui V); (5.40)

for all U;Vv 2 (M), which implies that the manifold M admits a Ricci soliton (; ;g ) if
+ =0and =0.

Using (5.39), we can also state the following:

Corollary 5.2. The scalar curvature of a trans-Sasakian 3-manifold M bearing a Ricci

soliton ('; ;g ) with respect to the Schouten-van Kampen connection is ~= 3 2

Now we consider an -Ricci soliton on a trans-Sasakian 3-manifold M with respect to the

Schouten-van Kampen connection. Then
(Cxg+2Ric+2g +2 YU; V) =0; (5.41)
that is,

g(r uX;V)+g(U;r yX)+2Ric(U;V)+2g(U;V)+2 (U) (V)=0: (5.42)
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Putting X = in (5.42), we obtain
Ric(U;V) = g(U;V) ) (vV): (5.43)
Hence M is an -Einstein manifold with respect to the Schouten-van Kampen connection.
Taking V = in (5.43), we get + = 0: Using in (5.43), we have
Ric(UiV)=[ 22 JgUV)+[2 % () (V)

Thus M is an -Einstein manifold with respect to the Levi-Civita connection. Now we have

the following:

Theorem 5.2. Let M be a trans-Sasakian 3-manifold bearing an -Ricci soliton (; ; ;g )
with respect to the Schouten-van Kampen connection. Then M is an -Einstein manifold

with respect to the Schouten-van Kampen connection and the Levi-Civita connection.

Again let us consider equations and (5.37). Using (3.26)), we obtain
g(r uX; V) +g(U;r vX)+2Ric(U;V) +2(2 2+ )g(U;V) 2 2 (U) (V)=0:
Thus we write
(Lx 9)(U; V) + 2Ric(U; V) +2(2 %+ )g(U;V) 2 2 (U) (V) =0:

This last equation shows that if (X; ;g ) is a Ricci soliton on a trans-Sasakian 3-manifold M
with respect to the Schouten-van Kampen connection, then the manifold admits an -Ricci

soliton (X; 2 2+ : 2;g) with respect to the Levi-Civita connection. If =0, then
(Lx g)(U; V) + 2Ric(U; V) +2(2 2+ )g(U;V) =0:
So we have the following:

Corollary 5.3. Let M be a trans-Sasakian 3-manifold bearing a Ricci soliton (X; ;g ) with
respect to the Schouten-van Kampen connection. Then we have: (i) If =0, then M admits
a Ricci soliton (X; 2 2+ ;g) with respect to the Levi-Civita connection. (ii) If & 0, then

M admits an -Ricci soliton (X; 2 2+ ; 2;g) with respect to the Levi-Civita connection.

Example 5.1. We consider the 3-dimensional manifold M = f (x;y;z) 2 R3; y & 0g; where

(x;y;z) are the standard coordinates in R3. The vector elds

@, _ @ _a @
X e = e ey@,

e =& :
b y
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are linearly independent at each point of M. Let g be the Riemannian metric de ned by
g(er;e3) = 9d(ez;e3) =g(er;€2) =0;
g(er;er) = g(exe) =g(es;e3) =1

Let be the 1-form de ned by (Z) =g(Z;e) forany Z 2 (M): Let be the (1;1)-tensor
eld de ned by (e1) =es3; (e2) =0; (e3) = e1: Then using linearity of and g we have

(&)=1 W= W+ (W)e;

ag(W; 2z )y=9W;2) (W) (2),

forany W;Z 2 (M): Thusfore; = ; (;; ;g ) de nes an almost contact metric structure

on M: Now, by direct computations we obtain
e ] = e [exes] =63 [e;6]=0:

The Riemannian connection r of the metric tensor g is given by the Koszul’s formula which

is
29(r yV;W) = Ug(V;W)+VgW;U) Wg(U;V) (5.44)
g(U;[V; WD) - g(Vi[U; W]) + g(W; [U; V]):
Using (5.44), we obtain

le,€ = € le,€ = €1; I e,€3=0;

reer = 0 Il e,€ =0; r e,€3=0; (5.45)
e = 0 I ;€2 = €3; I e;€3 = €!
By (5.45), we see that the manifold satis es (2.8) for U =e;; =0; = 1, ande; = :

Similarly, it can be shown that for U = e, and U = e3 the manifold also satis es (2.8) for
=0; = 1;and e = : Hence the manifold is a trans-Sasakian manifold of type (0; 1)
[20]. Now we consider the Schouten-van Kampen connection to this example. From (5.45)),
we have
R(e;e)er = &; R(ene)ez= e; R(e;e)e3=0;
R(ei;es)er = €3 R(ere3)er =0; R(ei;e3)es = ey (5.46)

R(ex;ez)er = 0;  R(exe3)er =eg; R(e2;e3)e3 = e



118

S. ZEREN AND A. YILDIZ

Again using (3.23) and (5.45)), we obtain

Fege = ( +De; rFege= ( +le+ eg;
Fe,@3 = €2 [ege1=0 Mee=0;
Fe,e3 = 0, e = €5z (5.47)
Fe€2 = (+1es ey FMees=( +1lex
Considering , we can see thatrg =0;(1 i 3),for =eand =0, = L

Hence M is a trans-Sasakian 3-manifold of type (0; 1) with respect to the Schouten-van

Kampen connection. Thus from (5.47)), we get

R(ee)er =
R(eie)es =
R(eie)e; =
R(exez)er =

R(ex;e3)e3 =

1+ 2 ey Rne)e= 1+ 2 ey

0; R(epeda=0 2 ?ey

0; R(epe)es=( 1 %+ ey (5.48)
0, R(ee)e=0+ 2 e

(1+ 2+ Pe

Now using (5.48), we see that the non-zero components of the Ricci tensor Ric with respect

to the Schouten-van Kampen connection as follows:

Ric(ei;el) = 2+2 2

Ric(e;e)= 2 2 2+2 2 Ric(ezgjes)= 2+2 2

Forany U;V 2 (M), we write

Thus we have

U = aie; + axe; + ages;

V =be; + pe; + zes:

(Cg;Y)+2SX;Y)+2g(X;Y)+2 (X)) (Y) = ( 2+2 2+ Dahy

+( 2 2242 %2+ + Haby

+( 242 2+ )aghy:

If =2 2 2and =2 2 then M admits an -Ricci soliton (; ; ;g ) with respect to the

Schouten-van Kampen connection:
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Finally we study Yamabe solitons on a trans-Sasakian 3-manifold with respect to the
Schouten-van Kampen connection. Assume that (M; X; ;g ) is a Yamabe soliton on a trans-

Sasakian 3-manifold with respect to the Schouten-van Kampen connection. From (1.3), we

can write
SEXOUV) == UiV (549
that is,
SOr UV ) +gUiryX)g= (= a(UiV). (550)
Putting X = in (5.50), we obtain ~= , which implies that the following:

Theorem 5.3. The scalar curvature ~ of a trans-Sasakian 3-manifold bearing a Yamabe

soliton (M; ; ;g ) with respect to the Schouten-van Kampen connection is equal to

So we give the followings:

Corollary 5.4. A trans-Sasakian 3-manifold bearing a Yamabe soliton (M; ; ;g ) with re-
spect to the Schouten-van Kampen connection is of constant scalar curvature with respect to

the Schouten-van Kampen connection.

Corollary 5.5. If a trans-Sasakian 3-manifold bearing a Yamabe soliton (M; ; ;g ) with
respect to the Schouten-van Kampen connection, then the Riemannian metric g is a Yamabe

metric.
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1. Introduction

In this eld, the notion of almost para-complex structure on a smooth manifold has been
studied, in the rst papers by Libermann, P. [9], Patterson, E. M.[LZ] until now, from several
di erent points of view. Moreover, the papers related to it have appeared many times in
a rather disperse way, and a survey of further results on para-complex geometry (including
para-Kahler geometry) can be found for instance in [2,[3,[5]. Also, other further signi ant
developments are due in some recent surveys![1} 8,]113], where some aspects concerning the
geometry of para-complex manifolds are presented on the tangent and cotangent bundles.
See alsol[[7 16,11, 1%, 16].

The main idea in this note consists in the modi cation of the Sasaki metric. First we
introduce a new metric called’ -Sasaki metric on the tangent bundleT M over a para-Kahler-
Norden manifold (M 2™;: g ). This new metric will lead us to interesting results. Afterward
we construct almost para-complex Norden structures on tangent bundle equipped with the
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' -Sasaki metric and investigate necessary and su cient conditions for these structures to
become para-Kahler-Norden, quasi-para-Kahler-Norden. Finally we characterize some prop-
erties of almost para-complex Norden structures in context of almost product Riemannian

manifolds.

2. Preliminaries

Let TM be the tangent bundle over anm-dimensional Riemannian manifold M ™; g) and
the natural projection :TM ! M. A local chart (U?Xi)i=ﬁ on M induces a local chart
( YU);x';y)i—g= ON TM. Let C! (M) (resp. C! (TM)) be the ring of real-valued C*
functions on M (resp. TM) and =L(M) (resp. =5(TM)) be the module overC! (M) (resp.
Cl (TM)) of C! tensor elds of type (r;s).

We have two complementary distributions on TM, the vertical distribution V and the

horizontal distribution H, de ned by :

@ .
Vixu) Ker(d (xu)) = fa'@ (xu)> a 2 Rg;

@, k@, .
Hoyuw = fa—jnx au { ——jxu); @ 2 Rg;
(x;u) @}A(x,u) u ij @yl(x,u) g
where (x;u) 2 TM, such that T,y TM = Hpeyy V(-
Let X = X' be a local vector eld on M. The vertical and the horizontal lifts of X

are de ned by

@
xV = xi = 2.1
ay (2.1)
Ho= xi= @ @
X X v X! f@x Y @yg (2.2)
For consequences, we have£)H = —7 and (@)V = @y, then (; y)I m Is a local

adapted frame onTTM.

Lemma 2.1. [18]Let (M;g) be a Riemannian manifold andR its tensor curvature, then for
all vector elds X;Y 2=3}(M) we have:

D) XY =Y (RO Y)W,

) XP5YYIp=(r xY)y,

3) XV;YV]p =0,
wherep=(x;u) 2 TM.

An almost product structure * on a manifold M is a (1;1) tensor eld on M such that

'2=idy,’ 6 idw (idy is the identity tensor eld of type (1 ;1) on M). The pair (M;’ )
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is called an almost product manifold.

A linear connectionr on (M;’ ) such that r ° =0 is said to be an almost product connec-
tion. There exists an almost product connection on every almost product manifold[4].

An almost para-complex manifold is an almost product manifold (M;’ ), such that the two
eigenbundlesTM* and TM associated to the two eigenvalues +1 and 1 of’ , respectively,
have the same rank. Note that the dimension of an almost paracomplex manifold is neces-
sarily even [3].

An almost para-complex Norden manifold (M 2™;": g ) is a real 2n-dimensional di erentiable
manifold M 2™ with an almost para-complex structure * and a Riemannian metric g such

that
agCxX;Y ) = 9(X'Y ), (2.3)

for all X;Y 2 =3(M), in this caseg is called a pure metric with respect to’ or para-Norden
metric (B-metric)[13].
A para-Kahler-Norden manifold is an almost para-complex Norden manifold (M 2™;”: g ) such

that ' is integrable i.er ° = 0 (B-manifold), where r is the Levi-Civita connection of g
[13,[186].

A Tachibana operator -+ :=3(M)!= $(M) applied to the pure metric g is given by

(- 9(X;Y;Z) = (X )a(Y;2))+ X(9(Y:Z )+ 9((Ly" )X;Z)

+o((Lz" )X Y); (2.4)

for all X;Y;Z 2=%(M) [17], whereLy denotes the Lie di erentiation with respect to Y.
In an almost para-complex Norden manifold, a para-Norden metriqy is called para-holomorphic

if
(- 9(X;Y;Z2) = 0; (2.5)

for all X;Y;Z 2 =3§(M)[I3].

A para-holomorphic Norden manifold is an almost para-complex Norden manifold 1 2™;"; g )
such that g is a para-holomorphic i.e - g=0.

In [13], Salimov and his collaborators showed that for an almost para-complex Norden man-

ifold, the condition g = 0 is equivalent to r ° = 0. By virtue of this point of view,
para-holomorphic Norden manifolds are similar to para-Kahler-Norden manifolds (For com-

plex version seel[8]).
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The purity conditions for atensor eld ! 2 = j(M ) with respect to the para-complex structure

given by
POX 15X2; i Xg) = (X3 X 25 1 Xg)= =1 (X1i Xz X q);

forall X1;X2;,  ;Xq2=3(M) [L3].
In [17], an operator - :=4(M)!= 8*1(M ) joined with * and applied to the pure tensor
eld !, given by

(DX X =Y )Xy X))+ Y (X 15 1 Xg)

+HH((Lx, )Y X S Xg v+ H((Xy s (Lxg )Y

for all Y;Xq1;X>; ' Xq 2 =(1)(M). If ! vanishes, then! is said to be almost para-
holomorphic.

It is well known that if ( M2™;": g ) is a para-Kahler-Norden manifold, the Riemannian cur-

vature tensor is pure [13], and

8

%ry(’Z) ='rvzZ
R(CY:Z) =R(Y;’Z)=R(Y;Z) ="'R (Y;2); (2.6)
R(CY;’Z ) = R(Y;2);

forall Y;Z2=3(M).
Let (M2™:" g ) be a non-integrable almost para-complex Norden manifold, if
vz 3T x7)Y;2) =0:

for all X;Y;Z 2 =}(M), where is the cyclic sum by three arguments, then the triple

(M2M:* g ) is a quasi-para-Kahler-Norden manifold [5, [10]. It is well known that

xvz X2 =00 CaRGYi2) =03 (2.7)

which was proven in [14].
3.’ -Sasaki metric

De nition 3.1.  Let (M2™:";g ) be a para-Kahler-Norden manifold. On the tangent bundle

TM, we de ne a’ -Sasaki metric notedg by

g X H ; yH )(x;u)

(2 g (XH;YV)(X;U) = 0;

x(X;Y);

KXY ),

3) g (X v ; YV)(x;u)
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whereX;Y 2=%}(M) and (x;u) 2 TM.

Lemma 3.1. Let (M2™;":g ) be a para-Kahler-Norden manifold, we have the following

(1) x"g (Y";zM) Xg(Y;2);

) XVg (YH;z") = o;

@) X"g (YV:Z¥) = g ((rxV)":z")+ g (YVi(r x2)Y):;
@ xVg (Y":z") = o;

for any X;Y;Z 2=3§(M), wherer denote the Levi-Civita connection of (M 2™;"; g ).

Theorem 3.1. Let (M?™;’;g ) be a para-Kahler-Norden manifold and (TM;g: ) its tangent
bundle equipped with the -Sasaki metric. If r (resp ) denote the Levi-Civita connection

of (M;qg) (resp(TM;g ) ), then we have:

1) Boon Yoy = (1) SR W)Y

@) (Bon )y = (1 x VD + SRCUY XM

@ (Bxv Yy = S(Re(uX IV,

(4) ('exV YV)(x;u)

0;

for all vector elds X;Y 2=3§(M) and (x;u) 2 TM, where R denote the curvature tensor of

(M2M:g).

The proof of Theorem[3.] follows directly from Kozul formula, Lemma[2.] and Lemma
B.1.

4. Some almost Para-complex Structures

4.1. We Consider the tensor eld J- 2=1(TM) by
8

< J- XH :(’X )H (48)
XV =X )V '

for all X 2=3(M).

Lemma 4.1. Let (M2™;’;g) be a para-Kahler-Norden manifold and (TM;g- ) its tangent
bundle equipped with the -Sasaki metric. The couple(TM;J- ) is an almost para-complex

manifold .
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Proof. By virtue of (4:8), we have
8
< IPXH = 3@ XM= 3 (XM = (X )T =) = X,

IZXV =3 (3 XY)= 3 (X)) = (X )Y =( X)V = XY,

forany X 2=3(M), then J2 = idty .

Let fEq; TEmiEm+1; ; Eomg be local frame of eigenvectors oM such that

'Ei=Ei{;'E m+i= Emsi, foralli=1m.
If z=2Z\EM + ZLJEY, then
JZ = Zi(E )" + Zy(E i)Y = Z1E! + Z3EY = Z,

i.e. TTM* = Span(E}; EH;EY; EYV):
Ifz=2zMER,  +ZMTEY, ., then
3Z=ZMCE me) + Z9CE me))V = Zha ERL ZPVEVL = Z,

ie. TTM = Span(EF.,; EYEY..: EY.):

Theorem 4.1. Let (M2™;:g) be a para-Kahler-Norden manifold, (TM;g- ) its tangent
bundle equipped with the -Sasaki metric and the almost para-complex structure): de ned

by @) The triple (TM;J: ;g ) is an almost para-complex Norden manifold.

Proof. For all X;Y 2=3(M), from (§:8) we have

(i) g (3 X"y

g (X ) Y™M)y=g(X;Y )= g%y )

g X"y )y=9g X3 Y,

(i) g (3 X" vY) g (X)) yVy=0=g X" YY)=g X";3 YY),

(i) g (3 XV;YY)

g (X )V;YY)=g(X'Y )= g(X;Y)

90" 2Y) =g (XV;(Y )V)= g (XV;3 YY)
Sinceg is pure with respect to’ , then g is pure with respectto J- .

Proposition 4.1. Let (M2™;’;g ) be a para-Kahler-Norden manifold, (TM;g- ) its tangent

bundle equipped with thé -Sasaki metric and the almost para-complex structure): de ned

by (@:8), then we get
1. (3 g)XH YR zH =0,
2. (3 0)xViyH,zW=o,
3. (3. 9)X"yVizhy=o0,
4. ( 3,9)(X"YH:zV) =0,
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5.( 3. 9)XV;yYVizH)=o0,
6. (3 9)XV;YH;zV)=0,
7.( 3 9)XMYVizV) =0,
8. (3 9)XxXV;yVizVy=o0,
for all X;Y;Z 2=3§(M).
Proof. We calculate Tachibana operator ;. applied to the pure metric g . This
operator is characterized by [24)), from Lemma([3.1 we have
L( 3 g)X™hyHzHy = (3 xMg (vH;zH)y xMg @ y";zH)
+g (Lywd)XH:ZH + g vYH: (L,nd )xH
= (X )g (Y™"z™) xMg (Y );zh)
+g Lynwd XM 3 (LyaxH)y;zH
+g YT L,nd X2 3 (Laxt)
= (X )a(Y:Z2) Xg(v:Z)
+g YT 0xO)P 3 [yRix )z
+g YR ZRex )" 3zt x ]
= ('X)o(Y;Z) Xg(Y;Z)+g[Y;'X 1 '[Y;X]Z
+g Y;[Z;X ] [ZX]
= ('X)g(Y;Z) Xg(Y;Z)+ g (Ly )X Z

+g Yi(Lz" )X

(" 9(XY;2Z):
Since M 2™;";g ) is a para-Kahler-Norden manifold, then ( * g)(X;Y;Z) = 0.
2:( 3.9)XViYHizW) = (3 xV)g (YH;z") xVg (3 YM:ZM)

+g (Lynd)XV;zZH +g YH; (Lyud )XV

X Wa (YH;z% xVg (Y H;z")
+g [Y" (X )V1 3 [yH;xV]zH
+g Y™ zZ9ex )Vl 3z xV]

= 0:
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3( 3 9)XMYYZ) = (3 xMg (YYV:zM)  xMg (3 YY;ZM)

+g (LyvJd)XH:zH +g YVi(Lynd )xH

g [YV;(X )1 JyVix"yz®
+g YVi[zRex )1 3z x ]

g YVi( R@EZXHu)Y +(R (Z;X)u)"

g R(Z;’X )u;’Y )+ g 'R (Z; X)u;'Y

Since the Riemann curvatureR of a para-Kahler-Norden manifold is pure, then

(3 9)X";vVizH) g R(Z;X)u;Y) + g R(Z; X)u;Y)

4( 3. 9)XTYnzZY) = (3 XM)g (v"ZY) XxFg @ Y"ZY)

+g (Lynd)XH:z2V +g YH (L,v3 )XH

g [YH(x)H" 3 yHixHizY

+g Y [zVix )P 3 zVixH

g ( RY;X)Hu)Y +(R (Y;X)u)V;zY

g(RCY;’X )u;’Z )+ g(’R (Y X)u;’Z )

g(R(Y; X)u; Z2) + g(R(Y; X)u;Z2)

The other formulas are obtained by a similar calculation.

Therefore, we have the following result.

Theorem 4.2. Let (M2™;’;g ) be a para-Kahler-Norden manifold, (TM;g- ) be its tangent
bundle equipped with theé -Sasaki metric and the almost para-complex structurel: de ned

by (#:8),then the triple (TM;J: ;g ) is a para-Kahler-Norden manifold.

Corollary 4.1. Let (M2™;”: g ) be a para-Kahler-Norden manifold, (TM;g ) be its tangent
bundle equipped with the -Sasaki metric and the almost para-complex structure): de ned

by @) then the triple (TM;J- ;g ) is a quasi-para-Kahler-Norden manifold.
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4.2. We Consider the tensor eld P 2 =3(TM) de ned by:

8
< P'XH

'

(X )"
(X )Y

(4.9)

for all X 2=3}(M), satis es the following:
1L.P = J.
2. g is pure with respect to P: .
3. pO = 30.

Therefore we have the following results.

Theorem 4.3. Let (M2™:";g ) be a para-Kahler-Norden manifold, (TM;g: ) be its tangent
bundle equipped with thé -Sasaki metric and the almost para-complex structurd® de ned

by @) then the triple (TM;P: ;g ) is a para-Kahler-Norden manifold.

4.3. We Consider the tensor eld Q- 2=1(TM) de ned by:
8
S QXM o=(x )V
QXY =X )"

(4.10)

for all X 2 =3(M).

Lemma 4.2. Let (M2™:".g) be a para-Kahler-Norden manifold and (TM;g ) its tangent
bundle equipped with theé -Sasaki metric. The couple(TM; Q- ) is an almost para-complex

manifold .

Proof. By virtue of (4:10), we have
8
S QXM =Q Q@ XM)= Q (X ))=( (X P = ) = xH;

Q*XV =Q (@ XV)=Q (X)) =X )V =(2X)V =XY;
for any X 2=3(M), then Q? = idty .

Let fEq; TEmiEm+1; i Eomg be local frame of eigenvectors oM such that

'Ei=Ei;’E m+i= Ems+i, foralli=1;m, then

TTM?®

Span(Ef' + EY; EN+EY;ERa  Efes GBS Edn);

TTM

Span(Ef EY; EN EY EfR. + ENes Ehn+ EXn):
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Theorem 4.4. Let (M2";;g) be a para-Kahler-Norden manifold, (TM;g ) its tangent
bundle equipped with the -Sasaki metric and the almost para-complex structure)- de ned
by (#:10). The * -Sasaki metric is never pure with respect toQ: i.e The triple (TM; Q- ;g )

is never an almost para-complex Norden manifold.

4.4, We Consider the tensor eld F- 2 =1(TM) by
8
S EXH o= (x)H

F XY =(X )V

(4.11)

forall X 2=3(M).

Lemma 4.3. Let (M2™:’;g ) be a para-Kahler-Norden manifold and (TM; g ) its tangent
bundle equipped with the -Sasaki metric. The couple(TM;F: ) is an almost para-complex

manifold .

Theorem 4.5. Let (M2™;:g) be a para-Kahler-Norden manifold, (TM;g- ) its tangent
bundle equipped with the -Sasaki metric and the almost para-complex structurd=- de ned

by @:11). The triple (TM;F: ;g ) is an almost para-complex Norden manifold.
Proof. With the same steps in the proof of Theoreni 41, we get the results.

Proposition 4.2. Let (M2™;";g ) be a para-Kahler-Norden manifold, (TM; g ) its tangent

bundle equipped with thé -Sasaki metric and the almost para-complex structurd= de ned

by (4:11)), then we get

1. (g o)Xt yHzHy=o0,
2. (g g)XV;YH;zHy =0,
3. (g g)XH;YV;ZzH)y=2g R(X;Z)Y;u),
4. (g g)XM YR ZV)=29 R(X;Y)Z;u),
5 (g g)XY;YV;ZH)=0,
6. (. g)XY;YH;zV)=0,
7. (R g)XHYVizVy=o,
8. (F g)XY;YV;ZzV)=0,

for all X;Y;Z 2=}§(M), whereR denote the curvature tensor of(M; g).

Proof. We calculate Tachibana operator . applied to the pure metric g . With

the same steps in the proof of Proposition 4ll, we get the results.
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Theorem 4.6. Let (M?™;’;g ) be a para-Kahler-Norden manifold, (TM;g: ) be its tangent
bundle equipped with thé -Sasaki metric and the almost para-complex structurd=- de ned

by (4:11)). The triple (TM;F: ;g ) is a para-Kahler-Norden manifold if and only if M is at.

Proof. Forall X;Y;Z 2=}(M)and h;k;I 2fH;V g

8
< g(R(X;Z)Y;u) =0

g(R(X;Y)Z;u) =0

(g o)Nxhykzh=0

) R =0:

Theorem 4.7. Let (M2™:";g ) be a para-Kahler-Norden manifold, (TM;g: ) be its tangent
bundle equipped with thé -Sasaki metric and the almost para-complex structurd= de ned

by ). The triple (TM;F: ;g ) is a quasi-para-kahler-Norden manifold.
Proof. For all X, €;22=}(TM),
el 39 JREE)=( 3. 9)REE)+( 5. ¢)NEER)+( 5. 9)EXYP)

By virtue of Proposition 4:1 we have

: H.owH.7HY — n-

l'xH;YH;zH( J 9)I)XTYTZz7) = 0;

: (3.9)XYV;YH:ZH) = 2g(R(Y:Z)X;u) +29(R(Z; Y)X;u) = 0;
XViyH zH

: V.wyV.7HY — A.

3.XV;YV;ZH( J o)XY zh) = 0

:XV;YV;ZV( J: g )XV;yV;zVy = o;

then, (TM;J: ;g ) is a quasi-para-Kahler-Norden manifold.

4.5. We Consider the tensor eld K: 2 =3(TM) de ned by:
8
S K XH o =X )H

4.12
K. XV (X )V (@12

for all X 2=}(M), satis es the following:
1. K = F'.
2. g is pure with respect toK: .
3. k.9 = F 0.

Therefore we have the following results.
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Theorem 4.8. Let (M?™;’;g ) be a para-Kahler-Norden manifold, (TM;g: ) be its tangent

bundle equipped with thé -Sasaki metric and the almost para-complex structurd- de ned

by (#:12), then we have
1. The triple (TM;K: ;g ) is is a quasi-para-Kahler-Norden manifold.
2. The triple (TM;K - ;g ) is a para-Kahler-Norden manifold if and only if M is at.

4.6. Now consider the almost product structure F- de ned by (). We de ne a tensor
eld S of type (1;2) and linear connection® on TM by,

%('eF,‘zF, e +F (E,F)R  F (BeF)? (4.13)

Fe¥® SO #): (4.14)

S(XR; ¥)

b®

for all %, € 2 =}(TM), where € is the Levi-Civita connection of (TM; g ) given by Theorem
. P is an almost product connection onTM (see [4, p.151] for more details).

Lemma 4.4. Let (M2™:’;g ) be a para-Kahler-Norden manifold, (TM;g- ) be its tangent
bundle equipped with the -Sasaki metric and the almost product structureF de ned by
(@:17). Then tensor eld S is as follows,

(1) SXHYH) = JROGY )Y,

(@) S(KHIYY) = SROUY X,

3) S(XViY™M) = (R(u; X )Y)",

(4) s(XV;yV)=o0,

for all X;Y 2=3(M).

Proof. (1) Using (4:11)) and (4:13), we have

S(x ;v H) (Br yuF )X+ Fo (ByuF )X F (ByuF)Y"

= N

= B (X +F (B wX™) B Byu (X )"

N

ByuXH+F €,u(Y ) +€ynYH

= 20 XON SRV WY (o X"
SOR (YO0 +(C 0y X ) + 2(R (VX )Y
(v X)P+ SROGOOWY 1Y )

%(’R XY Hu)Y +(r xY)H %(R(X;Y)u)v :
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Using we have
H.yH 1 v
S(X™; Y™ = é(R(X;Y u)¥:

(2) By a similar calculation to (1), we have

s(xXH;vY) (Be yvFOXP+Fo (ByFOXP B (ByuF)YY

NI NI

oy w(X )T B (Bey wXP) F Byv (X )"
BywX® F oyn(Y )V +BynYV
. }(R(’U"Y )X )M+ }(’R Cu;y )X)H
2 2 ’ 2 ’
+%(’R Cu;Y )X )H %(R(’U;Y )X)H
Crxy)V+ %(’R Cu'y )X)M
H(r V)Y + SRCY XM

Using we get
s(xH:yV) = %(R(’U;Y )X )HH:
The other formulas are obtained by a similar calculation.

Theorem 4.9. Let (M2™:";g ) be a para-Kahler-Norden manifold, (TM;g: ) be its tangent
bundle equipped with the -Sasaki metric and the almost product structureF: de ned by
). Then the almost product connection® de ned by ) is as follows,

(1) Pou Y™ = (rxV)T;
@ PxuY¥ = (rxYV)Y;
(3) PyvYH = g(R(’u;X W)
4) byvYV = 0;
for all X;Y 2=3(M).
Proof. The proof of Theorem[49 follows directly from Theorem[31], Lemma[44] and

formula (§:14).

Lemma 4.5. Let (M2M:"g) be a para-Kahler-Norden manifold, (TM;g- ) be its tangent

bundle equipped with the -Sasaki metric and the almost product structureF de ned by
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(:11) and b denote the torsion tensor of®, then we have:

@) PxH;vH)y

(ROGY)Hu)Y;

) PxH;yY)

3 Ty .
SROUY )X)H;

@) PxV;yH)

3 Ty .
SROUX V),

@) PxV;yY)

0;
for all X;Y 2=3(M).

Proof. The proof of Lemma[45| follows directly from Lemma[4:4 and formula

PR, #) be® Do R ¥

S(¥;%) S(% ¥)

for all ;¢ 2=3(TM).

From Lemmal[4£5 we obtain

Theorem 4.10. Let (M2™:";g ) be a para-Kahler-Norden manifold, (TM;g- ) be its tangent
bundle equipped with the -Sasaki metric and the almost product structureF: de ned by

), then P is symmetric if and only if M is at.
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