International Journal of Maps in Mathematics

Volume 5, Issue 1, 2022, Pages:29-40
ISSN: 2636-7467 (Online)
www.journalmim.com

FRENET CURVES IN 3-DIMENSIONAL LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS

MÜSLÜM AYKUT AKGÜN(D)

Abstract

In this paper, we give some characterizations of Frenet curves in 3-dimensional Lorentzian concircular structure manifolds $\left((L C S)_{3}\right.$ manifolds). We define Frenet equations and the Frenet elements of these curves. We also obtain the curvatures of non-geodesic Frenet curves on $(L C S)_{3}$ manifolds. Finally we give some theorems, corollaries and examples for these curves.

Keywords: Lorentzian manifold, Concircular structure, Frenet curve 2010 Mathematics Subject Classification: 53D10, 53A04.

1. Introduction

The differential geometry of curves in manifolds investigated by several authors. Especially the curves in contact and para-contact manifolds drew attention and studied by the authors. B. Olszak[17], derived the conditions for an a.c.m structure on M to be normal and point out some of their consequences. B. Olszak completely characterized the local nature of normal a.c.m. structures on M by giving suitable examples. Moreover B. Olszak gave some restrictions on the scalar curvature in contact metric manifolds which are conformally flat or of constant ϕ-sectional curvature in [16].
J. Welyczko [22], generalized some of the results for Legendre curves in three dimensional normal a.c.m. manifolds, especially, quasi-Sasakian manifolds. J. Welyczko [23], studied

[^0]Müslüm Aykut Akgün; muslumakgun@adiyaman.edu.tr; https://orcid.org/0000-0002-8414-5228
the curvatures of slant Frenet curves in three-dimensional normal almost paracontact metric manifolds.
B. E. Acet and S. Y. Perktaş [1] obtained the curvatures of Legendre curves in 3-dimensional (ε, δ) trans-Sasakian manifolds. Ji-Eun Lee, defined Lorentzian cross product in a threedimensional almost contact Lorentzian manifold and proved that $\frac{\kappa}{\tau-1}=$ cons. along a Frenet slant curve in a Sasakian Lorentzian three-manifold. Furthermore, Ji-Eun Lee proved that γ is a slant curve if and only if M is Sasakian for a contact magnetic curve γ in contact Lorentzian 3-manifold M in [12]. Ji-Eun Lee, also gave some characterizations for the generalized Tanaka-Webster connection in a contact Lorentzian manifold in [13.
A. Yıldirım [25] obtained the Frenet apparatus for Frenet curves on three dimensional normal almost contact manifolds and characterized some results for these curves.
U.C.De and K.De [10] studied Lorentzian Trans-Sasakian and conformally flat Lorentzian Trans-Sasakian manifolds.

The LCS manifolds was introduced by [19] with an example. A. A. Shaikh[20] studied various types of $(L C S)_{n}$-manifolds and proved that in such a manifold the Ricci operator commutes with the structure tensor φ.

In this framework, the paper is organized in the following way. Section 2 with two subsections, we give basic definitions of a $(L C S)_{n}$-manifolds manifold. In the second subsection we give the Frenet-Serret equations of a curve in $(L C S)_{3}$ manifold. We give finally the Frenet elements of a Frenet curve in $(L C S)_{3}$ manifold and give theorems, corollaries and examples for these curves in the third and fourth sections.

2. Preliminaries

2.1. Lorentzian Concircular Structure Manifolds. A Lorentzian manifold of dimension n is a doublet (\bar{N}, \bar{g}), where \bar{N} is a smooth connected para-compact Hausdorff manifold of dimension n and \bar{g} is a Lorentzian metric, that is, \bar{N} admits a smooth symmetric tensor field g of type $(0,2)$ such that for each point $p \in \bar{N}$ the tensor $\bar{g}_{p}: T_{p} \bar{N} \times T_{p} \bar{N} \longrightarrow R$ is a non degenerate inner product of signature $(-,+, \ldots,+)$, where $T_{p} \bar{N}$ denotes the tangent space of \bar{N} at p and R is the real number space. A non zero vector field $V \in T_{p} \bar{N}$ is called spacelike (resp.non-spacelike, null and timelike) if it satisfies $\bar{g}_{p}(V, V)>0$ (resp., $\leq 0,=,<0$). 15]

Definition 2.1. In a Lorentzian manifold (\bar{N}, \bar{g}) a vector field w is defined by

$$
\begin{equation*}
\bar{g}(U, \rho)=A(U) \tag{2.1}
\end{equation*}
$$

INT. J. MAPS MATH. (2022) 5(1):29-40 / FRENET CURVES IN 3-DIMENSIONAL LCS MANIFOLDS for any $U \in \chi(\bar{N})$ is said to be a concircular vector field if

$$
\begin{equation*}
\left(\nabla_{U} A\right)(V)=\alpha\{\bar{g}(U, V)+w(U) w(V)\} \tag{2.2}
\end{equation*}
$$

where α is a non-zero scalar and w is a closed 1-form.[24]

If a Lorentzian manifold \bar{N} admits a unit timelike concircular vector field ξ, called generator of the manifold, then we have

$$
\begin{equation*}
\bar{g}(\xi, \xi)=-1 \tag{2.3}
\end{equation*}
$$

Since ξ is the unit concircular vector field on \bar{N}, there exists a non-zero 1 -form η such that

$$
\begin{equation*}
\bar{g}(U, \xi)=\eta(U) \tag{2.4}
\end{equation*}
$$

which satisfies the following equation

$$
\begin{equation*}
\left(\nabla_{U} \eta\right)(V)=\alpha\{\bar{g}(U, V)+\eta(U) \eta(V)\}, \quad(\alpha \neq 0) \tag{2.5}
\end{equation*}
$$

for all vector fields U and V , where ∇ gives the covariant differentiation with respect to the Lorentzian metric \bar{g} and α is a non-zero scalar function satisfies

$$
\begin{equation*}
\left(\nabla_{U} \alpha\right)=U \alpha=d \alpha(U)=\rho \eta(U) \tag{2.6}
\end{equation*}
$$

where ρ is a certain scalar function defined by $\rho=-(\xi \alpha)$. If we take

$$
\begin{equation*}
\varphi U=\frac{1}{\alpha} \nabla_{U} \xi \tag{2.7}
\end{equation*}
$$

then with the help of $(2.3),(2.4)$ and (2.6), we can find

$$
\begin{equation*}
\varphi U=U+\eta(U) \xi \tag{2.8}
\end{equation*}
$$

which shows that φ is a tensor field of type $(1,1)$, called the structure tensor of the manifold \bar{N}. Hence the Lorentzian manifold \bar{N} of class C^{∞} equipped with a unit timelike concircular vector field ξ, its associated 1 -form η and $(1,1)$ tensor field φ is said to be a Lorentzian concircular structure manifold (i.e. $(L C S)_{n}$ manifold) 19 . Moreover, if $\alpha=1$, then we have the LP-Sasakian structure of Matsumoto[14]. So we can say the generalization of LP-Sasakian manifold gives us the $(L C S)_{n}$ manifold. It is noteworthy to mention that LCS-manifold is invariant under a conformal change whereas LP-Sasakian structure is not so 18 . In $(L C S)_{3}$ manifolds, the following relations hold [19]

$$
\begin{array}{r}
\varphi^{2} U=U+\eta(U) \xi, \quad \eta(\xi)=-1 \tag{2.9}\\
\varphi(\xi)=0, \quad \eta(\varphi U)=0
\end{array}
$$

and

$$
\begin{equation*}
\bar{g}(\varphi U, \varphi V)=\bar{g}(U, V)+\eta(U) \eta(V) . \tag{2.10}
\end{equation*}
$$

2.2. Frenet Curves. Let $\zeta: I \rightarrow \bar{N}$ be a unit speed curve in $(L C S)_{3}$ manifold \bar{N} such that ζ^{\prime} satisfies $\bar{g}\left(\zeta^{\prime}, \zeta^{\prime}\right)=\varepsilon_{1}=\mp 1$. The constant ε_{1} is called the casual character of ζ. The constants ε_{2} and ε_{3} defined by $\bar{g}(n, n)=\varepsilon_{2}$ and $\bar{g}(b, b)=\varepsilon_{3}$ and called the second casual character and third casual character of ζ, respectively. Thus we $\varepsilon_{1} \varepsilon_{2}=-\varepsilon_{3}$.
A unit speed curve ζ is said to be a spacelike or timelike if its casual character is 1 or -1 , respectively. A unit speed curve ζ is said to be a Frenet curve if $\bar{g}\left(\zeta^{\prime}, \zeta^{\prime}\right) \neq 0$. A Frenet curve ζ admits an orthonormal frame field $\left\{t=\zeta^{\prime}, n, b\right\}$ along ζ. Then the Frenet-Serret equations given as follows:

$$
\begin{align*}
\nabla_{\zeta^{\prime}} t & =\varepsilon_{2} \kappa n \\
\nabla_{\zeta^{\prime}} n & =-\varepsilon_{1} \kappa t-\varepsilon_{3} \tau b \tag{2.11}\\
\nabla_{\zeta^{\prime}} b & =\varepsilon_{2} \tau n
\end{align*}
$$

where $\kappa=\left|\nabla_{\zeta^{\prime}} \zeta^{\prime}\right|$ is the geodesic curvature of ζ and τ is geodesic torsion [12]. The vector fields t, n and b are called the tangent vector field, the principal normal vector field and the binormal vector field of ζ, respectively.

If the geodesic curvature of the curve ζ vanishes, then the curve is called a geodesic curve. If $\kappa=$ cons. and $\tau=0$, then the curve is called a pseudo-circle and pseudo-helix if the geodesic curvature and torsion are constant.

A curve in a three dimensional Lorentzian manifold is a slant curve if the tangent vector field of the curve has constant angle with the Reeb vector field,i.e. $\eta\left(\zeta^{\prime}\right)=-\bar{g}\left(\zeta^{\prime}, \xi\right)=\cos \theta=$ constant. If $\eta\left(\zeta^{\prime}\right)=-\bar{g}\left(\zeta^{\prime}, \xi\right)=0$, then the curve ζ is called a Legendre curve 12 .

3. Main Results

In this section we consider a $(L C S)_{3}$ manifold \bar{N}. Let $\zeta: I \rightarrow \bar{N}$ be a Frenet curve with the geodesic curvature $\kappa \neq 0$, given with the arc-parameter s and $\bar{\nabla}$ be the Levi-Civita connection on \bar{N}. From the basis $\left(\zeta^{\prime}, \varphi \zeta^{\prime}, \xi\right)$ we obtain an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ which
satisfy the equations

$$
\begin{align*}
& e_{1}=\zeta^{\prime} \\
& e_{2}=\frac{\varepsilon_{2} \varphi \zeta^{\prime}}{\sqrt{\varepsilon_{1}+\rho^{2}}}, \tag{3.12}\\
& e_{3}=\varepsilon_{2} \frac{\varepsilon_{1} \xi-\rho \zeta^{\prime}}{\sqrt{\varepsilon_{1}+\rho^{2}}}
\end{align*}
$$

where

$$
\begin{equation*}
\eta\left(\zeta^{\prime}\right)=\bar{g}\left(\zeta^{\prime}, \xi\right)=\rho . \tag{3.13}
\end{equation*}
$$

Then if we write the covariant differentiation of ζ^{\prime} as

$$
\begin{equation*}
\bar{\nabla}_{\zeta^{\prime}} e_{1}=\nu e_{2}+\mu e_{3} \tag{3.14}
\end{equation*}
$$

such that

$$
\begin{equation*}
\nu=\bar{g}\left(\bar{\nabla}_{\zeta^{\prime}} e_{1}, e_{2}\right) \tag{3.15}
\end{equation*}
$$

is a certain function. Moreover we obtain ν by

$$
\begin{equation*}
\mu=\bar{g}\left(\bar{\nabla}_{\zeta^{\prime}} e_{1}, e_{3}\right)=\varepsilon_{2}\left(\frac{\rho^{\prime}}{\sqrt{\varepsilon_{1}+\rho^{2}}}-\varepsilon_{1} \alpha \sqrt{\varepsilon_{1}+\rho^{2}}\right) \tag{3.16}
\end{equation*}
$$

where $\rho^{\prime}(s)=\frac{d \rho(\zeta(s))}{d s}$. Then we find

$$
\begin{equation*}
\bar{\nabla}_{\zeta^{\prime}} e_{2}=-\nu e_{1}+\left(\varepsilon_{3} \alpha+\frac{\varepsilon_{1} \rho \nu}{\sqrt{\varepsilon_{1}+\rho^{2}}}\right) e_{3} \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{\zeta^{\prime}} e_{3}=-\mu e_{1}-\left(\varepsilon_{3} \alpha+\frac{\varepsilon_{1} \rho \nu}{\sqrt{\varepsilon_{1}+\rho^{2}}}\right) e_{2} \tag{3.18}
\end{equation*}
$$

The fundamental forms of the tangent vector ζ^{\prime} on the basis of the equation (3.12) is

$$
\left[\omega_{i j}\left(\zeta^{\prime}\right)\right]=\left(\begin{array}{ccl}
0 & \nu & \mu \tag{3.19}\\
-\nu & 0 & \varepsilon_{3} \alpha+\frac{\varepsilon_{1} \rho \nu}{\sqrt{\varepsilon_{1}+\rho^{2}}} \\
-\mu & -\varepsilon_{3} \alpha-\frac{\varepsilon_{1} \rho \nu}{\sqrt{\varepsilon_{1}+\rho^{2}}} & 0
\end{array}\right)
$$

and the Darboux vector connected to the vector ζ^{\prime} is

$$
\begin{equation*}
\omega\left(\zeta^{\prime}\right)=\left(\varepsilon_{3} \alpha+\frac{\varepsilon_{1} \rho \nu}{\sqrt{\varepsilon_{1}+\rho^{2}}}\right) e_{1}-\mu e_{2}+\nu e_{3} \tag{3.20}
\end{equation*}
$$

So we can write

$$
\begin{equation*}
\bar{\nabla}_{\zeta^{\prime}} e_{i}=\omega\left(\zeta^{\prime}\right) \wedge \varepsilon_{i} e_{i} \quad(1 \leq i \leq 3) \tag{3.21}
\end{equation*}
$$

Thus, for any vector field $Z=\sum_{i=1}^{3} \theta^{i} e_{i} \in \chi(\bar{N})$ strictly dependent on the curve ζ on \bar{N} and we have the following equation

$$
\begin{equation*}
\bar{\nabla}_{\zeta^{\prime}} Z=\omega\left(\zeta^{\prime}\right) \wedge Z+\sum_{i=1}^{3} \varepsilon_{i} e_{i}\left[\theta^{i}\right] e_{i} \tag{3.22}
\end{equation*}
$$

3.1. Frenet Elements of ζ. Let a curve $\zeta: I \rightarrow \bar{N}$ be a Frenet curve with the geodesic curvature $\kappa \neq 0$, given with the arc parameter s and the elements $\{t, n, b, \kappa, \tau\}$. The Frenet elements of the curve ζ can be calculated as above:

If we consider the equation (3.14), then we get

$$
\begin{equation*}
\varepsilon_{2} \kappa n=\bar{\nabla}_{\zeta^{\prime}} e_{1}=\nu e_{2}+\mu e_{3} . \tag{3.23}
\end{equation*}
$$

If we consider (3.16) and (3.23) we find

$$
\begin{equation*}
\kappa=\sqrt{\nu^{2}+\left(\frac{\rho^{\prime}}{\sqrt{\varepsilon_{1}+\rho^{2}}}-\varepsilon_{1} \alpha \sqrt{\varepsilon_{1}+\rho^{2}}\right)^{2}} \tag{3.24}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
\bar{\nabla}_{\zeta^{\prime} n} & =\left(\frac{\nu}{\varepsilon_{2} \kappa}\right)^{\prime} e_{2}+\frac{\nu}{\varepsilon_{2} \kappa} \nabla_{\zeta^{\prime}} e_{2}+\left(\frac{\mu}{\varepsilon_{2} \kappa}\right)^{\prime} e_{3}+\frac{\mu}{\varepsilon_{2} \kappa} \nabla_{\zeta^{\prime}} e_{3} \tag{3.25}\\
& =-\varepsilon_{1} \kappa t-\varepsilon_{3} \tau B .
\end{align*}
$$

By means of the equation (3.17) and (3.18) we find

$$
\begin{align*}
-\varepsilon_{3} \tau B & =\left[\left(\frac{\nu}{\varepsilon_{2} \kappa}\right)^{\prime}-\frac{\mu}{\varepsilon_{2} \kappa}\left(\varepsilon_{3} \alpha+\frac{\varepsilon_{1} \rho \nu}{\sqrt{\varepsilon_{1}+\rho^{2}}}\right)\right] e_{2} \tag{3.26}\\
& +\left[\left(\frac{\mu}{\varepsilon_{2} \kappa}\right)^{\prime}+\frac{\nu}{\varepsilon_{2} \kappa}\left(\varepsilon_{3} \alpha+\frac{\varepsilon_{1} \rho \nu}{\sqrt{\varepsilon_{1}+\rho^{2}}}\right)\right] e_{3}
\end{align*}
$$

By a direct computation we find following

$$
\begin{equation*}
\left[\left(\frac{\nu}{\varepsilon_{2} \kappa}\right)^{\prime}\right]^{2}+\left[\left(\frac{\mu}{\varepsilon_{2} \kappa}\right)^{\prime}\right]^{2}=\left[-\left(\frac{\nu}{\varepsilon_{2} \kappa}\right)^{\prime} \frac{\mu}{\varepsilon_{2} \kappa}+\frac{\nu}{\varepsilon_{2} \kappa}\left(\frac{\mu}{\varepsilon_{2} \kappa}\right)^{\prime}\right]^{2} \tag{3.27}
\end{equation*}
$$

Taking the norm of the last equation by using (3.26) and if we consider the equations (3.16) and (3.27) in (3.26) we obtain

$$
\begin{equation*}
\tau=\left|\varepsilon_{3} \alpha+\frac{\varepsilon_{1} \rho \nu}{\sqrt{\varepsilon_{1}+\rho^{2}}}-\sqrt{\left[\left(\frac{\nu}{\varepsilon_{2} \kappa}\right)^{\prime}\right]^{2}+\left[\left(\frac{\varepsilon_{2}\left(\frac{\rho^{\prime}}{\sqrt{\varepsilon_{1}+\rho^{2}}}-\varepsilon_{1} \alpha \sqrt{\varepsilon_{1}+\rho^{2}}\right)}{\kappa}\right)^{\prime}\right]^{2}}\right| \tag{3.28}
\end{equation*}
$$

Moreover we can write the Frenet vector fields of ζ as in the following theorem

Theorem 3.1. Let \bar{N} be a $(L C S)_{3}$ manifold and ζ be a Frenet curve on \bar{N}. The Frenet vector fields t, n and b are in the form of

$$
\begin{align*}
t & =\zeta^{\prime}=e_{1} \\
n & =\frac{\nu}{\varepsilon_{2} \kappa} e_{2}+\frac{\mu}{\varepsilon_{2} \kappa} e_{3} \tag{3.29}\\
b & =-\frac{1}{\varepsilon_{3} \tau}\left[\left(\frac{\nu}{\varepsilon_{2} \kappa}\right)^{\prime}-\frac{\mu}{\varepsilon_{2} \kappa}\left(\varepsilon_{3} \alpha+\frac{\varepsilon_{1} \rho \nu}{\sqrt{\varepsilon_{1}+\rho^{2}}}\right)\right] e_{2} \\
& -\frac{1}{\varepsilon_{3} \tau}\left[\left(\frac{\mu}{\varepsilon_{2} \kappa}\right)^{\prime}+\frac{\nu}{\varepsilon_{2} \kappa}\left(\varepsilon_{3} \alpha+\frac{\varepsilon_{1} \rho \nu}{\sqrt{\varepsilon_{1}+\rho^{2}}}\right)\right] e_{3}
\end{align*}
$$

Note that

$$
\begin{align*}
\xi & =\varepsilon_{1} \rho t-\frac{\mu \sqrt{\varepsilon_{1}+\rho^{2}}}{\kappa} n \tag{3.30}\\
& -\frac{\sqrt{\varepsilon_{1}+\rho^{2}}}{\varepsilon_{3} \tau}\left[\left(\frac{\mu}{\varepsilon_{2} \kappa}\right)^{\prime}+\frac{\nu}{\varepsilon_{2} \kappa}\left(\varepsilon_{3} \alpha+\frac{\varepsilon_{1} \rho \nu}{\sqrt{\varepsilon_{1}+\rho^{2}}}\right)\right] b
\end{align*}
$$

Let ζ be a non-geodesic Frenet curve given with the arc-parameter s in $(L C S)_{3}$ manifold \bar{N}. So one can state the above theorems.

Theorem 3.2. Let \bar{N} be a $(L C S)_{3}$ manifold and ζ be a Frenet curve on \bar{N}. ζ is a slant curve $\left(\rho=\eta\left(\zeta^{\prime}\right)=\cos \theta=\right.$ cons.) on \bar{N} if and only if the Frenet elements $\{t, n, b, \kappa, \tau\}$ of ζ are as follows

$$
\begin{align*}
t & =e_{1}=\zeta^{\prime} \\
n & =e_{2}=\frac{\varepsilon_{2} \varphi \zeta^{\prime}}{\sqrt{\varepsilon_{1}+\cos ^{2} \theta}}, \\
b & =e_{3}=\varepsilon_{2} \frac{\varepsilon_{1} \xi-\cos \theta \zeta^{\prime}}{\sqrt{\varepsilon_{1}+\cos ^{2} \theta}} \tag{3.31}\\
\kappa & =\sqrt{\nu^{2}+\alpha^{2}\left(\varepsilon_{1}+\cos ^{2} \theta\right)} \\
\tau & =\left|\varepsilon_{3} \alpha+\frac{\varepsilon_{1} \cos \theta \nu}{\sqrt{\varepsilon_{1}+\cos ^{2} \theta}}-\sqrt{\left[\left(\frac{\nu}{\varepsilon_{2} \kappa}\right)^{\prime}\right]^{2}+\left[\left(\frac{\alpha \sqrt{\varepsilon_{1}+\cos ^{2} \theta}}{\kappa}\right)^{\prime}\right]^{2}}\right| .
\end{align*}
$$

Proof. Let the curve ζ be a slant curve in $(L C S)_{3}$ manifold \bar{N}. If we take account the condition $\rho=\eta\left(\zeta^{\prime}\right)=\cos \theta=$ constant in the equations (3.12), (3.24) and (3.28) we find (3.31). If the equations in (3.31) hold, from the definition of slant curves it is obvious that the curve ζ is a slant curve.

Corollary 3.1. Let \bar{N} be $a(L C S)_{3}$ manifold and ζ be a slant curve on \bar{N}. If the geodesic curvature κ of the curve ζ is non-zero constant, then the geodesic torsion of ζ is $\tau=\left|\left(\varepsilon_{3} \alpha+\varepsilon_{1} \frac{\cos \theta \nu}{\sqrt{\varepsilon_{1}+\cos ^{2} \theta}}\right)\right|$ and ζ is a pseudo-helix on \bar{N}.

Corollary 3.2. Let \bar{N} be a $(L C S)_{3}$ manifold and ζ be a slant curve on \bar{N}. If the geodesic curvature κ of the curve ζ is not constant and the geodesic torsion of ζ is $\tau=0$ then ζ is a plane curve on \bar{N} and function ν satisfies the equation

$$
\begin{equation*}
\nu=\int\left(c_{1}+c_{2} \nu\right) \kappa^{2} d s \tag{3.32}
\end{equation*}
$$

where $c_{1}=\frac{\varepsilon_{3}}{\sqrt{\varepsilon_{1}+\cos ^{2} \theta}}$ and $c_{2}=\frac{\varepsilon_{1} \cos \theta}{\alpha\left(\varepsilon_{1}+\cos ^{2} \theta\right)}$.
Theorem 3.3. Let \bar{N} be a $(L C S)_{3}$ manifold and ζ is a Frenet curve on \bar{N}. ζ is a spacelike Legendre curve $\left(\rho=\eta\left(\zeta^{\prime}\right)=0\right)$ in this manifold if and only if the Frenet elements $\{t, n, b, \kappa, \tau\}$ of ζ are as follows

$$
\begin{align*}
t & =e_{1}=\zeta^{\prime} \\
n & =e_{2}=\varepsilon_{2} \varphi \zeta^{\prime} \\
b & =e_{3}=-\varepsilon_{3} \xi \tag{3.33}\\
\kappa & =\sqrt{\nu^{2}+\alpha^{2}} \\
\tau & =\left|\varepsilon_{3} \alpha-\sqrt{\left[\left(\frac{\nu}{\varepsilon_{2} \kappa}\right)^{\prime}\right]^{2}+\alpha^{2}\left[\frac{\kappa^{\prime}}{\kappa^{2}}\right]^{2}}\right|
\end{align*}
$$

Proof. Let the curve ζ be a Legendre curve in $(L C S)_{3}$ manifold \bar{N}. If we take account the condition $\rho=\eta\left(\zeta^{\prime}\right)=0$ in the equations (3.12), (3.24) and (3.28) we find (3.33). If the equations in (3.33) hold, from the definition of Legendre curves it is obvious that the curve ζ is a Legendre curve on \bar{N}.

Corollary 3.3. Let the curve ζ is a Legendre curve in $(L C S)_{3}$ manifold \bar{N}. If the geodesic curvature κ of the curve ζ is non-zero constant, then the geodesic torsion of ζ is $\tau=0$ and ζ is a plane curve on \bar{N}.

4. Examples

Let \bar{N} be the 3 -dimensional manifold given

$$
\begin{equation*}
\bar{N}=\left\{(x, y, z) \in \Re^{3}, z \neq 0\right\} \tag{4.34}
\end{equation*}
$$ where ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) denote the standart co-ordinates in \Re^{3}. Then

$$
\begin{equation*}
E_{1}=e^{z}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right), \quad E_{2}=e^{z} \frac{\partial}{\partial y}, E_{3}=\frac{\partial}{\partial z} \tag{4.35}
\end{equation*}
$$

are linearly independent of each point of \bar{N}. Let g be the Lorentzian metric tensor defined by

$$
\begin{array}{r}
\bar{g}\left(E_{1}, E_{1}\right)=\bar{g}\left(E_{2}, E_{2}\right)=1, \quad \bar{g}\left(E_{3}, E_{3}\right)=-1 \tag{4.36}\\
\bar{g}\left(E_{i}, E_{j}\right)=0, \quad i \neq j
\end{array}
$$

for $i, j=1,2,3[2]$. Let η be the 1 -form defined by $\eta(Z)=\bar{g}\left(Z, E_{3}\right)$ for any $Z \in \Gamma(T \bar{N})$. Let φ be the $(1,1)$-tensor field defined by

$$
\begin{equation*}
\varphi E_{1}=E_{1}, \quad \varphi E_{2}=E_{2}, \quad \varphi E_{3}=0 \tag{4.37}
\end{equation*}
$$

Then using the condition of the linearity of φ and \bar{g}, we obtain $\eta\left(E_{3}\right)=-1$,

$$
\begin{array}{r}
\varphi^{2} Z=Z+\eta(Z) E_{3} \tag{4.38}\\
\bar{g}(\varphi Z, \varphi W)=\bar{g}(Z, W)+\eta(Z) \eta(W)
\end{array}
$$

for all $Z, W \in \Gamma(T \bar{N})$. Thus for $\xi=E_{3},(\varphi, \xi, \eta, \bar{g})$ defines a Lorentzian paracontact structure on \bar{N}.

Now, let ∇ be the Levi-Civita connection with respect to the Lorentzian metric \bar{g}. Then we obtain

$$
\begin{equation*}
\left[E_{1}, E_{2}\right]=-e^{z} E_{2}, \quad\left[E_{1}, E_{3}\right]=-E_{1}, \quad\left[E_{2}, E_{3}\right]=-E_{2} \tag{4.39}
\end{equation*}
$$

If we use the Koszul formulae for the Lorentzian metric tensor \bar{g}, we can easily calculate the covariant derivations as follows:

$$
\begin{array}{r}
\nabla_{E_{1}} E_{1}=-E_{3}, \quad \nabla_{E_{2}} E_{1}=e^{z} E_{2}, \quad \nabla_{E_{1}} E_{3}=-E_{1} \\
\nabla_{E_{2}} E_{3}=-E_{2}, \quad \nabla_{E_{2}} E_{2}=-e^{z} E_{1}-E_{3} \tag{4.40}\\
\nabla_{E_{1}} E_{2}=\nabla_{E_{3}} E_{1}=\nabla_{E_{3}} E_{2}=\nabla_{E_{3}} E_{3}=0
\end{array}
$$

From the about represantations, one can easily see that $(\varphi, \xi, \eta, \bar{g})$ is a $(L C S)_{3}$ structure on \bar{N}, that is, \bar{N} is an $(L C S)_{3}$-manifold with $\alpha=-1$ and $\rho=0$.

Example 4.1. Let β be a spacelike Legendre curve in the $(L C S)_{3}$ manifold \bar{N} and defined as

$$
\begin{aligned}
\beta: I & \rightarrow \bar{N} \\
s & \rightarrow \beta(s)=\left(s^{2}, s^{2}, \ln 2\right),
\end{aligned}
$$

where the curve β parametrized by the arc length parameter t. If we differentiate $\beta(t)$ and consider (3.12) we find

$$
\begin{gather*}
e_{1}=\beta^{\prime}(t), \tag{4.41}\\
e_{2}=\frac{1}{\sqrt{2}} E_{1}+\frac{1}{\sqrt{2}} E_{2}, \tag{4.42}\\
e_{3}=\varepsilon_{2} E_{3} . \tag{4.43}
\end{gather*}
$$

If we consider the equations (3.13), (3.14), (3.16), (3.24) and (3.28) we can write

$$
\begin{gather*}
\rho=0, \quad \mu=-\varepsilon_{2} \alpha, \quad \nu=-\frac{1}{\sqrt{2}} \tag{4.44}\\
\kappa=\sqrt{\alpha^{2}+\frac{1}{2}}=\sqrt{\frac{3}{2}}, \quad \tau=|\alpha|=1 .
\end{gather*}
$$

From the above equations we see that the curve β is a Legendre helix curve in \bar{N}.

Example 4.2. Let v be a spacelike Legendre curve in the $(L C S)_{3}$ manifold \bar{N} and defined as

$$
\begin{aligned}
v: \quad I & \rightarrow \bar{N} \\
s & \rightarrow v(s)=(\cos s, \sin s, 1),
\end{aligned}
$$

where the curve v parametrized by the arc length parameter t. If we differentiate $v(t)$ and consider (3.12) we find

$$
\begin{gather*}
e_{1}=v^{\prime}(t) \tag{4.45}\\
e_{2}=\varepsilon_{2}\left(-\sin \left(\frac{t}{e}\right) E_{1}+\cos \left(\frac{t}{e}\right) E_{2}\right), \tag{4.46}\\
e_{3}=\varepsilon_{2} \partial_{3} \tag{4.47}
\end{gather*}
$$

If we consider the equations (3.13), (3.14), (3.16), (3.24) and (3.28) we can write

$$
\begin{array}{r}
\rho=0, \quad \mu=-\varepsilon_{2} \alpha, \quad \nu=0, \tag{4.48}\\
\kappa=\tau=|\alpha| .
\end{array}
$$

So, the curve $v(s)$ is a Legendre helix curve in \bar{N}.

INT. J. MAPS MATH. (2022) 5(1):29-40 / FRENET CURVES IN 3-DIMENSIONAL LCS MANIFOLDS 39

References

[1] Acet B. E., Perktaş S. Y. (2018). Curvature and torsion of a legendre curve in (ε, δ) Trans-Sasakian manifolds. Malaya Journal of Matematik, Vol. 6, No. 1, 140-144.
[2] Atçeken M. (2013). Some Curvature Properties of $(L C S)_{n}$-Manifolds. Hindawi Publishing Corporation Abstract and Applied Analysis, Volume 2013, http://dx.doi.org/10.1155/2013/380657.
[3] Blair D.E. (2002). Riemannian Geometry of Contact and Symplectic Manifolds. Progr. Math., Birkhäuser, Boston.
[4] Calvaruso G. (2007). Homogeneous structures on three-dimensional Lorentzian manifolds. J. Geom. Phys. 57, 1279-1291. G. Calvaruso, J. Geom. Phys. 58 (2008) 291-292, Addendum.
[5] Calvaruso G. (2007). Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds. Geometriae Dedicata. 127, 99-119.
[6] Calvaruso G., Perrone D. (2010). Contact pseudo-metric manifolds. Differ. Geom. App. 28, 615-634.
[7] Calvaruso G. (2011). Contact Lorentzian manifolds. Differ. Geom. App. 29, S41-S51.
[8] Camci, C. (2011). Extended cross product in a 3-dimensional almost contact metric manifold with applications to curve theory. Turk. J. Math. 35, 1-14.
[9] Cho, J. T., Inoguchi, J. I., and Lee, J. E. (2006). On slant curves in Sasakian 3-manifolds. Bulletin of the Australian Mathematical Society, 74(3), 359-367.
[10] De, U. C. and De, K. (2013). On Lorentzian Trans-Sasakian Manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 62(2), 37-51.
[11] Duggal, K.L. and Jin, D.H. (2007). Null Curves and Hypersurfaces of Semi-Riemannian Manifolds. World Scientific Publishing: Singapore.
[12] Lee, J. E. (2019). Slant Curves and Contact Magnetic Curves in Sasakian Lorentzian 3-Manifolds. Symmetry. 11, 784; doi:10.3390/sym11060784.
[13] Lee, J. E. (2020). Slant Curves in Contact Lorentzian Manifolds with CR Structures. Mathematics. 8, 46; doi:math8010046.
[14] Matsumoto K. (1989). On Lorentzian paracontact manifolds. Bull. Yamagata Univ. Natur. Sci. 12, no.2, 151-156.
[15] O'Neill B. (1983). Semi-Riemannian Geometry. Academic Press, New York.
[16] Olszak B. (1979). On contact metric manifolds. Tôhoku Math. J. 31, 247-253.
[17] Olszak B. (1986). Normal Almost Contact Metric Manifolds of Dimension Three. Ann. Pol. Math., XLVII.
[18] Shaikh, A. A., and De, U. C. (2000). On 3-dimensional LP-Sasakian manifolds. Soochow Journal of Mathematics, 26(4), 359-368.
[19] Shaikh, A. A. (2003). On Lorentzian almost paracontact manifolds with a structure of the concircular type. Kyungpook Math. J, 43(2), 305-314.
[20] Shaikh A.A. (2009). Some Results on (LCS $)_{n}$-manifolds. J. Korean Math. Soc. 46(3), 449-461.
[21] Şahin, B. (2012). Manifoldların diferensiyel geometrisi. Nobel Yayın, 310.
[22] Welyczko J. (2007). On Legendre curves in 3-dimensional normal almost contact metric manifolds. Soochow Journal of Mathematics, 33(4), 929-937.
[23] Welyczko J. (2014). Slant Curves in 3-Dimensional Normal Almost Paracontact Metric Manifolds. Mediterr. J. Math. 11, 965-978, DOI 10.1007/s00009-013-0361-2 0378-620X/14/030965-14.
[24] Yano K. (1940). Concircular Geometry.I. Concircular transformations. proc. Imp. Acad. Tokyo. 16, 195200.
[25] Yıldırım A. (2020). On curves in 3-dimensional normal almost contact metric manifolds. Int. J. Geom. Methods M. Physics, 1-18.

Adiyaman University, Technical Sciences Vocational School, Turkey

[^0]: * Corresponding author

