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Abstract. The paper deals with the study of almost Ricci (AR) soliton and gradient al-

most Ricci (GAR) soliton on 3-dimensional Lorentzian para α-Sasakian manifolds (α- LPS

manifolds). Finally, we also provide an example of AR soliton.
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1. Introduction

As a generalization of an Einstein metric [6], Ricci soliton first defined in 1982 by Hamilton

[19]. A pseudo-Riemannian manifold (M, g∗) defines a Ricci soliton with a smooth vector

field V on M such that

£V g∗ + 2S − 2τ1g∗ = 0, (1.1)

where £V is the Lie derivative along the vector field V and S is the Ricci tensor on M and

τ1 is a real scalar. Ricci soliton is said to be shrinking τ1 < 0, steady τ1 = 0 or expanding

τ1 > 0, [8]. A Ricci soliton is changed into Einstein equation with V zero or killing vector

field.
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The study of almost Ricci soliton was presented by Pigola et al. [23], in this manner they

gave new version of the definition of Ricci soliton by adding new condition on the parameter

τ1 to be a variable function, we say that a Riemannian manifold (M, g∗) admits an almost

Ricci soliton, if there exists a complete vector field V , called potential vector field and a

smooth soliton function τ1 : M → R satisfying

S +
1

2
£V g∗ = τ1g∗, (1.2)

where S and £ represent Ricci tensor and Lie derivative along the direction of soliton vector

field V . We shall now refer to this equation as the fundamental equation of an almost Ricci

soliton (M, g∗, V, τ1). Ricci soliton will be called shrinking, steady or expanding, respectively,

if τ1 < 0, τ1 = 0 or τ1 > 0. For remaining it will be called indefinite. When the vector field V

is gradient of a smooth function f : M → R the metric will be called gradient almost Ricci

soliton. So, we obtain

S + ∇̄2f = τ1g∗, (1.3)

where ∇̄2f means for the Hessian of f .

Additionally, if the vector field X1 is trivial, or the potential f is constant, the almost

Ricci soliton is said to be trivial, otherwise it is said to be non-trivial almost Ricci soliton.

We observe that when n ≥ 3 and X1 is a killing vector field almost Ricci solitons will be Ricci

solitons. So in this situtation we have an Einstein manifold. The soliton function τ1 is not

necessarily constant, certainly comparison with soliton theory will be modified. In particular

the rigidity result contained in Theorem 1.3 of [23] inform that almost Ricci solitons should

reveal a reasonably broad generalization of the important concept of classical soliton.

The presence of Ricci almost soliton has been affirmed by Pigola et al. [23] on some

specific class of warped product manifolds. Some characterization of Ricci almost soliton on

Riemannian manifolds can be found in [1, 4, 5, 7, 18, 26]. It is important to note that if the

potential vector field V of the Ricci almost soliton (M, g∗, V, τ1) is Killing then the soliton

becomes trivial, provided the dimension of M > 2. Additionally, if V is conformal then M

is isometric to Euclidean sphere Sn. Thus the Ricci almost soliton is a generalization of

Einstein metric as well as Ricci soliton.

In [15], authors studied Ricci solitons and gradient Ricci solitons geometric properties on

3-dimensional normal almost contact metric manifolds. In [16] authors studied compact Ricci

soliton. In [17] author studied K-contact and Sasakian manifolds whose metric is gradient

almost Ricci solitons. Conditions of K-contact and Sasakian manifolds are more stronger
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than almost normal contact metric manifolds in the sense of the 1-form of almost normal

contact metric manifolds are not contact form. Ricci soliton as well as gradient Ricci soliton

have been studied by many authors such as [2, 13, 14].

Sharma [24] obtained results on Ricci almost solitons in K-contact geometry, also in

author [17] studied Ricci almost solitons and gradient Ricci almost solitons in (k, µ)-contact

geometry and Majhi [22] on 3-dimensional f -Kenmotsu manifolds also De and Mandal [12]

studied for structure (k, µ)-Paracontact geometry. Motivated by above studies in this paper,

we are interested to study almost Ricci solitons and gradient Ricci almost solitons with

Lorentzian para α-Sasakian manifolds.

We are studying the following sections: Section 2 contains important definitions and some

preliminary results of Lorentzian para α-Sasakian (α- LPS) manifolds needed for the study.

In section 3, we deal second order parallel symmetric tensors α- LPS manifolds. In section

4, we obtain result for almost Ricci (AR) soliton in 3-dimensional α-LPS manifolds. In the

Section 5, we deduce theorem for such manifolds with gradient almost Ricci (GAR) solitons.

Finally, we give an example of 3-dimensional (α- LPS)manifolds with almost Ricci soliton.

2. α- LPS manifolds

A differentiable manifold M of (2n + 1) dimensional is said to be an α- LPS manifolds,

if it cosist a tensor field J of type (1, 1), a characteristic vector field ζ1, a 1-form η∗ and g∗

as Lorentzian metric satisfy (see [10, 21]) :

J2X1 = X1 + η∗(X1)ζ1, (2.4)

η∗(ζ1) = −1, η∗(X1) = g∗(X1, ζ1), (2.5)

Jζ1 = 0, η∗ ◦ J = 0, (2.6)

g∗(JX1, JY1) = g∗(X1, Y1) + η∗(X1)η∗(Y1). (2.7)

Definition 2.1. A differentiable manifold M with an almost contact Lorentzian metric struc-

ture (J, ζ1, η∗, g∗) is said to be an α-LS manifold if

(∇̄X1J)Y1 = α{g∗(X1, Y1)ζ1 + η∗(Y1)X1}, (2.8)

where α is a constant function on M .
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An almost contact metric structure is called a LPS manifold (or simply Lorentzian para-

Sasakian manifold) if, (for details see [27, 11, 9])

(∇̄X1J)Y1 = g∗(X1, Y1)ζ1 + η∗(Y1)X1 + 2η∗(X1)η∗(Y1)ζ1, (2.9)

where ∇̄ is the Levi-Civita connection with respect to g∗. Using above equation, one can

obtain

∇̄X1ζ1 = JX1, (∇̄X1η∗)Y1 = g∗(X1, JY1). (2.10)

Definition 2.2. A differentiable manifold M with an almost contact Lorentzian metric struc-

ture (J, ζ1, η∗, g∗) is called an α-LPS manifold if

(∇̄X1J)Y1 = α{g∗(X1, Y1)ζ1 + η∗(Y1)X1 + 2η∗(X1)η∗(Y1)ζ1}, (2.11)

where α is a smooth function on M .

Remark- Note that if α = 1, then LPS manifold is the special case of α-LPS manifold.

For an α-LPS manifold following relations are holds [3]:

∇̄X1ζ1 = αJX1, (2.12)

(∇̄X1η∗)Y1 = αg∗(JX1, Y1), (2.13)

R(X1, Y1)ζ1 = α2{η∗(Y1)X1 − η∗(X1)Y1} (2.14)

+{(X1α)JY1 − (Y1α)JX1},

R(ζ1, Y1)ζ1 = α2{Y1 + η∗(Y1)ζ1} (2.15)

+(ζ1α)JY1,

R(ζ1, ζ1)ζ1 = 0, (2.16)

R(ζ1, Y1)X1 = α2{g∗(X1, Y1)ζ1 − η∗(X1)Y1} (2.17)

−(X1α)JY1 + g∗(JX1, Y1)(gradα),
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S(Y1, ζ1) = 2nα2η∗(Y1)− {(Y1α)w + (JY1)α}, (2.18)

for any vector field Y1 on M , w = g∗(J(ei), ei) and S defines the Ricci curvature on M .

S(ζ1, ζ1) = −2nα2 − (ζ1α)w, (2.19)

and

η∗(R(X1, Y1)Z1) = α2{g∗(Y1, Z1)η∗(X1)− g∗(X1, Z1)η∗(Y1)} (2.20)

−{(X1α)g∗(JY1, Z1)− (Y1α)g∗(X1J, Z1)}.

In a 3-dimensional Riemannian manifold, we always have

R(X1, Y1)Z1 = g∗(Y1, Z1)QX1 − g∗(X1, Z1)QY1 (2.21)

+S(Y1, Z1)X1 − S(X1, Z1)Y1

−r

2
[g∗(Y1, Z1)X1 − g∗(X1, Z1)Y1].

In a 3-dimensional α-LPS manifold, we have

R(X1, Y1)Z1 = [
r

2
− α2][g∗(Y1, Z1)X1 − g∗(X1, Z1)Y1] (2.22)

+[
r

2
− 3α2][g∗(Y1, Z1)η∗(X1)ζ1

−g∗(X1, Z1)η∗(Y1)ζ1 + η∗(Y1)η∗(Z1)X1

−η∗(X1)η∗(Z1)Y1],

and

S(X1, Z1) = [
r

2
− α2]g∗(X1, Z1) (2.23)

+[
r

2
− 3α2]η∗(X1)η∗(Y1).

Putting Z1 = ζ1 in (2.17), we have
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R(X1, Y1)ζ1 = η∗(Y1)QX1 − η∗(X1)QY1 (2.24)

+S(Y1, ζ1)X1 − S(X1, ζ1)Y1

−r

2
[η∗(Y1)X1 − η∗(X1)Y1],

and

S(X1, ζ1) = 2α2η∗(X1). (2.25)

where Q is the Ricci operator define by S(X1, Y1) = g∗(QX1, Y1).

Definition 2.3. An α-LPS manifold M is called an Einstein like if its Ricci tensor S satisfies

S(X1, Y1) = ag∗(X1, Y1) + bg∗(JX1, Y1) (2.26)

+cη∗(X1)η∗(Y1),

X1, Y1 ∈ (M) for some real constants a, b and c.

3. Second order parallel symmetric tensors in an α-LPS manifold

Fix h a symmetric tensor field of (0, 2)-type which we suppose to be parallel with respect

to ∇̄ that is ∇̄h = 0. Applying the Ricci identity [25]

∇̄2h(X1, Y1;Z1,W1)− ∇̄2h(X1, Y1;W1, Z1) = 0, (3.27)

we obtain the relation

h(R(X1, Y1)Z1,W1) + h(Z1, R(X1, Y1)W1) = 0. (3.28)

Replacing Z1 = W1 = ζ1 in (3.2) and by using (2.11) and by the symmetry of h, we have

α2[η∗(Y1)h(X1, ζ1)− η∗(X1)h(Y1, ζ1)] (3.29)

+(X1α)h(JY1, ζ1)− (Y1α)h(JX1, ζ1) = 0.

Putting X1 = ζ1 in (3.3) and by virtue of (2.2) and (2.3), we obtain

α2[η∗(Y1)h(ζ1, ζ1) + h(Y1, ζ1)] + (ζ1α)h(JY1, ζ1) = 0. (3.30)

Replacing Y1 = JY1 in (3.4), we have
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(ζ1α)[η∗(Y1)h(ζ1, ζ1) + h(Y1, ζ1)] + α2h(JY1, ζ1) = 0. (3.31)

Solving (3.4) and (3.5), we have

(α4 − (ζ1α)
2)[η∗(Y1)h(ζ1, ζ1) + h(Y1, ζ1)] = 0. (3.32)

Since α4 − (ζ1α)
2 ̸= 0, it results

h(Y1, ζ1) = −η∗(Y1)h(ζ1, ζ1), (3.33)

from (3.7), we obtain

h(Y1, ζ1) + g∗(Y1, ζ1)h(ζ1, ζ1) = 0. (3.34)

Putting Y1 = ∇̄X1Y1 in (3.7), we have

h(∇̄X1Y1, ζ1) + g∗(∇̄X1Y1, ζ1)h(ζ1, ζ1) = 0. (3.35)

Covariantly differentiating (3.7) with respect to X1, we obtain

(∇̄X1h)(Y1, ζ1) + h(∇̄X1Y1, ζ1) + h(Y1, ∇̄X1ζ1) (3.36)

= −[g∗(∇̄X1Y1, ζ1) + g∗(Y1, ∇̄X1ζ1)]h(ζ1, ζ1)

−η∗(Y1)[(∇̄X1h)(ζ1, ζ1) + 2h(∇̄X1ζ1, ζ1)]

= 0.

Applying the parallel condition ∇̄h = 0, η∗(∇̄X1ζ1) = 0 and using (2.9) and (3.6) in (3.9),

we infer

α[h(Y1, JX1) + g∗(Y1, JX1)h(ζ1, ζ1)] = 0. (3.37)

Replacing X1 = JX1 in (3.11) and on simplification, we get

α[h(X1, Y1) + g∗(X1, Y1)h(ζ1, ζ1)] = 0, (3.38)

since α is non-zero smooth function in an α-LPS manifold and this implies that

h(X1, Y1) = −g∗(X1, Y1)h(ζ1, ζ1), (3.39)
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which is together with the standard fact that the parallelism of h implies that h(ζ1, ζ1) is a

constant, via (3.6). Now using the above conditions, we can write the following:

Theorem 3.1. A second order covariant symmetric parallel tensor in an α-LPS manifold is

a constant multiple of the metric tensor.

4. AR solitons on 3-dimensional α-LPS manifolds

This section deal with the characterization of AR solitons on 3-dimensional α-LPS man-

ifolds. Consider the potential vector field V be pointwise collinear, V = bζ1, where b is a

function on M . Then from (1.1) we have

g∗(∇̄X1bζ1, Y1) + g∗(∇̄Y1bζ1, X1) + 2S(X1, Y1) = 2τ1g∗(X1, Y1). (4.40)

By virtue of (2.9) and (4.1), we have

2bαg∗(JX1, Y1) + (X1b)η∗(Y1) (4.41)

+(Y1b)η∗(X1) + 2S(X1, Y1)

= 2τ1g∗(X1, Y1).

Substituting Y1 = ζ1 in (4.2) and using (2.21), we get

−(X1b) + (ζ1b)η∗(X1) + 4α2η∗(X1) = 2τ1η∗(X1). (4.42)

Taking X1 = ζ1 in (4.3), we infer

ζ1b = τ1 − 2α2. (4.43)

Substituting the value of ζ1b in (4.3), we have

db = (2α2 − τ1)η∗. (4.44)

Operating d on (4.5) and using d2 = 0, we obtain

0 = d2b = (2α2 − τ1)dη∗. (4.45)

It follows from the above equation

τ1 = 2α2,
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which implies db = 0, i.e., b = constant, by virtue of db = (2α2−τ1)η∗. Thus, using constancy

of b in (4.2), we infer

S(X1, Y1) = τ1g∗(X1, Y1)− αbg∗(JX1, Y1) (4.46)

−2(2α2 − τ1)η∗(X1)η∗(Y1),

which is of the form S(X1, Y1) = ag∗(X1, Y1) + bg∗(JX1, Y1) + cη∗(X1)η∗(Y1). Hence, we can

state the following result:

Theorem 4.1. A 3-dimensional α-LPS manifold (M, ζ1, η∗, g∗) with constant α admitting

an AR soliton with pointwise collinear vector field V with the structure vector field ζ1, is an

Einstein like manifold provided τ1 = 2α2 > 0 i.e., expanding.

Now let V = ζ1. Then (4.1) reduces to

(£ζ1g∗)(X1, Y1) + 2S(X1, Y1) = 2τ1g∗(X1, Y1). (4.47)

Now, by using (2.9) we have

(£ζ1g∗)(X1, Y1) = g∗(∇̄X1ζ1, Y1) + g∗(∇̄Y1ζ1, X1)

= 2αg∗(JX1, Y1). (4.48)

Using (2.19), we get

(£ζ1g∗)(X1, Y1) = −2[
(r
2
− α2

)
g∗(X1, Y1) (4.49)

+
(r
2
− 3α2

)
η∗(X1)η∗(Y1)]

+2τ1g∗(X1, Y1).

In view of (4.9) and (4.10), we obtain

αg∗(JX1, Y1) = −[
(r
2
− α2

)
g∗(X1, Y1) (4.50)

+
(r
2
− 3α2

)
η∗(X1)η∗(Y1)]

+τ1g∗(X1, Y1).
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Taking X1 = Y1 = ζ1 in (4.11), we obtain

τ1 = 2α2. (4.51)

Since α is constant. This implies τ1 = 2α2 =constant. Hence, we can establish the following

result.

Theorem 4.2. A 3-dimensional α-LPS manifold (M, ζ1, η∗, g∗) admits AR soliton then it

reduces to a Ricci soliton for α =constant.

5. Gradient Almost Ricci (GAR) Solitons

In this part, we study 3-dimensional α-LPS manifolds admitting GAR soliton. For a GAR

soliton, we have

∇̄Y1Df = τ1Y1 −QY1, (5.52)

where D symbolize the gradient operator of g∗.

Now taking covariant differentiation of (5.1) along arbitrary vector field X1, we have

∇̄X1∇̄Y1Df = dτ1(X1)Y1 + τ1∇̄X1Y1 − (∇̄X1Q)Y1. (5.53)

In above equation d is exterior derivative, using this similarly we obtain

∇̄Y1∇̄X1Df = dτ1(Y1)X1 + τ1∇̄Y1X1 − (∇̄Y1Q)X1, (5.54)

and

∇̄[X1,Y1]Df = τ1[X1, Y1]−Q[X1, Y1]. (5.55)

In view of (5.2), (5.3) and (5.4), we get

R(X1, Y1)Df = ∇̄X1∇̄Y1Df − ∇̄Y1∇̄X1Df − ∇̄[X1,Y1]Df (5.56)

= (∇̄Y1Q)X1 − (∇̄X1Q)Y1 − (Y1τ1)X1 + (X1τ1)Y1.

From (2.19), we have

QX1 = [
r

2
− α2]X1 + [

r

2
− 3α2]η∗(X1)ζ1. (5.57)
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Taking covariant differentiation of (5.6) along arbitrary vector field X1 and using (2.9), we

have

(∇̄X1Q)Y1 =

(
X1r

2

)
[Y1 + η∗(Y1)ζ1]

+α
(r
2
− 3α2

)
[g∗(JX1, Y1) + η∗(Y1)JX1]. (5.58)

Similarly, we have

(∇̄Y1Q)X1 =

(
Y1r

2

)
[X1 + η∗(X1)ζ1]

+α
(r
2
− 3α2

)
[g∗(JY1, X1) + η∗(X1)JY1]. (5.59)

Using (5.7) and (5.8) in (5.5), we have

R(X1, Y1)Df =

(
Y1r

2

)
[X1 + η∗(X1)ζ1] + α

(r
2
− 3α2

)
η∗(X1)JY1

−
(
X1r

2

)
[Y1 + η∗(Y1)ζ1]− α

(r
2
− 3α2

)
η∗(Y1)JX1

−(Y1τ1)X1 + (X1τ1)Y1. (5.60)

Taking an inner product with ζ1 in above equation, then we obtain

g∗(R(X1, Y1)Df, ζ1) = −(Y1τ1)η∗(X1) + (X1τ1)η∗(Y1). (5.61)

Taking Y1 = ζ1, then we infer

g∗(R(X1, ζ1)Df, ζ1) = −(ζ1τ1)η∗(X1)− (X1τ1). (5.62)

Also from (2.18), it follows that

g∗(R(X1, ζ1)Df, ζ1) = α2[(ζ1f)η∗(X1)− (X1f)]. (5.63)

Using (5.9) in (5.10), we get

α2[(ζ1f)η∗(X1)− (X1f)] = −(ζ1τ1)η∗(X1)− (X1τ1). (5.64)

Assuming that f is constant. Then it follows from (5.11) that
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dτ1 + (ζ1τ1)η∗ = 0. (5.65)

Applying d both sides of (5.14), we obtain

ζ1τ1 = 0. (5.66)

By virtue of (5.14) and (5.15), we get

dτ1 = 0. (5.67)

This implies τ1 is constant. Hence, we can establish the following result:

Theorem 5.1. A 3-dimensional α-LPS manifold (M, ζ1, η∗, g∗) admits a GAR soliton then

it reduces to a Ricci soliton provided f is constant.

6. Example

We consider the 3-dimensional manifold M = {(x, y, t) ∈ R3 : t ̸= 0}, where (x, y, t) are

the standard coordinates in R3. We choose the vector fields

Ẽ1 = et∗
∂

∂y
, Ẽ2 = et∗(

∂

∂x
+

∂

∂y
) and Ẽ3 = et∗

∂

∂t
,

which are linearly independent at each point of M . Let g∗ be the Lorentzian metric defined

by

g∗(Ẽ1, Ẽ2) = g∗(Ẽ2, Ẽ3) = g∗(Ẽ3, Ẽ1) = 0,

g∗(Ẽ1, Ẽ1) = g∗(Ẽ2, Ẽ2) = 1, g∗(Ẽ3, Ẽ3) = −1.

Let η∗ be the 1- form defined by η∗(Z1) = g∗(Z1, Ẽ3) for any vector field Z1 on M . We

define the (1, 1) tensor field J as J(Ẽ1) = −Ẽ1, J(Ẽ2) = −Ẽ2 and J(Ẽ3) = 0. Then using

the linearity of J and g∗, we have

η∗(Ẽ3) = −1, J2Z1 = Z1 + η∗(Z1)Ẽ3,

g∗(JZ1, JW1) = g∗(Z1,W1) + η∗(Z1)η∗(W1),



INT. J. MAPS IN MATH. (2022) 5(2):139–153 / CERTAIN RESULTS OF RICCI SOLUTION ON ... 151

for any vector fields Z1,W1 on M . Thus for Ẽ3 = ζ1, the structure (J, ζ1, η∗, g∗) defines an

almost contact metric structure on M .

Let ∇̄ be the Levi-Civita connection with respect to the Lorentzian metric g∗. Then, we

have

[Ẽ1, Ẽ2] = 0, [Ẽ1, Ẽ3] = −et∗Ẽ1 and [Ẽ2, Ẽ3] = −et∗Ẽ2.

Koszul’s formula is defined by

2g∗(∇̄X1Y1, Z1) = X1g∗(Y1, Z1) + Y1g∗(Z1, X1)− Z1g∗(X1, Y1)

−g∗(X1, [Y1, Z1])− g∗(Y1, [X1, Z1]) + g∗(Z1, [X1, Y1]).

Using Koszul’s formula, we can easily calculate

∇̄Ẽ1
Ẽ3 = −et∗Ẽ1, ∇̄Ẽ1

Ẽ2 = 0, ∇̄Ẽ1
Ẽ1 = −et∗Ẽ3,

∇̄Ẽ2
Ẽ3 = −et∗Ẽ2, ∇̄Ẽ2

Ẽ2 = −et∗Ẽ3, ∇̄Ẽ2
Ẽ1 = 0,

∇̄Ẽ3
Ẽ3 = 0, ∇̄Ẽ3

Ẽ2 = 0, ∇̄Ẽ3Ẽ1=0.

From the above, it follows that the manifold satisfies

(∇̄X1J)Y1 = α{g∗(X1, Y1)ζ1 + η∗(Y1)X1 + 2η∗(X1)η∗(Y1)ζ1},

for Ẽ3 = ζ1. and α = et∗, (J, ζ1, η∗, g∗) is a 3-dimensional α-LPS structure on M . Conse-

quently M3(J, ζ1, η∗, g∗) is a 3-dimensional α-LPS manifold. Also, the Riemannian curvature

tensor R is given by

R(X1, Y1)Z1 = ∇̄X1∇̄Y1Z1 − ∇̄Y1∇̄X1Z1 − ∇̄[X1,Y1]Z1.

With the help of above results, we obtain

R(Ẽ1, Ẽ2)Ẽ1 = −e2t∗ Ẽ2, R(Ẽ1, Ẽ2)Ẽ3 = 0, R(Ẽ1, Ẽ2)Ẽ2 = −e2t∗ Ẽ1,

R(Ẽ1, Ẽ3)Ẽ1 = −e2t∗ Ẽ3,R(Ẽ1, Ẽ3)Ẽ2 = 0,R(Ẽ1, Ẽ3)Ẽ3 = −e2t∗ Ẽ3.

R(Ẽ2, Ẽ3)Ẽ1 = 0,R(Ẽ2, Ẽ3)Ẽ2 = −e2t∗ Ẽ3,R(Ẽ2, Ẽ3)Ẽ3 = −e2t∗ Ẽ2.
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Then, the Ricci tensor S is given by

S(Ẽ1, Ẽ1) = 0, S(Ẽ2, Ẽ2) = 0 and S(Ẽ3, Ẽ3) = −2e2t∗ .

from equation (1.2) and above calculation, we find τ1 = 2et∗(1− et∗).

Thus 3-dimensional α-LPS manifold admitting an AR soliton.
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