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Abstract. In this paper, we introduce the contrapedal, radial, inverse, conchoid and

strophoid curves of Fibonacci and Lucas curves which are defined by Horadam and Shannon,

[18]. Moreover, the graphs of these special curves are drawn by using Mathematica.
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1. Introduction

The plane curves in the Euclidean plane are one of the most essential subjects in differential

geometry. Thanks to a growing interest in this subject, it is demonstrated that any plane

curve brings about other plane curves through several constructions. Some of these are

contrapedal, radial, inverse, conchoid and strophoid curves. Contrapedal curves are employed

in many areas such as mathematics (see [16]) and physics (see [20]). Radial curve was studied

by Robert Tucker in 1864, [25]. Geometrical inversion is originated from Jakob Steiner in

1824. In 1825, Adolphe Quetelet followed closely him by giving some examples. Apparently,

it independently discovered by Giusto Bellavitis in 1836, by Stubbs and Ingram in 1842-

3, and by Lord Kelvin who employed it in his electrical researches in 1845, [25]. Inverse

curve has a important role in mathematics (see [6]). Conchoid is a plane curve invented
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by the Greek mathematician Nicomedes, who applied it to the problems of duplication the

cube. The conchoid has been used by later mathematicians, notably Sir Isaac Newton, in

the construction of various cubic curves, [23]. Conchoids make a significant contribution in

many applications as optics (see [2]), astronomy (see [9]), engineering in medicine and biology

(see [8], [12]), mechanical in fluid processing (see [21]), physics (see [22]), electromagnetic

research (see [26]), etc. The Conchoid of Nicomedes, which is the conchoid of a line, and the

Limaçon of Pascal, which is the conchoid of a circle, are the two most famous conchoids,

[17]. Strophoid curve initially appears in work by the English mathematician Isaac Barrow,

who was Isaac Newton’s teacher, in 1670. However, the curve actually is described in his

letters by Evangelista Torricelli before Barrow’s work around 1645. In 1846, the strophoid,

whose meaning is a ”belt with a twist”, was named by Montucci, [4]. J. Booth called it

the logocyclic curve in his article in the 19th century, [3]. For further information about

contrapedal, radial, inverse, conchoid, and strophoid curve, we recommend the reader to go

through [7], [11], and [25].

The famous book called the Liber Abaci of Italian mathematician Leonardo de Pisa who

is known as Fibonacci also posed a problem concerning the progeny of a single pair of rabbits

which is the foundation of the Fibonacci sequence, [5]. During the time Fibonacci wrote

Liber Abaci, Fibonacci numbers were not recognized as something special. The sequence

was given the current name ”Fibonacci numbers” by French mathematician Edouard Lucas

who later created his own sequence based on the pattern set by Fibonacci. Lucas numbers

are very similar to Fibonacci numbers in that they form a sequence of numbers and also

closely related to Fibonacci numbers, [15].

In 1988, Horadam and Shannon defined Fibonacci and Lucas curves on Euclidean plane,

(see [18]). Moreover, there are many articles about three dimensional Fibonacci curve, (see

[13], [19]). In addition, Akyiğit, Erişir and Tosun studied on the evolute, parallel and pedal

of Fibonacci and Lucas curves in 2015, (see [1]). In 2017, Özvatan and Pashaev had a study

on generalized Fibonacci sequences and Binet-Fibonacci curves, (see [14]). They constructed

Binet-Fibonacci curve in complex plane by extending Binet’s formula to arbitrary real num-

bers. In this article, we are interested in investigation of the contrapedal, radial, inverse,

conchoid and strophoid curves of Fibonacci and Lucas curves and obtaining the figures of

these special curves.
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1.1. Fibonacci and Lucas Numbers. This subsection gives a brief overview of Fibonacci

and Lucas numbers. More detailed information about them can be found in [10] and [24].

1.1.1. Fibonacci Numbers.

Definition 1.1. The nth Fibonacci number Fn is defined by

Fn = Fn−1 + Fn−2

with initial conditions

F1 = F2 = 1,

where n ≥ 3. In this case, Fibonacci numbers are given by

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . , Fn, . . .

The ratio of consecutive Fibonacci numbers gives us a new sequence:

1

1
,
2

1
,
3

2
,
5

3
,
8

5
, . . . ,

Fn+1

Fn
, . . .

Lemma 1.1. The ratio of two consecutive Fibonacci numbers approaches 1+
√
5

2 as n → ∞.

More precisely,

lim
n→∞

Fn+1

Fn
=

1 +
√
5

2
.

Definition 1.2. The positive root 1+
√
5

2 = 1.618... of the equation x2 − x − 1 = 0 is called

golden ratio.

Theorem 1.1. Let α and β be the solutions of the quadratic equation

x2 − x − 1 = 0; so α = 1+
√
5

2 and β = 1−
√
5

2 . Then, the relation that gives us the nth

term of Fibonacci sequence is given by

Fn =
αn − βn

α− β
=

αn − βn

√
5

,

where n ≥ 1.

Corollary 1.1. Let α = 1+
√
5

2 and β = 1−
√
5

2 . Then,

1. αβ = −1 2. α+ β = 1 3. α− β =
√
5

4. α2 + 1 =
√
5α 5. α = 2− β2 6. α2 + β2 = 3
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1.1.2. Lucas Numbers.

Definition 1.3. The nth Lucas number Ln is defined by

Ln = Ln−1 + Ln−2

with initial conditions

L1 = 1, L2 = 3,

where n ≥ 3. In this case, Lucas numbers are given by

1, 3, 4, 7, 11, 18, 29, 47, . . . , Ln, . . .

Lemma 1.2. The ratio of two consecutive Lucas numbers approaches 1+
√
5

2 as n → ∞. That

is,

lim
n→∞

Ln+1

Ln
=

1 +
√
5

2
.

Theorem 1.2. Let α and β be the solutions of the quadratic equation

x2 − x − 1 = 0; so α = 1+
√
5

2 and β = 1−
√
5

2 . Then, the relation that gives us the nth

term of Lucas sequence is given by

Ln = αn + βn,

where n ≥ 0.

1.2. Fibonacci and Lucas Curves.

Definition 1.4. Let I ⊆ R be an open interval of R. Then, Fibonacci curve is defined by

f : I → R2

θ 7→ f(θ) = (x(θ), y(θ)) ,

where

x(θ) =
αθ − α−θ cos(θπ)√

5
(1.1)

and

y(θ) =
−α−θ sin(θπ)√

5
(1.2)

including α = 1+
√
5

2 , [18].
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Figure 1. Fibonacci curve

In the interval I = (2, 6), the graph of Fibonacci curve can be seen in Figure 1. By taking

derivative of the equations (1.1) and (1.2) with respect to θ, we obtain that

dx

dθ
= x′(θ) =

α−θ
[
α2θs+ s cos(θπ) + π sin(θπ)

]
√
5

(1.3)

and

dy

dθ
= y′(θ) =

α−θ
[
− π cos(θπ) + s sin(θπ)

]
√
5

, (1.4)

where α = 1+
√
5

2 and s = log
(
1+

√
5

2

)
. After taking derivative of the equations (1.3) and

(1.4) with respect to θ, we obtain

d2x

dθ2
= x′′(θ) =

α−θ
[
(π2 − s2) cos(θπ) + α2θs2 − 2πs sin(θπ)

]
√
5

(1.5)

and

d2y

dθ2
= y′′(θ) =

α−θ
[
2πs cos(θπ) + (π2 − s2) sin(θπ)

]
√
5

, (1.6)

[18], [1].

Definition 1.5. Let I ⊆ R be an open interval of R. Then, Lucas curve is defined by

l : I → R2

θ 7→ l(θ) = (x(θ), y(θ)) ,

where

x(θ) = αθ + α−θ cos(θπ) (1.7)

and

y(θ) = α−θ sin(θπ) (1.8)

including α = 1+
√
5

2 , [18].

In the interval I = (1, 5), the graph of Lucas curve can be seen in Figure 2.

Figure 2. Lucas curve
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By taking derivative of the equations (1.7) and (1.8) with respect to θ, we obtain that

dx

dθ
= x′(θ) = α−θ

[
sα2θ − s cos(θπ)− π sin(θπ)

]
(1.9)

and

dy

dθ
= y′(θ) = α−θ

[
π cos(θπ)− s sin(θπ)

]
, (1.10)

where α = 1+
√
5

2 and s = log
(
1+

√
5

2

)
. After taking derivative of the equations (1.9) and

(1.10) with respect to θ, we obtain

d2x

dθ2
= x′′(θ) = α−θ

[
α2θs2 + (s2 − π2) cos(θπ) + 2πs sin(θπ)

]
(1.11)

and

d2y

dθ2
= y′′(θ) = α−θ

[
− 2πs cos(θπ) + (s2 − π2) sin(θπ)

]
, (1.12)

[18], [1].

2. The Special Curves of Fibonacci Curve

In this section, we will present the special plane curves of Fibonacci curve by using equa-

tions (1.3), (1.4), (1.5) and (1.6).

2.1. The Contrapedal Curve of Fibonacci Curve. The parametric equation of con-

trapedal curve 1 of Fibonacci curve f(θ) with respect to point P = (p1, p2) on the plane is

that

Cpf (θ) = (A(θ), B(θ)), (2.13)

where

A(θ) = p1 +
α−θ

(
sα2θ + s cos(πθ) + π sin(πθ)

) (√
5s

(
α4θ − 1

)
− 5sp1α

3θ + αθvθ
)

5 (s2 (α4θ + 1) + 2sα2θ(π sin(πθ) + s cos(πθ)) + π2)

and

B(θ) = p2 −
α−θ(π cos(πθ)− s sin(πθ))

(√
5s

(
α4θ − 1

)
− 5sp1α

3θ + αθvθ
)

5 (s2 (α4θ + 1) + 2sα2θ(π sin(πθ) + s cos(πθ)) + π2)

including

vθ =
(
(
√
5παθ − 5sp2 − 5πp1) sin(θπ) + 5(πp2 − sp1) cos(θπ)

)
.

In Figure 3, Fibonacci curve which is represented by blue curve and the contrapedal curves

Cpf (θ) of Fibonacci curve f(θ) with respect to points (0, 6), (3, 4) (2, 2), and (−1,−2) is

1Let α(t) = (x(t), y(t)) be a regular plane curve and P be a fixed point on R2. The locus of bases of

perpendicular lines from P = (p1, p2) to a variable normal line to α is contrapedal curve and the equation

of contrapedal curve of α is that Cpα(t) = (f(t), g(t)) where f(t) = p1 + (x(t)−p1)x
′(t)+(y(t)−p2)y

′(t)
x′(t)2+y′(t)2 x′(t) and

g(t) = p2 +
(x(t)−p1)x

′(t)+(y(t)−p2)y
′(t)

x′(t)2+y′(t)2 y′(t), [7].
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plotted, from top to down respectively. As seen in the figure, in the interval where Fibonacci

curve is injective, whether the contrapedal curve of Fibonacci curve is injective or not depends

on given point P .

Figure 3. Fibonacci curve and its contrapedal curves

2.2. The Radial Curve of Fibonacci Curve. The parametric equation of radial curve2

of Fibonacci curve f(θ) with respect to point P = (p1, p2) on the plane is that

Rf (θ) = (R1(θ), R2(θ)) , (2.14)

where

R1(θ) = p1 +
α−θ(π cos(θπ)− s sin(θπ))

(
s2

(
α4θ + 1

)
+ 2sα2θzθ + π2

)
√
5 (sα2θ ((π2 − 2s2) sin(θπ) + 3πs cos(θπ)) + π (s2 + π2))

and

R2(θ) = p2 +
α−θ

(
sα2θ + s cos(θπ) + π sin(θπ)

) (
s2

(
α4θ + 1

)
+ 2sα2θzθ + π2

)
√
5 (sα2θ ((π2 − 2s2) sin(θπ) + 3πs cos(θπ)) + π (s2 + π2))

including

zθ = π sin(θπ) + s cos(θπ).

From the equation (2.14), we can see that point P plays a role in just the translation of the

created shape. In Figure 4, Fibonacci curve which is represented by blue curve and, from

2Let α(t) = (x(t), y(t)) be a regular plane curve on R2. Suppose that lines are drawn from a fixed

point P = (p1, p2) ∈ R2 such that these lines are equal and parallel to the radii of curvature of α(t). The

locus of the end points is radial curve and the equation of radial curve is that Rα(t) = (f(t), g(t)) where

f(t) = p1 −
y′(t)((x′(t))2+(y′(t))2)
x′(t)y′′(t)−x′′(t)y′(t) and g(t) = p2 +

x′(t)((x′(t))2+(y′(t))2)
x′(t)y′′(t)−x′′(t)y′(t) , [11].
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left to right respectively, the Rf (θ) radial curves with respect to (3, 1) and (6, 1) points are

plotted by restricting x−axis to (−1, 8) interval and y−axis to (−1, 3) interval. The figure

indicates that the radial curve of Fibonacci curve is not injective.

Figure 4. Fibonacci curve and its radial curves

2.3. The Inverse Curve of Fibonacci Curve. The parametric equation of inverse curve3

of Fibonacci curve f(θ) with respect to point R = (r1, r2) and value k is that

Inf (θ) = (I1(θ), I2(θ)) , (2.15)

where

I1(θ) = r1 + k

√
5
(
αθ − α−θ cos(θπ)−

√
5r1

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2
and

I2(θ) = r2 − k

√
5
(
α−θ sin(θπ) +

√
5r2

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 .
The equation (2.15) demonstrates that if the point R is kept constant, the value k > 0 has

a role in changing the size of the shape. The more we increase the value k, the more the

figure enlarges by preserving its basic form. In contrast, the more we decrease the value k,

the more the size of the shape is dwindled by preserving its basic form. That is, the value k

is the radial ratio. In Figure 5, Fibonacci curve which is represented by blue curve and its

inverse curves Inf (θ) with k = 5 and k = 9 with respect to the point (2,−1) are plotted.

3Let α(t) = (x(t), y(t)) be a regular plane curve and R = (r1, r2) be a fixed point on R2. Suppose that a line

L is drawn through R by intersecting α at P , and let Q be a point on L so that |RP |.|RQ| = k, a constant.

Then, P and Q are inverse points, and the locus of Q is an inverse of α with respect to R. k may be

negative, in which case P and Q lie on opposite sides of R. The parametric equation of inverse curve of α is

that Inα(t) = (f(t), g(t)) where f(t) = r1 + k x(t)−r1
(x(t)−r1)2+(y(t)−r2)2

and g(t) = r2 + k y(t)−r2
(x(t)−r1)2+(y(t)−r2)2

, [11].
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(a) when R = (2,−1) and k = 5 (b) when R = (2,−1) and k = 9

Figure 5. Fibonacci curve and its inverse curves

Moreover, if one keeps the point R constant and gets the negative of the value k, then the

shape is rotated around the point R at a rotation of 180◦.

Firstly, we start to make R become the origin. So,

(I ′1, I
′
2) = (I1, I2)− (r1, r2) = (I1 − r1, I2 − r2) then we get that

I ′1 = k

√
5
(
αθ − α−θ cos(θπ)−

√
5r1

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 ,
I ′2 = −k

√
5
(
α−θ sin(θπ) +

√
5r2

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 .
We know that to rotate a point 180◦ counterclockwise about the origin, we need to multiply

the x− and y−coordinates by −1 i.e. (x, y) → (−x,−y). Therefore, we get that

I ′′1 = −k

√
5
(
αθ − α−θ cos(θπ)−

√
5r1

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 ,
I ′′2 = k

√
5
(
α−θ sin(θπ) +

√
5r2

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 .
Finally, we make the point R center again. So,

(I ′′′1 , I ′′′2 ) = (I ′′1 , I
′′
2 ) + (r1, r2) = (I ′1 + r1, I

′
2 + r2) then we get that

I ′′′1 = r1 − k

√
5
(
αθ − α−θ cos(θπ)−

√
5r1

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 ,
I ′′′2 = r2 + k

√
5
(
α−θ sin(θπ) +

√
5r2

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 .
(2.16)
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In addition, if we write −k instead of k in the equation (2.15), then we obtain that

I1(θ) = r1 − k

√
5
(
αθ − α−θ cos(θπ)−

√
5r1

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 ,
I2(θ) = r2 + k

√
5
(
α−θ sin(θπ) +

√
5r2

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 .
(2.17)

Consequently, from the equations (2.16) and (2.17), we see that the statement is true.

In Figure 6, Fibonacci curve which is represented by blue curve and its inverse curves

Inf (θ) with k = 5 and k = −5 with respect to the point (2,−1) are plotted.

(a) when R = (2,−1) and k = 5 (b) when R = (2,−1) and k = −5

Figure 6. Fibonacci curve and its inverse curve with negative value k

2.4. The Conchoid Curve of Fibonacci Curve. The parametric equation of conchoid

curve4 of Fibonacci curve f(θ) with respect to point R = (r1, r2) and value k is that

Cf (θ) = (c1(θ), c2(θ)) , (2.18)

where

c1(θ) =
αθ − α−θ cos(θπ)√

5
± k

(
αθ − α−θ cos(θπ)−

√
5r1

)√(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2
4Let α(t) = (x(t), y(t)) be a regular plane curve and R = (r1, r2) be fixed point on R2. Suppose that

a line L is drawn through R by intersecting α at Q. The locus of points P1 and P2 on L such that

|P1Q| = |QP2| = k, a constant is the conchoid curve of α with respect to R = (r1, r2). The paramet-

ric equation of conchoid curve of α is Cα(t) = (f(t), g(t)) where f(t) = x(t) ± k x(t)−r1√
(x(t)−r1)2+(y(t)−r2)2

and

g(t) = y(t)± k y(t)−r2√
(x(t)−r1)2+(y(t)−r2)2

, [11].
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and

c2(θ) =
−α−θ sin(θπ)√

5
∓ k

(
α−θ sin(θπ) +

√
5r2

)√(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 .

In Figure 7, Fibonacci curve and its conchoid curves Cf (θ) with respect to different values k

and the point (5, 3) are plotted. The blue, purple and pink curves in the figure, respectively,

represent Fibonacci curve, the locus of P1 and the locus of P2. As it is seen in this figure, if

we fix the point R, whether its conchoid curve is injective or not depends on the value k in

the interval which Fibonacci curve is injective.

(a) when R = (5, 3) and k = 1 (b) when R = (5, 3) and k = 3

(c) when R = (5, 3) and k = 4 (d) when R = (5, 3) and k = 5

Figure 7. Fibonacci curve and its conchoid curves
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2.5. The Strophoid Curve of Fibonacci Curve. The parametric equation of strophoid

curve5 of Fibonacci curve f(θ) with respect to points R = (r1, r2) and A = (a1, a2) is that

Sf (θ) = (s1(θ), s2(θ)) , (2.19)

where

s1(θ) =
αθ − α−θ cos(θπ)√

5
±

(
αθ − α−θ cos(θπ)−

√
5r1

)
ωθ√(

αθ − α−θ cos(θπ)−
√
5r1

)2
+
(
−α−θ sin(θπ)−

√
5r2

)2
and

s2(θ) = −α−θ sin(θπ)√
5

±
(
−α−θ sin(θπ)−

√
5r2

)
ωθ√(

αθ − α−θ cos(θπ)−
√
5r1

)2
+
(
−α−θ sin(θπ)−

√
5r2

)2
including

ωθ =
1√
5

√(√
5a1 − αθ + α−θ cos(θπ)

)2
+
(√

5a2 + α−θ sin(θπ)
)2

.

In Figure 8, Fibonacci curve and its strophoid curves Sf (θ) with respect to R = (4, 1) and

A = (−1,−1) are plotted. The blue, purple and pink curves, respectively, in the figure

represent Fibonacci curve, the locus of P1 and the locus of P2.

Figure 8. Fibonacci curve and its strophoid curve when R = (4, 1) and

A = (−1,−1)

5Let α(t) = (x(t), y(t)) be a regular plane curve and R = (r1, r2) and A = (a1, a2) be two fixed

points on R2. Here, the point R is called the pole point. The locus of points P1 and P2 on a line L

through R and intersecting α at a point Q such that |P2Q| = |QP1| = |QA| is the strophoid curve of α

with respect to R and A. The parametric equation of strophoid curve of α is Sα(t) = (f(t), g(t)) where

f(t) = x(t)± 1√
1+m2

[
(a1 − x(t))2 + (a2 − y(t))2

]1/2
and g(t) = y(t)± m√

1+m2

[
(a1 − x(t))2 + (a2 − y(t))2

]1/2
included m = y(t)−r2

x(t)−r1
, [11].
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3. The Special Curves of Lucas Curves

In this section, we will find the equations of special plane curves of Lucas curve by using

equations (1.9), (1.10), (1.11) and (1.12) and give their graphs.

3.1. The Contrapedal Curve of Lucas Curve. The parametric equation of contrapedal

curve of Lucas curve l(θ) with respect to point P = (p1, p2) on the plane is that

Cpl(θ) = (A(θ), B(θ)) , (3.20)

where

A(θ) = p1 −
α−θ

(
sα2θ − s cos(θπ)− π sin(θπ)

) (
s
(
1− α4θ + p1α

3θ
)
+ αθvθ

)
s2 (α4θ + 1) + π2 − 2sα2θ(π sin(θπ) + s cos(θπ))

and

B(θ) = p2 −
α−θ(π cos(θπ)− s sin(θπ))

(
s
(
1− α4θ + p1α

3θ
)
+ αθvθ

)
s2 (α4θ + 1) + π2 − 2sα2θ(π sin(θπ) + s cos(θπ))

including

vθ = παθ sin(θπ) + (πp2 − sp1) cos(θπ)− (πp1 + sp2) sin(θπ).

In Figure 9, Lucas curve which is represented by blue curve and its contrapedal curves Cpl(θ)

with respect to (4, 3) and (1,−3) are plotted, from top to down respectively. As it can be

seen in the figure, whether the contrapedal curve of Lucas curve is injective depends on point

P in the interval where Lucas curve is injective.

Figure 9. Lucas curve and its contrapedal curves
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3.2. The Radial Curve of Lucas Curve. The parametric equation of radial curve of

Lucas curve l(θ) with respect to point P = (p1, p2) is that

Rl(θ) = (R1(θ), R2(θ)) , (3.21)

where

R1(θ) = p1 −
α−θ(π cos(θπ)− s sin(θπ))

(
s2

(
α4θ + 1

)
− 2sα2θzθ + π2

)
π (s2 + π2)− sα2θ ((π2 − 2s2) sin(θπ) + 3πs cos(θπ))

and

R2(θ) = p2 +
α−θ

(
sα2θ − s cos(θπ)− π sin(θπ)

) (
s2

(
α4θ + 1

)
− 2sα2θzθ + π2

)
π(s2 + π2)− sα2θ (3πs cos(θπ) + (π2 − 2s2) sin(θπ))

including

zθ = π sin(θπ) + s cos(θπ).

It can be understood from the equation (3.21) that point P plays a role in the translation

of the shape created by radial curve. In Figure 10, Lucas curve which is represented by blue

curve and its radial curves Rl(θ), from left to right respectively, at (−1, 2) and (6, 2) points

have been plotted by restricting x−axis to (−5, 11) interval and y−axis to (−10, 10) interval.

The figure indicates that the radial curve of Lucas curve is not injective.

Figure 10. Lucas curve and its radial curves
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3.3. The Inverse Curve of Lucas Curve. The parametric equation of inverse curve of

Lucas curve l(θ) with respect to point R = (r1, r2) and value k is that

Inl(θ) = (I1(θ), I2(θ)) , (3.22)

where

I1(θ) = r1 + k
αθ + α−θ cos(θπ)− r1

(αθ + α−θ cos(θπ)− r1)
2
+ (α−θ sin(θπ)− r2)

2

and

I2(θ) = r2 + k
α−θ sin(θπ)− r2

(αθ + α−θ cos(θπ)− r1)
2
+ (α−θ sin(θπ)− r2)

2 .

Results obtained by investigating the special cases of value k for the inverse curve of Fibonacci

curve are also valid for the inverse curve of Lucas curve. In Figure 11, Lucas curve which is

represented by blue curve and its inverse curves Inl(θ) for k = −5, k = 5, k = −9, and k = 9

with respect to the point (4,−1) are plotted.

(a) when R = (4,−1) and k = 5 (b) when R = (4,−1) and k = 9

(c) when R = (4,−1) and k = −5 (d) when R = (4,−1) and k = −9

Figure 11. Lucas curve and its inverse curves
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3.4. The Conchoid Curve of Lucas Curve. The parametric equation of conchoid curve

of Lucas curve l(θ) with respect to point R = (r1, r2) and value k is that

Cl(θ) = (c1(θ), c2(θ)) , (3.23)

where

c1(θ) = αθ + α−θ cos(θπ)± k
αθ + α−θ cos(θπ)− r1√

(αθ + α−θ cos(θπ)− r1)
2
+ (α−θ sin(θπ)− r2)

2

and

c2(θ) = α−θ sin(θπ)± k
α−θ sin(θπ)− r2√

(αθ + α−θ cos(θπ)− r1)
2
+ (α−θ sin(θπ)− r2)

2
.

In Figure 12, Lucas curve and its conchoid curves Cl(θ) with respect to different values k

and the point (4, 2) are plotted. The blue, purple and pink curves represent Lucas curve,

the locus of P1 and the locus of P2, respectively, in the figure. As it is seen in this figure,

whether its conchoid curve is injective depends on value k in the interval where Lucas curve

is injective.

(a) when R = (4, 2) and k = 1 (b) when R = (4, 2) and k = 1.75

(c) when R = (4, 2) and k = 3 (d) when R = (4, 2) and k = 4

Figure 12. Lucas curve and its conchoid curves
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3.5. The Strophoid Curve of Lucas Curve. The parametric equation of strophoid curve

of Lucas curve l(θ) with respect to points R = (r1, r2) and A = (a1, a2) is that

Sl(θ) = (s1(θ), s2(θ)) , (3.24)

where

s1(θ) = αθ + α−θ cos(θπ)±
(
αθ + α−θ cos(θπ)− r1

)
ωθ√

(αθ + α−θ cos(θπ)− r1)
2
+ (α−θ sin(θπ)− r2)

2

and

s2(θ) = α−θ sin(θπ)±
(
α−θ sin(θπ)− r2

)
ωθ√

(αθ + α−θ cos(θπ)− r1)
2
+ (α−θ sin(θπ)− r2)

2

including

ωθ =

√
(a1 − αθ − α−θ cos(θπ))

2
+ (a2 − α−θ sin(θπ))

2
.

In Figure 13, Lucas curve and its strophoid curves Sl(θ) with respect to different points R

and A are plotted. The blue, purple and red curves represent Lucas curve, the locus of P1 and

the locus of P2, respectively, in the figure. As it is seen in this figure, whether its strophoid

curve has a critical point depends on A and R in the interval where Lucas curve has not any

critical point.

(a) when R = (4, 2) and A = (−1, 3)

(b) when R = (1, 0) and A = (−3,−4)

Figure 13. Lucas curve and its strophoid curves
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4. Conclusion

In this study, firstly the notions of contrapedal, radial, inverse, conchoid and strophoid

curves of the Fibonacci and Lucas curves have been investigated. Afterwards, their graphs

which have been plotted by using Mathematica are examined in the interval I = (2, 6) for

Fibonacci curve and in the interval I = (1, 5) for Lucas curve.

We have obtained some results from the notions and figures which is acquired.

• As illustrated in Figure 3 and Figure 9, if their contrapedal curves are injective or

not depends on given point P in the intervals where Fibonacci and Lucas curves are

injective.

• From equations (2.14) and (3.21), it is clear that the point P has a role in the

translation of the figure which is created. Figure 4 and Figure 10 illustrate that their

radial curves are not injective.

• The equations (2.15) and (3.22) reveals that if one fixes the point R, the value k > 0

has a role in changing the size of inverse curves which belongs to Fibonacci and Lucas

curves. As the value k increases, the size of the shape enlarges by preserving the main

form. Conversely, as the value k decreases, the size becomes smaller by preserving

the main form. Moreover, if one keeps the point R constant and gets the negative of

the value k, then the shape is rotated around the point R at a rotation of 180◦.

• From Figure 7 and Figure 12, it can be seen that in the interval where Fibonacci and

Lucas curves are injective, if one fixes the point R, the value k is an important factor

in the injectivity of their conchoid curves.

• It can be observed from Figure 13 that in the interval where Lucas curve has not

any critical point whether its strophoid curve has at least one critical point or not

depends on the given points R and A.
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