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ON GENERALIZED SASAKIAN SPACE FORMS WITH CONCIRCULAR

AND PROJECTIVE CURVATURE TENSOR

GURUPADAVVA INGALAHALLI∗ AND C.S. BAGEWADI

Abstract. In this paper we study the Concircular pseudosymmetric, C̃(ξ,X) · R = 0,

C̃ ·Q = 0, Q · C̃ = 0, Projective pseudosymmetric, P (ξ,X) ·R = 0, P ·Q = 0 and Q ·P = 0

in generalized Sasakian space forms.

1. Introduction

Alegre P, Blair DE, Carriazo A. [1] introduced and studied the concept of generalized

Sasakian space forms. An almost contact metric manifold (M,φ, ξ, η, g) is said to be a

generalized Sasakian space form if there exist differentiable functions f1, f2, f3 such that

curvature tensor R of M is given by

R(X,Y )Z = f1{g(Y,Z)X − g(X,Z)Y }

+ f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}

+ f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ},
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for any vector fields X, Y, Z on M. Throughout the paper we denote generalized Sasakian

space form as M(f1, f2, f3), which appears as a natural generalization of the Sasakian space

form M(c), which can be obtained as a particular case of generalized Sasakian space form

by taking f1 = c+3
4 , f2 = c−1

4 and f3 = c−1
4 , where c denotes constant φ-sectional curvature.

The notion of generalized Sasakian space forms have been weakened by many geometers such

as [2, 3, 4, 5, 8, 9, 14, 15, 17, 19] with different curvature tensors.

A Riemannian manifold is called locally symmetric if ∇R = 0, where R is the Riemannian

curvature tensor of (M, g). As a proper generalization of locally symmetric manifold, the

notion of semi-symmetric manifold was defined by (R(X,Y ) ·R)(U, V )W = 0.

For a (0, k)-tensor field T on M,k ≥ 1, and a symmetric (0, 2)-tensor field g on M, we

define the tensor fields R · T and Q(g, T ) by

(R · T )(X1, . . . , Xk;X,Y ) = −T (R(X,Y )X1, X2, . . . , Xk)− . . .− T (X1, . . . Xk−1, R(X,Y )Xk)

and

Q(g, T )(X1, . . . , Xk;X,Y ) = −T ((X ∧g Y )X1, X2, . . . , Xk)− . . .− T (X1, . . . Xk−1, (X ∧g Y )Xk).

Where X ∧g Y is the endomorphism given by

(X ∧g Y )Z = g(Y, Z)X − g(X,Z)Y. (1.1)

A Riemannian manifold M is said to be pseudosymmetric [11] if

R ·R = LRQ(g,R) (1.2)

holds on UR = {x ∈ M |R − r
n(n−1)G 6= 0 at x}, where G is the (0, 4)-tensor defined by

G(X1, X2, X3, X4) = g((X1 ∧ X2)X3, X4) and LR is some smooth function on M. A Rie-

mannian manifold M is said to be Concircular pseudosymmetric if

R · C̃ = LC̃Q(g, C̃) (1.3)

holds on the set UC̃ = {x ∈ M : C̃ 6= 0} at x, where LC̃ is some function on UC̃ and

C̃ is the Concircular curvature tensor. It is known that every pseudosymmetric manifold

is Concircular pseudosymmertic, but the converse is not true. If LC̃ = 0 on UC̃ , then a

Concircular pseudosymmetric manifold is Concircular semisymmetric. But LC̃ need not be

zero, in general and hence there exists Concircular pseudosymmetric manifolds which are not

Concircular semisymmetric. Thus the class of Concircular pseudosymmetric manifolds is a

natural extension of the class of Concircular semisymmetric manifolds.
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Motivated by the above work in this paper we study the Concircular pseudosymmetric,

C̃(ξ,X) ·R = 0, C̃ ·Q = 0, Q · C̃ = 0, Projective pseudosymmetric, P (ξ,X) ·R = 0, P ·Q = 0

and Q · P = 0 in generalized Sasakian space forms.

2. Preliminaries

An n-dimensional Riemannian manifold M is called an almost contact metric manifold

[7] if there exist a (1, 1) tensor field φ, a vector field ξ and a 1-form η such that

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η(φX) = 0, (2.4)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X), (2.5)

g(φX, Y ) = −g(X,φY ). (2.6)

For an n-dimensional generalized Sasakian space form [1], we have

R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }+ f2{g(X,φZ)φY − g(Y, φZ)φX

+ 2g(X,φY )φZ}+ f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

− g(Y,Z)η(X)ξ}, (2.7)

S(X,Y ) = [(n− 1)f1 + 3f2 − f3]g(X,Y ) + [−3f2 − (n− 2)f3]η(X)η(Y ), (2.8)

r = (n− 1){nf1 + 3f2 − 2f3}. (2.9)

From (2.7) and (2.8), we get

η(R(X,Y )Z) = (f1 − f3){g(Y, Z)η(X)− g(X,Z)η(Y )}, (2.10)

R(X,Y )ξ = (f1 − f3){η(Y )X − η(X)Y }, (2.11)

R(ξ,X)Y = (f1 − f3){g(X,Y )ξ − η(Y )X}, (2.12)

S(X, ξ) = (n− 1)(f1 − f3)η(X), (2.13)

where R is the Riemannian curvature tensor, S is the Ricci tensor and r is the Scalar

curvature.

3. Concircular Pseudosymmetric Generalized Sasakian Space Forms

This section deals with the study of Concircular pseudosymmetric generalized Sasakian

space forms. A transformation of an n-dimensional Riemannian manifold M, which trans-

forms every geodesic circle of M into a geodesic circle is called a concircular transformation

([13], [21]). A concircular transformation is always a conformal transformation ([13]). Here



GENERALIZED SASAKIAN SPACE FORMS... 165

geodesic circle means a curve in M whose first curvature is constant and whose second cur-

vature is identically zero. Thus the geometry of concircular transformations, that is, the

concircular geometry is a generalization of inversive geometry in the sense that the change of

metric is more general than that induced by a circle preserving diffeomorphism. The inter-

esting invariant of a concircular transformation is the concircular curvature tensor C̃, which

is defined by ([21])

C̃(X,Y )Z = R(X,Y )Z − r

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ], (3.14)

where R is the curvature tensor and r is the scalar curvature of the manifold.

Let M(f1, f2, f3) be an n-dimensional Concircular pseudosymmetric generalized Sasakian

space form. Then from (1.3), we have

(R(ξ, Y ) · C̃)(U, V )W = LC̃ [(ξ ∧ Y ) · C̃(U, V )W ]. (3.15)

By (3.15), we get

R(ξ, Y )C̃(U, V )W − C̃(R(ξ, Y )U, V )W − C̃(U,R(ξ, Y )V )W − C̃(U, V )R(ξ, Y )W

= LC̃ [(ξ ∧ Y )C̃(U, V )W − C̃((ξ ∧ Y )U, V )W − C̃(U, (ξ ∧ Y )V )W

−C̃(U, V )(ξ ∧ Y )W ]. (3.16)

By using the expression (2.12) in (3.16), we have

(LC̃ − (f1 − f3))[g(Y, C̃(U, V )W )ξ − η(C̃(U, V )W )Y − g(Y,U)C̃(ξ, V )W

+η(U)C̃(Y, V )W − g(Y, V )C̃(U, ξ)W + η(V )C̃(U, Y )W

−g(Y,W )C̃(U, V )ξ + η(W )C̃(U, V )Y ] = 0. (3.17)

By taking the inner product with ξ in (3.17), we obtain

(LC̃ − (f1 − f3))[g(Y, C̃(U, V )W )− η(C̃(U, V )W )η(Y )− g(Y, U)η(C̃(ξ, V )W )

+η(U)η(C̃(Y, V )W )− g(Y, V )η(C̃(U, ξ)W ) + η(V )η(C̃(U, Y )W )

−g(Y,W )η(C̃(U, V )ξ) + η(W )η(C̃(U, V )Y )] = 0. (3.18)

By (3.18), we get either LC̃ = (f1 − f3) or

[g(Y, C̃(U, V )W )− η(C̃(U, V )W )η(Y )− g(Y,U)η(C̃(ξ, V )W )

+η(U)η(C̃(Y, V )W )− g(Y, V )η(C̃(U, ξ)W ) + η(V )η(C̃(U, Y )W )

−g(Y,W )η(C̃(U, V )ξ) + η(W )η(C̃(U, V )Y )] = 0. (3.19)
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Let {e1, e2, . . . , en} is an orthonormal basis of the tangent space at each point of the manifold.

Putting U = Y = ei in (3.19) and taking summation over i, (1 ≤ i ≤ n) and by virtue of

(3.14), we have

S(V,W ) = (n− 1)(f1 − f3)g(V,W ). (3.20)

On contracting (3.20), we get

r = n(n− 1)(f1 − f3). (3.21)

Therefore, M(f1, f2, f3) is an Einstein manifold. Hence we state the following theorem.

Theorem 3.1. Let M(f1, f2, f3) be an n-dimensional generalized Sasakian space form. If

M(f1, f2, f3) is Concircular pseudosymmetric then M(f1, f2, f3) is an Einstein manifold or

LC̃ = (f1 − f3) holds on M(f1, f2, f3).

Now, by using (3.21) in (3.14) then we get

η(C̃(X,Y )Z) = 0 (3.22)

and

η(C̃(ξ, Y )Z) = 0. (3.23)

By virtue of (3.22) and (3.23) in (3.19), we obtain

g(Y, C̃(U, V )W ) = C̃(U, V,W, Y ) = 0. (3.24)

This implies thatM(f1, f2, f3) is Concircularly flat. Hence we conclude the following theorem.

Theorem 3.2. Let M(f1, f2, f3) be an n-dimensional generalized Sasakian-space form. If

M(f1, f2, f3) is Concircular pseudosymmetric then M(f1, f2, f3) is either Concircularly flat

or LC̃ = (f1 − f3) holds on M(f1, f2, f3).

If we assume that M(f1, f2, f3) is not Concircularly semi symmtric, a Concircular pseu-

dosymmetric generalized Sasakian space form. Then we get R · C̃ = (f1 − f3)Q(g, C̃), which

implies that the pseudosymmetry function LC̃ = (f1 − f3). Therefore we have the following:

Corollary 3.1. Every generalized Sasakian space form M(f1, f2, f3) is Concircular pseu-

dosymmetric of the form R · C̃ = (f1 − f3)Q(g, C̃).
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4. Generalized Sasakian space form satisfying C̃(ξ,X) ·R = 0

In this section we study generalized Sasakian space form satisfying C̃(ξ,X) · R = 0. Let

M(f1, f2, f3) be an n-dimensional generalized Sasakian space form satisfying C̃(ξ,X) ·R = 0.

Then, we have

(C̃(ξ,X) ·R)(U, V )W = C̃(ξ,X)R(U, V )W −R(C̃(ξ,X)U, V )W

− R(U, C̃(ξ,X)V )W −R(U, V )C̃(ξ,X)W = 0. (4.25)

Putting W = ξ in (4.25) and by virtue of (2.11), we obtain

(f1 − f3)η(C̃(ξ,X)U)V − (f1 − f3)η(C̃(ξ,X)V )U

−[(f1 − f3)−
r

n(n− 1)
]{η(X)R(U, V )ξ −R(U, V )X} = 0. (4.26)

Let {e1, e2, . . . , en} is an orthonormal basis of the tangent space at each point of the manifold

and taking inner product with ei in (4.26) and on simplification, we get

S(X,V ) = (n− 1)(f1 − f3)g(X,V ). (4.27)

On Contracting (4.27), we have

r = n(n− 1)(f1 − f3). (4.28)

Conversely, if f1 = f3 then from (2.12) and (3.14) trivially we get C̃(ξ,X) · R = 0. If

S(X,V ) = (n − 1)(f1 − f3)g(X,V ) with scalar curvature r = n(n − 1)(f1 − f3), we obtain

C̃(ξ,X) · R = 0. And then comparing r with (2.9) we have 3f2 + (n − 2)f3 = 0. Hence we

conclude the following theorem.

Theorem 4.1. An n-dimensional generalized Sasakian space form M satisfying the condition

C̃(ξ,X) · R = 0 if and only if either f1 = f3 or the manifold is an Einstein manifold with

scalar curvature r = n(n− 1)(f1 − f3).

Remark 4.1. In [4], author obtained necessary and sufficient condition for a generalized

Sasakian space form M2n+1 satisfying C̃(ξ,X) ·R = 0 if and only if the functions f2 and f3

either satisfy the conditions (2n− 1)f3 + 3f2 = 0 or it has the sectional curvature (f1 − f3).
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5. Generalized Sasakian space form satisfying C̃ ·Q = 0

In this section we study the generalized Sasakian space form satisfying C̃ · Q = 0. Let

M(f1, f2, f3) be an n-dimensional generalized Sasakian space form satisfying C̃ ·Q = 0. Then,

we have

C̃(X,Y )QZ −Q(C̃(X,Y )Z) = 0, (5.29)

for all smooth vector fields X,Y and Z. Putting Y = ξ in (5.29), we have

C̃(X, ξ)QZ −Q(C̃(X, ξ)Z) = 0. (5.30)

By using (3.14) in (5.30) and on simplification, we obtain[
(f1 − f3)−

r

n(n− 1)

]
[(n− 1)(f1 − f3)η(Z)X − S(X,Z)ξ

−η(Z)QX + (n− 1)(f1 − f3)g(X,Z)ξ] = 0. (5.31)

Taking inner product with ξ in (5.31), we have[
(f1 − f3)−

r

n(n− 1)

]
[(n− 1)(f1 − f3)g(X,Z)− S(X,Z)] = 0. (5.32)

From (5.32), either [(f1 − f3)− r
n(n−1) ] = 0 or

S(X,Z) = (n− 1)(f1 − f3)g(X,Z). (5.33)

Hence, we state the following theorem.

Theorem 5.1. An n-dimensional generalized Sasakian space form M(f1, f2, f3) satisfies the

curvature condition C̃ · Q = 0, then the manifold is an Einstein manifold or the scalar

curvature r = n(n− 1)(f1 − f3).

6. Generalized Sasakian space form satisfying Q · C̃ = 0

In this section we study generalized Sasakian space form satisfying Q · C̃ = 0. Let

M(f1, f2, f3) be an n-dimensional generalized Sasakian space form satisfying Q · C̃ = 0.

Then, we have

Q(C̃(X,Y )Z)− C̃(QX,Y )Z − C̃(X,QY )Z − C̃(X,Y )QZ = 0, (6.34)

for all smooth vector fields X,Y and Z. Putting Y = ξ in (6.34), we have

Q(C̃(X, ξ)Z)− C̃(QX, ξ)Z − C̃(X,Qξ)Z − C̃(X, ξ)QZ = 0. (6.35)
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By using (3.14) in (6.35) and on simplification, we obtain[
(f1 − f3)−

r

n(n− 1)

]
[2S(X,Z)ξ − 2(n− 1)(f1 − f3)η(Z)X] = 0. (6.36)

Taking inner product with ξ in (6.36), we have[
(f1 − f3)−

r

n(n− 1)

]
[2S(X,Z)− 2(n− 1)(f1 − f3)η(Z)η(X)] = 0. (6.37)

Putting Z = ξ in (6.37), then from (6.37) either [(f1 − f3)− r
n(n−1) ] = 0 or

S(X, ξ) = (n− 1)(f1 − f3)η(X), (6.38)

which implies

Qξ = (n− 1)(f1 − f3)ξ. (6.39)

Hence, we state the following theorem.

Theorem 6.1. An n-dimensional generalized Sasakian space form M(f1, f2, f3) satisfies the

curvature condition Q · C̃ = 0, then the Ricci operator of ξ of a generalized Sasakian space

form is equal to (n− 1) times of (f1 − f3)ξ or the scalar curvature r = n(n− 1)(f1 − f3).

7. Projective Pseudosymmetric Generalized Sasakian Space Forms

This section deals with the study of Projective pseudosymmetric generalized Sasakian

space forms. The projective curvature tensor is an important concept of Riemannian ge-

ometry, which one uses to calculate the basic geometric measurements on a manifold. The

projective transformation on a manifold is a transformation under which geodesic transforms

into geodesic. The projective curvature tensor is given by ([4])

P (X,Y )Z = R(X,Y )Z − 1

(n− 1)
[S(Y,Z)X − S(X,Z)Y ]. (7.40)

Let M(f1, f2, f3) be an n-dimensional Projective pseudosymmetric generalized Sasakian

space form. Then we have

(R(ξ, Y ) · P )(U, V )W = LP [(ξ ∧ Y ) · P (U, V )W ]. (7.41)

By (7.41), we get

R(ξ, Y )P (U, V )W − P (R(ξ, Y )U, V )W − P (U,R(ξ, Y )V )W − P (U, V )R(ξ, Y )W

= LP [(ξ ∧ Y )P (U, V )W − P ((ξ ∧ Y )U, V )W − P (U, (ξ ∧ Y )V )W

−P (U, V )(ξ ∧ Y )W ]. (7.42)
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By using the expression (2.12) in (7.42), we have

(LP − (f1 − f3))[g(Y, P (U, V )W )ξ − η(P (U, V )W )Y − g(Y,U)P (ξ, V )W

+η(U)P (Y, V )W − g(Y, V )P (U, ξ)W + η(V )P (U, Y )W

−g(Y,W )P (U, V )ξ + η(W )P (U, V )Y ] = 0. (7.43)

By taking the inner product with ξ in (7.43), we obtain

(LP − (f1 − f3))[g(Y, P (U, V )W )− η(P (U, V )W )η(Y )− g(Y, U)η(P (ξ, V )W )

+η(U)η(P (Y, V )W )− g(Y, V )η(P (U, ξ)W ) + η(V )η(P (U, Y )W )

−g(Y,W )η(P (U, V )ξ) + η(W )η(P (U, V )Y )] = 0. (7.44)

By (7.44), we get either LP = (f1 − f3) or

[g(Y, P (U, V )W )− η(P (U, V )W )η(Y )− g(Y,U)η(P (ξ, V )W )

+η(U)η(P (Y, V )W )− g(Y, V )η(P (U, ξ)W ) + η(V )η(P (U, Y )W )

−g(Y,W )η(P (U, V )ξ) + η(W )η(P (U, V )Y )] = 0. (7.45)

Let {e1, e2, . . . , en} is an orthonormal basis of the tangent space at each point of the manifold.

Putting U = Y = ei in (7.45) and taking summation over i, (1 ≤ i ≤ n) and by virtue of

(7.40), we have

S(V,W ) = (n− 1)(f1 − f3)g(V,W )−
[

r

n− 1
− n(f1 − f3)

]
η(V )η(W ). (7.46)

On contracting (7.46), we get

r = n(n− 1)(f1 − f3). (7.47)

By using (7.47) in (7.46), we obtain

S(V,W ) = (n− 1)(f1 − f3)g(V,W ). (7.48)

Therefore, M(f1, f2, f3) is an Einstein manifold. Hence, we state the following theorem.

Theorem 7.1. Let M(f1, f2, f3) be an n-dimensional generalized Sasakian space form. If

M(f1, f2, f3) is Projective pseudosymmetric then M(f1, f2, f3) is an Einstein manifold or

LP = (f1 − f3) holds on M(f1, f2, f3).
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Now, by using (2.10) and (7.48) in (7.40) then we get

η(P (X,Y )Z) = 0 (7.49)

and

η(P (ξ, Y )Z) = 0. (7.50)

By virtue of (7.49) and (7.50) in (7.45), we obtain

g(Y, P (U, V )W ) = P (U, V,W, Y ) = 0. (7.51)

This implies that M(f1, f2, f3) is Projectively flat. Hence, we conclude the following theorem.

Theorem 7.2. Let M(f1, f2, f3) be an n-dimensional generalized Sasakian space form. If

M(f1, f2, f3) is Projective pseudosymmetric then M(f1, f2, f3) is either Projectively flat or

LP = (f1 − f3) holds on M(f1, f2, f3).

If we assume that M(f1, f2, f3) is not Projectively semisymmtric, a Projective pseudosym-

metric generalized Sasakian space form. Then we get R ·P = (f1−f3)Q(g, P ), which implies

that the pseudosymmetry function LP = (f1 − f3). Therefore we have the following:

Corollary 7.1. Every generalized Sasakian space form M(f1, f2, f3) is Projective pseudosym-

metric of the form R · P = (f1 − f3)Q(g, P ).

8. Generalized Sasakian space form satisfying P (ξ,X) ·R = 0

In this section we study generalized Sasakian space form satisfying P (ξ,X) · R = 0. Let

M(f1, f2, f3) be an n-dimensional generalized Sasakian-space form satisfying P (ξ,X) ·R = 0.

Then, we have

P (ξ,X)R(U, V )W −R(P (ξ,X)U, V )W

−R(U,P (ξ,X)V )W −R(U, V )P (ξ,X)W = 0. (8.52)

Putting W = ξ in (8.52) and by virtue of (2.11), we obtain

(f1 − f3)η(P (ξ,X)U)V − (f1 − f3)η(P (ξ,X)V )U

−(n− 2)(f1 − f3){η(X)R(U, V )ξ −R(U, V )X} = 0. (8.53)

Let {e1, e2, . . . , en} is an orthonormal basis of the tangent space at each point of the manifold

and taking inner product with ei in (8.53) and on simplification, we get

S(X,V ) = (n− 1)(f1 − f3)g(X,V ) + (n− 2)(f1 − f3)η(X)η(V ). (8.54)
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Therefore, M(f1, f2, f3) is an η-Einstein manifold. Hence, we state the following theorem.

Theorem 8.1. An n-dimensional generalized Sasakian space form M(f1, f2, f3) satisfying

the condition P (ξ,X) ·R = 0 is an η-Einstein manifold.

9. Generalized Sasakian space form satisfying P ·Q = 0

Let M(f1, f2, f3) be an n-dimensional generalized Sasakian space form satisfying P ·Q = 0.

Then, we have

P (X,Y )QZ −Q(P (X,Y )Z) = 0, (9.55)

for all smooth vector fields X,Y and Z. Putting Y = ξ in (9.55), we have

P (X, ξ)QZ −Q(P (X, ξ)Z) = 0. (9.56)

By using (7.40), (2.11) in (9.56) and on simplification, we obtain

1

(n− 1)
S(X,QZ)ξ − 2(f1 − f3)S(X,Z)ξ + (n− 1)(f1 − f3)2g(X,Z)ξ = 0. (9.57)

Taking inner product with ξ in (9.57), we have

S2(X,Z) = 2(n− 1)(f1 − f3)S(X,Z)− (n− 1)2g(f1 − f3)2g(X,Z). (9.58)

Hence, we state the following theorem.

Theorem 9.1. An n-dimensional generalized Sasakian space form satisfies the curvature

condition P · Q = 0, then the square of the Ricci tensor S2 is the linear combination of the

Ricci tensor S and the metric tensor g.

10. Generalized Sasakian space form satisfying Q · P = 0

Let M(f1, f2, f3) be an n-dimensional generalized Sasakian space form satisfying Q·P = 0.

Then, we have

Q(P (X,Y )Z)− P (QX,Y )Z − P (X,QY )Z − P (X,Y )QZ = 0, (10.59)

for all smooth vector fields X,Y and Z. Putting Y = ξ in (10.59), we have

Q(P (X, ξ)Z)− P (QX, ξ)Z − P (X,Qξ)Z − P (X, ξ)QZ = 0. (10.60)

By virtue of (7.40) in (10.60) and on simplification, we obtain

2(f1 − f3)S(X,Z)ξ − 2

(n− 1)
S(X,QZ)ξ = 0. (10.61)
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Taking inner product with ξ in (10.61), we have

S(X,QZ) = (n− 1)(f1 − f3)S(X,Z), (10.62)

which implies

g(Q2X,Z) = (n− 1)(f1 − f3)g(QX,Z), (10.63)

Let {e1, e2, e3, . . . , en} be a local orthonormal basis of the tangent space at a point of the

manifold M. Then by putting X = Z = ei in (10.63) and taking summation over i, we have

trace(Q2) = (n− 1)(f1 − f3)trace(Q). (10.64)

Hence, we state the following theorem.

Theorem 10.1. An n-dimensional generalized Sasakian space form satisfies the curvature

condition Q · P = 0, then the trace of the square Ricci operator of a generalized Sasakian

space form is equal to (n− 1)(f1 − f3) times of trace of the Ricci operator.
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