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REMARKS ON THE GEOMETRY AND THE TOPOLOGY OF THE

LOOP SPACES Hs(S1, N), FOR s ≤ 1/2.

JEAN-PIERRE MAGNOT∗

Abstract. We first show that, for a fixed locally compact manifold N, the space L2(S1, N)

has not the homotopy type of the classical loop space C∞(S1, N), by two theorems:

- the inclusion C∞(S1, N) ⊂ L2(S1, N) is null homotopic if N is connected,

- the space L2(S1, N) is contractible if N is compact and connected.

Then, we show that the spaces Hs(S1, N) carry a natural structure of Frölicher space,

equipped with a Riemannian metric, which motivates the definition of Riemannian diffeo-

logical space.

1. Introduction

The objects studied in this paper are spaces of maps from S1 = R/2πZ to a locally

compact, connected manifold N embedded into an Euclidean space V, usually called loop

spaces. The most studied loop space is the space of smooth loops C∞(S1, N), or of smooth

based loops C∞b (S1, N) where only loops starting and ending at a fixed basepoint x0 ∈ N

are considered. Embedding C∞(S1, N), resp. C∞0 (S1, N), into C∞(S1, V ), one can consider

spaces of loops with lower regularity in the following way: considering e.g. the Sobolev
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spaces Hs(S1, V ), a simple way to define such loop spaces is to make the closure of

C∞(S1, N), resp. C∞0 (S1, N), in Hs(S1, V ), noted Hs(S1, N), resp. Hs
0(S1, N). For s = 0,

we get the space of loops in the L2−class, noted by L2(S1, N), and when the target space is a

Lie group G, Hs(S1, G), resp. Hs
b (S1, G), is called the Hs−loop group, resp. the Hs−based

loop group. The loop spaces Hs(S1, N), for s > 1/2 are well-known Hilbert manifolds, and

the loop groups Hs(S1, G) are Hilbert Lie groups, since [14]. But

very often geometry and analysis stops for s ≤ 1/2, because the classical construction

of a smooth atlas on these spaces requires an inclusion into the space of continuous loops

C0(S1, N), via Sobolev embedding theorems. The same holds for loop groups Hs(S1, G), see

e.g. [27], where one can read also that, for s = 1/2, most loops γ ∈ H1/2(S1, G)−C0(S1, G)

are not easy to study. One can extend this remark to s ≤ 1/2.

The aim of this paper is to give a first approach of some topological properties of some

of these spaces for s ≤ 1/2, and propose an adapted geometric setting. In a first part of the

paper (section 3), we show that there is no homotopy equivalence between L2(S1, N) and

Hs(S1, N) for s > 1/2, which furnishes a great contrast with the known: for s > k > 1/2,

the inclusion Hs(S1, N) ⊂ Hk(S1, N) is a homotopy equivalence [26, 14, 9].

Motivated by the fact that mathematical literature often use weak Sobolev metrics on

C∞(S1, N), especially H1/2 and L2−metrics (see e.g.[16, 27, 30]), a natural question is the

geometric setting that would enable to discuss with the topologico-geometric properties of the

full spaces Hs(S1, N) for s ≤ 1/2. We then need to find a setting that describes finer struc-

tures than the topology, and which enables techniques of differential geometry. We choose

here the setting of Frölicher spaces, which can be seen as a particular case of diffeological

space [22, 3, 29], and we develop for the needs of the example of loop spaces the notion of

Riemannian diffeological space. As a final remark (section 5.2), we show that the canonical

(weak, H1/2) symplectic form on the based loop space naturally extends to the (full) based

loop H
1/2
0 (S1, N), while the Kähler form of the based loop group does not have the same

properties.

2. Preliminaries on loop groups and loop spaces

Let I = [0; 1]. We note by (fn)n∈Z the Fourier coefficients of any smooth map f. Recall

that, for s ∈ R, the space Hs(I,C) is the completion of C∞(I,C) for the norm ||.||s defined
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by

||f ||2s =
∑
n∈Z

(1 + |n|)2s|fn|2 =

∫
S1

(1 + ∆1/2)2s(f).f̄ ,

where ∆ = − 1
4π2

d2

dx2
is the standard Laplacian, and S1 = R/Z. The same construction holds

replacing C by an algebraM of matrices with complex coefficients, with the hermitian prod-

uct of matrices (A,B) 7→ tr(AB∗). If there is no possible confusion, we note this matrix norm

by ||.|| or by ||.||M if necessary. Let N be a smooth connected manifold, with Riemannian

embedding into M. We can assume that the 0−matrix, noted 0, is in N with no loss of

generality since the space of Riemannian embeddings from N to M is translation invariant

in M. The loop space C∞(S1, N) is a smooth Fréchet manifold (see [14, 9] for details). The

submanifold of based loops C∞(S1, N) is here identified with loops γ ∈ C∞(S1, N) such that

γ(0) = 0. Let us now consider a compact connected Lie group G of matrices. We note by

C∞(S1, G), resp. C∞0 (S1, G), the group of smooth loops, resp. the group of based smooth

loops γ such that γ(0) = γ(1) = eG. (When dealing with based loop groups, the chosen

basepoint is the identity matrix Id for trivial necessities of compatibility with the group

multiplication)

Definition 2.1. We define Hs(S1, G), resp. Hs
0(S1, G), as the adherence of C∞(S1, G),

resp. C∞0 (S1, G), in Hs(S1;M).

For s > 1/2, it is well-known, that Hs(S1, G) is a Hilbert Lie group. The key tool is

the smooth inclusion Hs(S1,M) ⊂ C0(S1,M), which enables to define charts via tubular

neighborhoods, and to define the group multiplication and the group inversion pointwise by

the smoothness of the evaluation maps, see the historical paper [14] for details, see also [27]

for an exposition centered on loop groups. The biggest Sobolev order where this fails is

s = 1/2. For s > 1/2,

(1) the norm ||.||s induces a (strong) scalar product < ., . >s on Hs(S1, g), which induces

a left invariant metric on THs(S
1, G).

(2) if 1/2 < s, the Hk−scalar product < ., . >k induces a weak Riemannian metric on

THs(S
1, G), but the Hk-geodesic distance is non vanishing on Hs(S1, G), for k < s.

The motivation of this last remark can be found in recent works [6, 7, 8, 24] where are

given some examples of weak Sobolev Hs metrics on manifolds of mappings with vanishing

geodesic distance.
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3. The case s = 0 : On the homotopy type of L2(S1, N)

Let us now analyze L2(S1, N) when N is connected.

Lemma 3.1. Let T = {(l, s) ∈ I2|s ≤ l and l > 0. There exists a map ϕ ∈ C∞(T, [0; 1])

such that 

∀l, ϕ(l, 0) = 0

∀l, ϕ(l, l) = 1

∀l, ∂ϕ∂s (l, 0) = 1

∀l, ∂ϕ∂s (l, l) = 1

∀l,∀k > 1, ∂
kϕ
∂sk

(l, 0) = 0

∀l,∀k > 1, ∂
kϕ
∂sk

(l, l) = 0

.

One can choose the following map:

ϕ(l, s) =

∫ s

0
(φl ∗m1/6l)(t)dt

where

φl : R → R

t 7→

 1 if t < l/3 or t > 2l/3

(3−2l)
l otherwise

and m1/6l(t) = 6lm(t/6l), with m a standard mollifier with [−1; 1] support.

Proof. The solution given fulfills the conditions required by classical results of

analysis.

Notice that with such a function ϕ, we have that ∂ϕ
∂s (l, s) ≤ 3/l, and that ∂ϕ

∂l (l, s) ≤

M(s) ∈ R∗+, for any fixed 0 < s ≤ 1. For a sequence (sn) such that sn → 0, the sequence

M(sn) is unbounded, were as one can take M(0) = 1. These properties are necessary for the

proofs of the rest of the section.

Theorem 3.1. L2
0(S1, N) = L2(S1, N) and for any loop γ in C∞(S1, N) there is a map

P ∈ C0([0; 1], L2(S1, N)) such that P (0) = γ and P (1) is null-homotopic piecewise smooth

loop in L2.

Proof. We now assume that 0 ∈ N. Let γ ∈ C∞(S1, N) such that γ(0) = x 6= 0. Let

τ : [0; 1] → N be a null-homotopic smooth loop such that τ(0) = Id, τ(1/2) = x, τ(1) = 0,

τ̇(1/2) = γ̇(0) in TxN. Such a loop exists considering a neighborhood in N of a smooth path
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starting from 0 and finishing at x. Let T = {(l, s) ∈ I2|s ≤ l and l > 0. Let ϕ ∈ C∞(T, [0; 1])

such that 

∀l, ϕ(l, 0) = 0

∀l, ϕ(l, l) = 1

∀l, ∂ϕ∂s (l, 0) = 1

∀l, ∂ϕ∂s (l, l) = 1

∀l,∀k > 1, ∂
kϕ
∂sk

(l, 0) = 0

∀l,∀k > 1, ∂
kϕ
∂sk

(l, l) = 0

With the example given in Lemma 3.1, we have that

maxs∈[0;1]
∂ϕ

∂s
(l, s) ≤ 3/l.

Let us consider the family of piecewise smooth paths h ∈ [0; 1] 7→ γh such that

γh(s) =


τ ◦ ϕ(h/2, s) if s ≤ h/2

γ ◦ ϕ(1− h, s− h/2) if h/2 < s < 1− h/2

τ ◦ ϕ(h/2, 1− s) if s ≥ 1− h/2

.

One can check that this is in fact a smooth path, considering the Taylor series at the con-

necting points s = h/2, s = 1− h/2 and s = 0. Let us take the limit when h→ 0.

||γh − γ||2L2(S1,M =

∫ h/2

0
||γh(s)− γ(s)||2Mds+∫ 1−h/2

h/2
||γh(s)− γ(s)||2Mds+

∫ h/2

1−h/2
||γh(s)− γ(s)||2Mds

=

∫ h/2

0
||τ ◦ ϕ(h/2, s)− γ(s)||2Mds+∫ 1−h/2

h/2
||γ ◦ ϕ(1− h, s− h/2)− γ(s)||2Mds+

∫ h/2

1−h/2
||τ ◦ ϕ(h/2, 1− s)− γ(s)||2Mds

≤
h(sups∈[0;1]||τ(s)||+ sups∈[0;1]||γ(s)||)2

2
+

(1− h).

(
hM(1− h)sups∈[0;1]||γ̇(s)||+

3hsups∈[0;1]||γ̇(s)||
2(1− h)

)2

+

h(sups∈[0;1]||τ(s)||+ sups∈[0;1]||γ(s)||)2

2
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So that,

lim
h→0

γh = γ,

which shows that γ is in the L2− closure of C∞0 (S1, N). Thus we get that L2(S1, N) =

L2
0(S1, N). On the other hand, when we take the L2−limit of γh when h → 1, we get with

the same techniques:

lim
h→1

γh = τ ∨ τ−1.

Let us now give another result from the techniques described in the proof of last theorem:

Theorem 3.2. The natural injection C∞0 (S1, N) → L2(S1, N) is homotopic to a constant

map.

Proof. Let γ ∈ C∞0 (S1,M). Let

H(s′, γ)(l) = γ ◦ ϕ(1− s′; l) for 0 ≤ l ≤ 1− s′,

with ϕ defined by Lemma 3.1 that we extend by the constant path on [1− s; 1]. H(0, γ) = γ

and H(1, γ) is the constant loop. For 0 < s′ < 1 H(s, γ) is a piecewise smooth loop, with

only one angular point at l = 1 − s′, and hence is in L2. We have now to get a continuity

property for the map s′ 7→ H(s′, γ). Let s, t such that 0 ≤ s < t ≤ 1 with t− s < s
6 <

t
6 . We

are using in the sequel the following majorations:

• the classical estimate of the Lipschitz constant of a C1 path: ||γ(s) − γ(t)|| ≤ (t −

s)maxs≤l≤t||γ̇(l)||,

• and since S1 is compact, maxs∈[0;1]||γ(s)|| = kγ ≤ +∞

which implies

• on the one hand, since t−s < s
6 <

t
6 , for l ∈ [1− t; 1−s], ∂ϕ∂l (1−s, l) = 1, which implies:∫ 1−s

1−t
||γ ◦ ϕ(1− s; l)− γ(1)||2dl ≤ max0<l<1||γ̇(l)||2

∫ 1−s

1−t
|ϕ(1− s, l)− ϕ(1− s, 1− s)|2dl

≤ (t− s)max0<l<1||γ̇(l)||2

• and on the other hand, setting M(l) the Lipschitz constant of the map φ(., l), :

|ϕ(1−s, l)−ϕ(1−t, l)| ≤M(l)(t−s)⇒ ||γ◦ϕ(1−s, l)−γ◦ϕ(1−t, s)|| ≤M(l)(t−s)max0<l<1||γ̇(l)||.

On the interval [(1− t), (1− s)] ⊂ [0; 1[, we have that M(l) is bounded by a constant noted

ks,t.
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With these two inequalities, we get:

||H(s, γ)−H(t, γ)||2L2(S1,M) =

∫ 1−t

0
||γ ◦ ϕ(1− s; l)− γ ◦ ϕ(1− t; l)||2dl +∫ 1−s

1−t
||γ ◦ ϕ(1− s; l)− γ(1)||2dl

+

∫ 1

1−s
||γ(1)− γ(1)||2dl

≤ ks,t(1− t)(t− s)max0<l<1||γ̇(l)||2

+(t− s)max0<l<1||γ̇(l)||2 + 0

Hence, for a fixed smooth loop γ, s′ 7→ H(s′, γ) ∈ C0(]0; 1];L2(S1,M)). We need to show

continuity at s′ = 0. We get the following inequalities:

||H(0, γ)−H(t, γ)||2L2(S1,M) =

∫ 1

1−t
||γ ◦ ϕ(1− t; l)− γ(1)||2dl

≤ tmax0<l<1||γ̇(l)||2

which completes the continuity in the first parameter. We remark that, for fixed γ, H is not

Lipschitz in the first parameter, since ks,t is not bounded for (s, t) in the neighborhood of

(0; 0).

We now have to show that the map γ 7→ H(s, γ) is continuous for the L2−topology. For

this, we only have to remark the change of coordinates formula:

||γ − τ ||2L2(S1,M) =

∫ 1−s

0
||γ ◦ ϕ(1− s, l)− τ ◦ ϕ(1− s, l)||2∂lϕ(1− s, l)dl.

Since ∂lϕ(1− s, l) > 1 for 0 ≤ l ≤ 1− s, we get

||H(s, γ)−H(s, τ)||2L2(S1,M) =

∫ 1

0
||γ ◦ ϕ(1− s, l)− τ ◦ ϕ(1− s, l)||2dl

=

∫ 1−s

0
||γ ◦ ϕ(1− s, l)− τ ◦ ϕ(1− s, l)||2dl

≤
∫ 1−s

0
||γ ◦ ϕ(1− s, l)− τ ◦ ϕ(1− s, l)||2∂lϕ(1− s, l)dl

≤ ||γ − τ ||2L2(S1,M)

Hence the map γ 7→ H(s, γ) is 1−Lipschitz.

Corollary 3.1. Let k > 1/2. The canonical inclusion i : Hk
0 (S1, N)→ L2(S1, N) induces a

0−map i∗ : H∗(H
k
0 (S1, N))→ H∗(L

2(S1, N)) and i∗ : π∗(H
k
0 (S1, N))→ π∗(L

2(S1, N)).
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Proof. If k > 1/2, the canonical inclusion C∞0 (S1, N)→ Hk
0 (S1, N) is a well-known

homotopy equivalence between smooth manifolds. So that, by Theorem 3.2, we get the result.

We now finish this section with the following result:

Theorem 3.3. Assume that N is connected and compact. Then the space L2(S1, N) is

contractible.

Proof. For convenience of the proof, we assume that 0 ∈ N. LetH(t, γ)(s) = 1s<tγ(s).

• ||H(t, γ)||L2(S1,M) ≤ ||1s<t||L∞(S1,M)||γ||L2(S1,M) = ||γ||L2(S1,M) so that H(t, γ) ∈

L2(S1,M). Remarking that H is linear in the second variable, we get that H(t, .) is smooth

on L2(S1,M).

• Let γ ∈ L2(S1, N). There is a sequence (γn)n∈N ∈ C∞0 (S1, N)N that converges to γ.

Claim: The sequence (H(t, γn))n∈N is in L2(S1, N). For this, for fixed t and n, we consider

reparametrizations of γn for p ∈ N∗ such that t− 1/p < 1 :

δp(s) =


γn(s) if s ≤ t

γn(t+ p(s− t)) if t < s < t+ 1/p

0 otherwise

We have that the sequence (δp) is in the Sobolev class H1, and

||δp −H(t, γn)||L2(S1,M) =

(∫ t+1/p

t
(γn(t+ p(s− t)))2 ds

)1/2

≤
||γn||L2(S1,M)

p

which shows that (δp) converges to γn. Since C∞(S1, N) is dense in H1(S1, N) [14], we get

that (H(t, γn))n∈N is in L2(S1, N).

Now, we have

||H(t, γn)−H(t, γ)||L2(S1,M) ≤ ||γn − γ||L2(S1,M)

So that H(t, γ) ∈ L2(S1, N).

• Let γ ∈ L2(S1, N). For (t′, t′) ∈ [0; 1]2, with t′ > t, we get

||H(t′, γ)−H(t, γ)||L2(S1,M) ≤ ||H(t′, γ)−H(t′, γn)||L2(S1,M)

+||H(t′, γn)−H(t, γn)||L2(S1,M)

+||H(t, γn)−H(t, γ)||L2(S1,M)

≤ 2||γ − γn||L2(S1,M)

+||H(t′, γn)−H(t, γn)||L2(S1,M)
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Now, N is compact so that, k = supx∈N ||x||M < +∞. For this, we get

||H(t′, γn)−H(t, γn)||L2(S1,M) ≤ k||1[t,t′]||L2(S1,M)

= k(t′ − t)

Inserting this last inequality in the previous one, for ε > 0, choose (t′− t) < ε/3k and n such

that ||γ − γn||L2(S1,M) < ε/3, we get that ||H(t′, γ) −H(t, γ)||L2(S1,M) ≤ ε, which shows H

is continuous in the first variable, and ends the proof.

Remark 3.1. The same procedure can be adapted replacing L2(S1, N) by L2(M,N), with

M compact manifold. With the same arguments, one can build the homotopy map with a

smooth Morse function, and mimick line by line the last proof. This proof will be developped

elsewhere, for the sake of unity of the exposition.

4. Riemannian metrics and Hausdorff measures on diffeological spaces

Diffeological spaces and Frölicher spaces will furnish a setting to deal with the differential

geometry of the loop spaces Hs(S1, N). For preliminaries on diffeological spaces and Frölicher

spaces, we refer to [19] and to [17, 20]. For convenience, the necessary material and a

complementary bibliography is given in section 4.1. We now describe an extension of some

basic structures of Riemannian manifolds to diffeological spaces.

4.1. Preliminaries on diffeologies and Frölicher spaces. The objects of the category

of -finite or infinite- dimensional smooth manifolds is made of topological spaces M equipped

with a collection of charts called maximal atlas that enables one to make differentiable

calculus. But in examples of projective limits of manifolds, a differential calculus is needed

as no atlas can be defined. To circumvent this problem which occurs in various frameworks,

several authors have independently developed some ways to define differentiation without

defining charts. We use here two of them. The first one is due to Souriau ([28], see e.g. [19]

for a textbook), the second one is due to Frölicher (see [17], and e.g. [20] for an introduction).

In this section, we review some basics on these notions. A (non exhaustive) complementary

list of reference is [3, 4, 5, 10, 11, 12, 13, 21, 22, 23, 29].

4.1.1. Diffeological spaces and Frölicher spaces.

Definition 4.1. Let X be a set.

• A parametrization of dimension p (or p-plot) on X is a map from an open subset O of

Rp to X.
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• A diffeology on X is a set P of parametrizations on X such that, for all p ∈ N,

- any constant map Rp → X is in P;

- Let I be an arbitrary set; let {fi : Oi → X}i∈I be a family of maps that extend to a map

f :
⋃
i∈I Oi → X. If {fi : Oi → X}i∈I ⊂ P, then f ∈ P.

- (chain rule) Let f ∈ P, defined on O ⊂ Rp. Let q ∈ N, O′ an open subset of Rq and g

a smooth map (in the usual sense) from O′ to O. Then, f ◦ g ∈ P.

• the parametrizations p ∈ P are called the plots of the diffeology P.

• If P is a diffeology X, (X,P) is called a diffeological space.

Let (X,P) et (X ′,P ′) be two diffeological spaces, a map f : X → X ′ is differentiable

(=smooth) if and only if f ◦ P ⊂ P ′.

Remark 4.1. Notice that any diffeological space (X,P) can be endowed with a natural topol-

ogy such that all the maps that are in P are continuous.This topology is called the D−topology

[10].

Remark 4.2. Let f ∈ P, defined on O ⊂ Rp. we call p the dimension of the plot f.

We now introduce Frölicher spaces.

Definition 4.2. • A Frölicher space is a triple (X,F , C) such that

- C is a set of paths R→ X,

- A function f : X → R is in F if and only if for any c ∈ C, f ◦ c ∈ C∞(R,R);

- A path c : R → X is in C (i.e. is a contour) if and only if for any f ∈ F , f ◦ c ∈

C∞(R,R).

• Let (X,F , C) et (X ′,F ′, C′) be two Frölicher spaces, a map f : X → X ′ is differentiable

(=smooth) if and only if F ′ ◦ f ◦ C ∈ C∞(R,R).

Any family of maps Fg from X to R generate a Frölicher structure (X,F , C), setting [20]:

- C = {c : R→ X such that Fg ◦ c ⊂ C∞(R,R)}

- F = {f : X → R such that f ◦ C ⊂ C∞(R,R)}.

A Frölicher space carries a natural topology, which is the pull-back topology of R via

F , see e.g. [5]. In the case of a finite dimensional differentiable manifold, the underlying

topology of the Frölicher structure is the same as the manifold topology. In the infinite

dimensional case, these two topologies differ very often.



24 JEAN-PIERRE MAGNOT∗

In the previous settings, we call X a differentiable space, omitting the structure con-

sidered. Notice that the sets of differentiable maps between two differentiable spaces satisfy

the chain rule. Let us now compare these settings: Let (X,F , C) be a Frölicher space. We

define

P(F) =
∐
p∈N
{ f p- paramatrization on X; F ◦ f ∈ C∞(O,R) (in the usual sense)}.

With this construction, we also get a natural diffeology when (X,F , C) is a Frölicher space,

extension of the “nébuleuse” diffeology of a manifold [19]. In this case, one can easily show

the following:

Proposition 4.1. [22] Let (X,F , C) and (X ′,F ′, C′) be two Frölicher spaces. A map f :

X → X ′ is smooth in the sense of Frölicher if and only if it is smooth for the underlying

diffeologies.

Thus, we can state in an intuitive but comprehensive way:

smooth manifold ⇒ Frölicher space ⇒ Diffeological space

4.1.2. Frölicher completion of a diffeological space. We now finish the comparison of the

notions of diffeological and Frölicher space following mostly [29]:

Theorem 4.1. Let (X,P) be a diffeological space. There exists a unique Frölicher structure

(X,FP , CP) on X such that for any Frölicher structure (F , C) on X, these two equivalent

conditions are fulfilled:

(i) the canonical inclusion is smooth in the sense of Frölicher (X,FP , CP)→ (X,F , C)

(ii) the canonical inclusion is smooth in the sense of diffeologies (X,P)→ (X,P(F)).

Moreover, FP is generated by the family

F0 = {f : X → R smooth for the usual diffeology of R}.

Proof. Let (X,F , C) be a Frölicher structure satisfying (ii). Let p ∈ P of domain O.

F ◦ p ∈ C∞(O,R) in the usual sense. Hence, if (X,FP , CP) is the Frölicher structure on X

generated by the set of smooth maps (X,P)→ R, we have two smooth inclusions

(X,P)→ (X,P(FP)) in the sense of diffeologies

and

(X,FP , CP)→ (X,F , C) in the sense of Frölicher.

Proposition 4.1 ends the proof.
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Definition 4.3. [29] A reflexive diffeological space is a diffeological space (X,P) such that

P = P(FP).

Theorem 4.2. [3, 29] The category of Frölicher spaces is exactly the category of reflexive

diffeological spaces.

This last theorem allows us to make no difference between Frölicher spaces and reflexive

diffeological spaces. We shall call them Frölicher spaces, even when working with their

underlying diffeologies.

4.1.3. Push-forward, quotient and trace. We give here only the results that will be used in

the sequel.

Proposition 4.2. [22] Let (X,P) be a diffeological space, and let X ′ be a set. Let f : X → X ′

be a surjective map. Then, the set

f(P) = {u such that u restricts to some maps of the type f ◦ p; p ∈ P}

is a diffeology on X ′, called the push-forward diffeology on X ′ by f .

Let X0 ⊂ X, where X is a Frölicher space or a diffeological space, we can define on trace

structure on X0, induced by X.

• If X is equipped with a diffeology P, we can define a diffeology P0 on X0 setting

P0 = {p ∈ Psuch that the image of p is a subset of X0}.

• If (X,F , C) is a Frölicher space, we take as a generating set of maps Fg on X0 the

restrictions of the maps f ∈ F . In that case, the contours (resp. the induced diffeology) on

X0 are the contours (resp. the plots) on X which image is a subset of X0.

4.1.4. Cartesian products and projective limits.

Proposition 4.3. Let (X,P) and (X ′,P ′) be two diffeological spaces. We call product

diffeology on X ×X ′ the diffeology P × P ′ made of plots g : O → X ×X ′ that decompose

as g = f × f ′, where f : O → X ∈ P and f ′ : O → X ′ ∈ P ′.

In the case of a Frölicher space, we derive very easily, compare with e.g. [20]:

Proposition 4.4. Let (X,F , C) and (X ′,F ′, C′) be two Frölicher spaces, with natural diffe-

ologies P and P ′ . There is a natural structure of Frölicher space on X ×X ′ which contours

C × C′ are the 1-plots of P × P ′.
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We can even state the same results in the case of infinite products, in a very trivial way by

taking the cartesian products of the plots or of the contours. Let us now give the description

of what happens for projective limits of Frölicher and diffeological spaces.

Proposition 4.5. Let Λ be an infinite set of indices, that can be uncoutable.

• Let {(Xα,Pα)}α∈Λ be a family of diffeological spaces indexed by Λ totally ordered for

inclusion, with (iβ,α)(α,β)∈Λ2 a family of diffeological maps . If X =
⋂
α∈ΛXα, X carries

the projective diffeology P which is the pull-back of the diffeologies Pα of each Xα via the

family of maps (fα)α∈Λ. The diffeology P made of plots g : O → X such that, for each α ∈ Λ,

fα ◦ g ∈ Pα.

This is the biggest diffeology for which the maps fα are smooth.

• Let {(Xα,Fα, Cα)}α∈Λ be a family of Frölicher spaces indexed by Λ totally ordered for

inclusion, with (iβ,α)(α,β)∈Λ2 a family of differentiable maps . with natural diffeologies Pα.

There is a natural structure of Frölicher space X =
⋂
α∈ΛXα, which contours

C =
⋂
α∈Λ

Cα

are the 1-plots of P =
⋂
α∈Λ Pα. A generating set of functions for this Frölicher space is the

set of maps of the type: ⋃
α∈Λ

Fα ◦ fα.

4.1.5. Differential forms on a diffeological space and differential dimension.

Definition 4.4. [28] Let (X,P) be a diffeological space and let V be a vector space equipped

with a differentiable structure. A V−valued n−differential form α on X (noted α ∈ Ωn(X,V ))

is a map

α : {p : Op → X} ∈ P 7→ αp ∈ Ωn(p;V )

such that

• Let x ∈ X. ∀p, p′ ∈ P such that x ∈ Im(p) ∩ Im(p′), the forms αp and αp′ are of the

same order n.

• Moreover, let y ∈ Op and y′ ∈ Op′ . If (X1, ..., Xn) are n germs of paths in Im(p)∩Im(p′),

if there exists two systems of n−vectors (Y1, ..., Yn) ∈ (TyOp)
n and (Y ′1 , ..., Y

′
n) ∈ (Ty′Op′)

n,

if p∗(Y1, ..., Yn) = p′∗(Y
′

1 , ..., Y
′
n) = (X1, ..., Xn),

αp(Y1, ..., Yn) = αp′(Y
′

1 , ..., Y
′
n).
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Denote by

Ω(X;V ) = ⊕n∈NΩn(X,V )

the set of V−valued differential forms.

With such a definition, we feel the need to make two remarks for the reader:

• If there does not exist n linearly independent vectors (Y1, ..., Yn) defined as in the last

point of the definition, αp = 0 at y.

• Let (α, p, p′) ∈ Ω(X,V ) × P2. If there exists g ∈ C∞(D(p);D(p′)) (in the usual sense)

such that p′ ◦ g = p, then αp = g∗αp′ .

Proposition 4.6. The set P(Ωn(X,V )) made of maps q : x 7→ α(x) from an open subset Oq

of a finite dimensional vector space to Ωn(X,V ) such that for each p ∈ P,

{x 7→ αp(x)} ∈ C∞(Oq,Ω
n(Op, V )),

is a diffeology on Ωn(X,V ).

Working on plots of the diffeology, one can define the product and the differential of

differential forms, which have the same properties as the product and the differential of

differential forms.

Definition 4.5. Let (X,P) be a diffeological space.

• (X,P) is finite-dimensional at x if and only if

∃n0 ∈ N, ∀n ∈ N, n ≥ n0 ⇒ dim(Ωn(X,R)) = 0

Then, we set

dim(X,P) = max{n ∈ N|dim(Ωn(X,R)) > 0}.

• If not, (X,P) is called infinite dimensional.

Let us make a few remarks on this definition. If X is a manifold with dim(X) = n, the

natural diffeology as described in section 4.1.1 (also called “nébuleuse” diffeology) is such

that

dim(X,P0) = n.

Now, if (X,F , C) is the natural Frölicher structure on X, take P1 generated by the maps of

the type g ◦c, where c ∈ C and g is a smooth map from an open subset of a finite dimensional

space to R. This is an easy exercise to show that

dim(X,P1) = 1.
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This first point shows that the dimension depends on the diffeology considered. This leads

to the following definition, since P(F) is clearly the diffeology with the biggest dimension

associated to (X,F , C):

Definition 4.6. The dimension of a Frölicher space (X,F , C) is the dimension of the

diffeologial space (X,P(F)).

4.2. Riemannian diffeological spaces.

Definition 4.7. Let (X,P) be a diffeological space. A Riemannian metric g on X (noted

g ∈Met(X)) is a map

g : {p : Op → X} ∈ P 7→ gp

such that

(1) x ∈ Op 7→ gp(x) is a smooth section of the bundle of symmetric bilinear forms on

TOp

(2) let y ∈ Op and y′ ∈ Op′ such that p(y) = p′(y′). If (X1, X2) is a pair of germs of

paths in Im(p) ∩ Im(p′), if there exists two systems of 2−vectors (Y1, Y2) ∈ (TyOp)
2

and (Y ′1 , Y
′

2) ∈ (Ty′Op′)
2, if p∗(Y1, Y2) = p′∗(Y

′
1 , Y

′
2) = (X1, X2),

gp(Y1, Y2) = gp′(Y
′

1 , Y
′

2).

(3) for each non zero germ of smooth path Y,

g(Y, Y ) > 0.

(X,P, g) is a Riemannian diffeological space if g is a metric on (X,P). If condition (3)

is not everywhere fulfilled, we call it pseudo-Riemannian diffeological space.

For any germ of path X we note ||X|| =
√
g(X,X).

Definition 4.8. We call arc length the map L : C∞([0; 1], X)→ R+ defined by

L(γ) =

∫ 1

0
||γ̇(t)||dt.

Let (x, y) ∈ X2. We define

dg(x, y) = inf {L(γ)|γ(0) = x ∧ γ(1) = y}

and we call Riemannian pseudo-distance the map d : X × X → R+ that we have just

described.
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The following proposition justifies the terms “pseudo-distance”:

Proposition 4.7. (1) ∀x ∈ X, dg(x, x) = 0.

(2) ∀(x, y) ∈ X2, dg(x, y) = dg(y, x)

(3) ∀(x, y, z) ∈ X3, dg(x, z) ≤ dg(x, y) + dg(y, z).

Proof. The proofs are standard, let us recall the main arguments. For 1, the constant

path gives the minimum. For 2, the reverse parametrization t 7→ 1−t defines a transformation

from the paths from x to y to the paths from y to x under which L is invariant. For 3, the

paths passing by y are only a part of the set of paths from x to z.

One could wonder whether d is a distance or not, i.e. if we have the stronger property:

∀(x, y) ∈ X2, dg(x, y) = 0⇔ x = y.

Unfortunately, it seems to appear in examples arising from infinite dimensional geometry

that there can have a distance which equals to 0 for x 6= y. This is what is described on

e.g. a weak Riemannian metric of a space of proper immersions in the work of Michor and

Mumford [24]. Moreover, the D-topology is not the topology defined by the pseudo-metric d.

All these facts, which show that the situation on Riemannian diffeological spaces is different

from the one known on finite dimensional manifolds, are checked in the following remark.

Remark 4.3. Let Y =
∐
i∈N∗ Ri , where Ri is the i−th copy of R, equipped with its natural

scalar product. Let R be the equivalence relation

xiRxj ⇔


(xi /∈]0; 1

i [∧xj /∈]0; 1
j [)⇒

 xi = xj if xi ≤ 0

xi + 1− 1
i = yj + 1− 1

j if xi ≥ 1
i

(xi ∈]0; 1
i [∨xj ∈]0; 1

j [)⇒ i = j ∧ xi = xj

Let X = Y/R. This is a 1-dimensional Riemannian diffeological space. Let 0̄ be the class

of 0 ∈ R1, and let 1̄ be the class of 1 ∈ R1. Then dg(0̄, 1̄) = 0. This shows that dg is not

a distance on X. In the D−topology, 0̄ and 1̄ respectively have the following disconnected

neighborhoods:

U0̄ =

{
x̄i|xi <

1

2i

}
and

U1̄ =

{
x̄i|xi >

1

2i

}
.

This shows that d does not define the D−topology.

This leads to the following definition:
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Definition 4.9. A Frölicher-strong or arc-length-strong Riemannian metric is a Rie-

mannian metric g for which d is a distance.

We have to notice that this notion is not the same as the notion of strong Riemannian

metric on a Hilbert vector bundle. Based on the arc-length pseudo-distance d; the termi-

nology “arc-length strong” appears to us as very natural. However, since (smooth) paths are

the contours of the Frölicher structure, and since they generate the Frölicher structure itself,

we get the intuition that the notion of arc-length strong metric is itself intrinsically related

to the Frölicher structure under consideration. This is the reason why we propose also the

terminology “Frölicher-strong” that we shall use all along the text.

4.3. Volume and diffeologies. On a (finite dimensional) Riemannian manifold M, the

notion of Riemannian volume is related to the dimension of the manifold, and to the notion

of volume form ωM . on the one hand, if the Riemannian manifold M is viewed now as a

Frölicher space, with underlying diffeology P, we have that

∀f ∈ P, f∗ωM = 0⇔ Dimension of f < dimM.

On the other hand, if f ∈ P is an embedding O → M, and if O is an open domain of

dimension p, f(O) is a submanifold of M and it can be equipped with the p−dimensional

Hausdorff measure induced by the geodesic distance on O, and we have:

Proposition 4.8. Assume that O ⊂ Rm is a n−dimensional submanifold. The Hausdorff

dimension of O is n and, for any relatively open subset U ⊂ O, if Hn is the n−dimensional

Hausdorff measure in Rm,

Hn(U) =

∫
U
ωO.

We remark that, given a chart O on M, O is equipped with the standard Lebesgue volume

dλ = ωO, and M is equipped with the Riemannian volume ωM , on O,

ωM =
√
detg.dλ

and hence, if U is a n-dimensional submanifold of O, noting iu the canonical injection U → O,

we can define

HnM (U) =

∫
U

√
det(i∗g)dHn.

This corresponds to the n dimensional Hausdorff measure with respect to M viewed as a

metric space. As a consequence, a Riemannian manifold does not only carry one volume
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measure, but a family of measures on the plots of its diffeology. If f is a ndimensional plot

of the diffeology of M, we define Hf = f∗HnM . This property is stable under composition

of plots, reparametrization, gluing. This leads to the following on Riemannian diffeological

spaces:

Definition 4.10. Let (X,P) be a diffeological space. The Hausdorff diffeological volume

associated to a Riemannian metric is the collection {Hp; p ∈ P} of dim(D(p)) Hausdorff

measures on the domains D(p).

Let us remark that:

• if det(p∗g) > 0 on D(p), the domain of p, thenHp is dim(D(p))-dimensional Hausdorff

measures on D(p) induced by the Riemannian distance on D(p) ⊂ X.

• for any (p, p′) ∈ P2 of same dimension, if p′ = f ◦ p, H′p = f∗Hp.

• If there exists x ∈ D(p) such that det(p∗gx) = 0, the definition of the Hausdorff

metric via the (pseudo)-distance on D(p) remains valid [15].

We have here to remark that the Riemannian metric needs not to be Frölicher-strong,

because this is the induced Riemannian metric on each D(p) which defines the Hausdorff

measure, one should say on the (classical) Riemannian manifold D(p).

4.4. On ∞− p forms and volume forms. This section is based on ideas from A. Asada

[1, 2] adapted to the context of a diffeological space .

Definition 4.11. Let (X,P) be a Riemannian diffeological space. An orientable plot on

X is a plot p ∈ P, dim(p) = n, such that there exists a n-form ωn ∈ Ωn(X,R) such that

p∗hp = ωn, where hp is a n−form on D(p), that induces the Hausdorff measure Hp. The

space of orientable plots of the diffeology P is noted O(P).

Proposition 4.9. Let X be a smooth n-dimensional compact manifold, equipped with its

nébuleuse diffeology P. X is orientable if and only if there exists a n-plot p ∈ P, surjective,

such that p ∈ O(P).

The proof is straightforward, setting a Riemannian metric g on X, and using the expo-

nential map to define the plot p.

Example 4.1. Let X = Sn, n ≥ 1. Let P, P ′ be two antipodal points. The mapping expP :

TPS
n → Sn has an injectivity radius r = π. The cut locus is P ′. Thus, considering the
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open ball B(0, 3π/2) ⊂ TPSn and the plot p : expP |B(0,3π/2), we get the construction, even if

p∗ωSn = 0 on p−1(P ′) (here, ωSn is the canonical volume form on Sn).

Example 4.2. Let X ′ =]0; 1[×[0; 1], let ∼ be the relation of equivalence on X ′ defined by

(t, 0) ∼ (1 − t, 1) and let X = X ′/ ∼ be the (open) Möbius band. The mapping p :]0; 1[×] −

1/2; 3/2[→ X ′ defined by

p(x, y) =


(x, y + 1) if x < 0

(x, y) if x ∈ [0; 1]

(x, y − 1) if x > 1

is a 2-dimensional plot such that the trace of the canonical Lebesgue measure cöıncides with

Hp, but for which there exists no 2-form ω2 on X ′ such that p∗λ = ω2 where λ is the canonical

Lebesgue measure on ]0; 1[×]− 1/2; 3/2[, because ω2 should be non zero everywhere.

After these examples, let us turn to the key definition :

Definition 4.12. Let (X,P) be a Riemannian diffeological space with set of oriented plots

OP. We call volume form of X a collection of forms

p ∈ OP 7→ ωp ∈ ΩdimD(P )(D(p),R)

such that

- the form ωp defines the dim(D(p))− Hausdorff measure on D(p)

- if p and p′ are oriented n−plots such that p′ = p ◦ f, then ω′p = f∗ωp

Definition 4.13. Let (X,P) be a Riemannian diffeological space with volume form ω. Let

q ∈ N. A (∞− q)−form is a collection

p ∈ OP 7→ ωp ∈ ΩdimD(P )−q(D(p),R)

such that there exists a q−form β ∈ Ωq(X,R) such that

∀p ∈ OP, αp ∧ p∗β = ωp.

For the consistency of the definition, if q > dim(p) or if ωp = 0, we set αp = 0.

With such a definition, a volume form is a (∞− 0)−form. We note by Ω(∞−q)(X,R) the

space of (∞− q)−forms.
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5. Hs(S1, N) as a Riemannian diffeological space

5.1. Settings.

Proposition 5.1. Let s ≤ 1/2.. Then Hs(S1, N) and Hs
0(S1, N) are Riemannian Frölicher

spaces. The same holds for N = G.

Proof. Hs(S1,M) is equipped with its natural underlying structure of Hilbert

space, which carries a natural structure of Frölicher space. As subsets, Hs(S1, N) and

Hs
0(S1, N) are equipped with the reflexive completion of their trace diffeology. So that, they

are Frölicher spaces. The natural Hilbert structure on Hs(S1,M) induces a Riemannian

metric on Hs(S1, N).

Proposition 5.2. Hs(S1, N) is Frölicher-strong for s ∈ R.

Proof. Let γ be a smooth path in Hs(S1, N) ⊂ Hs(S1,M). Then the length of γ is

bounded below by ||γ(1)− γ(0)||Hs(S1,M)

Let us now give a result for the extension of the multiplication of loop groups. For this,

we define the space

H1/2,+(S1, G) =
⋃

s>1/2

Hs(S1, G)

Lemma 5.1. The space H1/2,+(S1, G) is a Lie group modeled on a locally convex vector

space.

Proof. For each s > 1/2, we have Hs(S1, G) ⊂ C0(S1, G) and the usual (exponential)

atlas on Hs(S1, G) is induced by the atlas on C0(S1, G), see [14, 27] for the details. Then,

following [18], we get the result.

Proposition 5.3. Let k > 1/2 and let s ≤ k. The natural action C∞(S1, G)×C∞(S1, G)→

C∞(S1, G) extends to a smooth action

Hk(S1, G)×Hs(S1, G)→ Hs(S1, G),

and for s ≤ 1/2, to a smooth action

H1/2,+(S1, G)×Hs(S1, G)→ Hs(S1, G).

Proof. Since G ⊂ M, with smooth inclusion and trace diffeology, it is sufficient

to remark that this theorem is an application of the standard “multiplication theorem’ of
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Sobolev classes, which states that the multiplication, with the coefficients defined as above,

is a bilinear continuous map.

5.2. H
1/2
0 (S1, N) and symplectic forms. We use here the following property: let

∫
S1(.; .)

be the L2 scalar product. Then this scalar product coincides with the duality pairing between

Hs
0 and H−s = (Hs

0)′ (topological dual) for s > 0 on C∞(S1,M).

Let γ ∈ H1/2
0 (S1,M). Then:

Lemma 5.2. γ̇ ∈ H−1/2(S1,M) and the canonical 1-form

θ(X) =

∫
S1

(γ̇, X)

defined first for γ ∈ C∞0 (S1,M) and X ∈ C∞(S1,M) extends to a 1-forms on H
1/2
0 (S1,M).

Proof. Since γ ∈ H1/2
0 (S1,M), differentiation is a differential operator of order 1

and hence γ̇ ∈ H1/2−1(S1,M) = H−1/2(S1,M) and the map γ 7→ γ̇ is smooth. Let us recall

that H
1/2
0 (S1,M) is a vector space, and in particular a flat Hilbert manifold. Its tangent

bundle is then identified canonically with the product:

TH
1/2
0 (S1,M) = H

1/2
0 (S1,M)×H1/2

0 (S1,M).

By the way, a tangent vector X at γ ∈ H
1/2
0 (S1,M) is identified with an element of

H
1/2
0 (S1,M). By the pairing of dual spaces

H−1/2 ×H1/2
0 → R,

the formula

θ(X) =

∫
S1

(γ̇, X)

extends smoothly for (γ,X) ∈
(
H

1/2
0 (S1,M)

)2
.

So that,

Theorem 5.1. The symplectic 2-form on the based loop space C∞0 (S1, N) defined by

ωN (X,Y ) = dθ(X,Y ) =

∫
S1

(
∇N

ds
X(s), Y (s)

)
ds

extends to a 2-form on H
1/2
0 (S1, N).

Proof. The 1-form θ ∈ Ω1(H
1/2
0 (S1,M),R) restricts to a 1-form on H

1/2
0 (S1, N).

Following [28, 19], the 2-form ωN = dθ is well-defined on H
1/2
0 (S1, N) and restricting to

C∞0 (S1, N), by the formula ωN = dθ which still holds, we recover the usual symplectic form

of the based loop space [30].
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This is also the case when N = G. On C∞0 (S1, G), the vector field γ̇ is not left-invariant.

We know that, on the based loop group, there is another symplectic form, which is not exact,

defined for left-invariant vector fields X and Y by

ωG(X,Y ) =

∫
S1

(
dX(s)

ds
, Y (s)

)
ds.

But the 2-form ωG does not seem to extend toH
1/2
0 (S1, G) because the full spaceH

1/2
0 (S1, G)

is not a group. The biggest known group in H
1/2
0 (S1, G) is H

1/2
0 (S1, G)∩C0(S1, G), see [27].
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tion. Modern Birkhäuser Classics. Basel: Birkhäuser 2008
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