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ON THE GEOMETRY OF CONFORMAL ANTI-INVARIANT

ξ⊥−SUBMERSIONS

MEHMET AKIF AKYOL∗ AND YILMAZ GÜNDÜZALP

Abstract. Lee [Anti-invariant ξ⊥− Riemannian submersions from almost contact mani-

folds, Hacettepe Journal of Mathematics and Statistic, 42(3), (2013), 231-241.] defined and

studied anti-invariant ξ⊥−Riemannian submersions from almost contact manifolds. The

main goal of this paper is to consider conformal anti-invariant ξ⊥−submersions (it means

the Reeb vector field ξ is a horizontal vector field) from almost contact metric manifolds onto

Riemannian manifolds as a generalization of anti-invariant ξ⊥−Riemannian submersions.

More precisely, we obtain the geometries of the leaves of kerπ∗ and (kerπ∗)
⊥, including

the integrability of the distributions, the geometry of foliations, some conditions related to

totally geodesicness and harmonicty of the submersions. Finally, we show that there are

certain product structures on the total space of a conformal anti-invariant ξ⊥−submersion.

1. Introduction

In the 1960s, B. O’Neill [22] and A. Gray [16] independently studied the notion of Rie-

mannian submersions between Riemannian manifolds. In [31], B. Watson defined almost

Hermitian submersions, meaning submersions defined on the Riemannian submersions be-

tween almost Hermitian manifolds. The author showed that the Riemannian submersion is

also an almost complex mapping and consequently the horizontal and vertical distributions
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are invariant with respect to the tensor field of type (1, 1) of the total space.

In [28], B. Sahin defined anti-invariant Riemannian submersions from almost Hermitian

manifolds onto Riemannian manifolds. We refer to some papers ([5], [15], [24], [26], [29])

related to the notion and the book [30]. The notion of almost contact Riemannian submer-

sions between almost contact metric manifolds initiated by Chinea in [10]. He obtained the

differential geometric properties among total space, fibers and base spaces.

One the other hand, Fuglede [11] and Ishihara [17], as a generalization of Riemannian

submersion, introduced independently horizontally conformal submersions (see also: [4], [13],

[23]). Gudmundsson and Wood [14], as a generalization of holomorphic submersions, defined

the notion of conformal holomorphic submersions and obtained necessary and sufficient con-

ditions for conformal holomorphic submersions to be a harmonic morphism (see also [7], [8]

and [9]). Recently, the first author of that paper in [1] considered conformal anti-invariant

submersions, meaning submersions defined on cosymplectic manifolds such that the vertical

distribution is anti invariant with respect to the almost contact structure (see also: [18],

[19]). In this paper, we consider conformal anti-invariant ξ⊥−submersions from an almost

contact metric manifold under the assumption that the fibers are anti-invariant with respect

to the tensor field of type (1, 1) of the almost contact manifold.

The paper is organized as follows. Section 2, we give some basic notions related to al-

most contact metric manifolds and conformal submersions. In third section, we introduce

conformal anti-invariant ξ⊥−submersions from almost contact metric manifolds onto Rie-

mannian manifolds, and give main results for the geometry of a conformal anti-invariant

ξ⊥−submersion. The last section, we show that there are certain product structures on the

total space of a conformal anti-invariant ξ⊥−submersion.

2. Preliminaries

In this paper, all manifolds, vector fields and maps are assumed to be smooth unless

otherwise stated.

2.1. Almost contact metric manifolds. Let (M, gM ) be an almost contact metric man-

ifold with structure tensors (φ, ξ, η, gM ) where φ is a tensor field of type (1,1), ξ is a Reeb

vector field, η is a 1-form and gM is the Riemannian metric on M. Then these tensors satisfy

[3]

φξ = 0, ηoφ = 0, η(ξ) = 1 (2.1)
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φ2 = −I + η ⊗ ξ and gM (φX, φY ) = gM (X,Y )− η(X)η(Y ), (2.2)

where I denotes the identity endomorphism of TM and X,Y are any vector fields on M .

Moreover, if M is Sasakian [27], then we have

(∇Xφ)Y = −gM (X,Y )ξ + η(Y )X and ∇Xξ = φX, (2.3)

where ∇ is the connection of Levi-Civita covariant differentiation.

2.2. Conformal submersions. Let ϕ : (Mm, gM ) −→ (Nn, gN ) be a smooth map between

Riemannian manifolds, and let q ∈M . Then ϕ is called horizontally weakly conformal or semi

conformal at q [4] if either (i) dϕq = 0, or (ii) dϕq maps horizontal space Hq = (ker(dϕq))
⊥

conformally onto Tϕ∗N , i.e., dϕq is surjective and there exists a number Λ(q) 6= 0 such that

gN (dϕqX, dϕqY ) = Λ(q)gM (X,Y ) (X,Y ∈ Hq).

We call the point q is of type (i) as a critical point if it satisfies the type (i), and we shall

call the point q a regular point if it satisfied the type (ii). At a critical point, dϕq has rank

0; at a regular point, dϕq has rank n and ϕ is submersion. Also, the number Λ(q) is called

the square dilation (of ϕ at q). The map ϕ is called horizontally weakly conformal or semi

conformal (on M) if it is horizontally weakly conformal at every point of M and it has no

critical point, then we call it a (horizontally conformal submersion).

A vector field Z ∈ Γ(TM) is called a basic vector field if Z ∈ Γ((kerπ∗)
⊥) and π−related

with a vector field Z̄ ∈ Γ(TN) which means that (π∗qZq) = Z̄(π(q)) ∈ Γ(TN) for any

q ∈ Γ(TM).

O’Neill’s tensors T and A defined for any E,F ∈ Γ(TM) as follows;

AEF = V∇HEHF +H∇HEVF (2.4)

TEF = H∇VEVF + V∇VEHF (2.5)

where V and H are the vertical and horizontal projections (see [12]). And also, by using (2.4)

and (2.5), for X,Y ∈ Γ((kerπ∗)
⊥) and V,W ∈ Γ(kerπ∗), we have

∇VW = TVW + ∇̂VW (2.6)

∇VX = H∇VX + TVX (2.7)

∇XV = AXV + V∇XV (2.8)

∇XY = H∇XY +AXY (2.9)
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where ∇̂VW = V∇VW . If X is basic, then H∇VX = AXV . Then it is well-know that

−g(AXE,F ) = g(E,AXF ) and − g(TVE,F ) = g(E, TV F )

for all E,F ∈ TxM . T is exactly the second fundamental form of the fibres of π. For the

special case when π is horizontally conformal we have the following:

Proposition 2.1. ([13]) Let π : (Mm, g) −→ (Nn, h) be a horizontally conformal submersion

with dilation λ and X,Y be horizontal vectors, then

AXY =
1

2
{V[X,Y ]− λ2g(X,Y )gradV(

1

λ2
)}. (2.10)

Definition 2.1. Let (M, gM ) and (N, gN ) be Riemannian manifolds and suppose that π :

M −→ N is a smooth map between them. The second fundamental form of π is given by

(∇π∗)(X,Y ) = ∇πXπ∗(Y )− π∗(∇MX Y ) (2.11)

for any X,Y ∈ Γ(TM), where ∇π is the pullback connection. It is obvious that the second

fundamental form (∇π∗) is symmetric.

Lemma 2.1. [32] Let (M, gM ) and (N, gN ) be Riemannian manifolds and suppose that ϕ :

M −→ N is a smooth map between them. Then we have

∇ϕXϕ∗(Y )−∇ϕY ϕ∗(X)− ϕ∗([X,Y ]) = 0

for X,Y ∈ Γ(TM).

Remark 2.1. From Lemma 2.1, for any X is basic vector field and Y ∈ Γ(kerπ∗), we obtain

[X,V ] ∈ Γ(kerπ∗). So, in this paper we assume that all horizontal vector fields are basic

vector fields.

Recall that π is called harmonic if the tension field τ(π) = trace(∇π∗) = 0. (for details,

see [4]).

Lemma 2.2. [4] Let π : M −→ N be a horizontally conformal submersion. Then, we have

(a) (∇π∗)(X,Y ) = X(lnλ)π∗Y + Y (lnλ)π∗X − g(X,Y )π∗(∇ lnλ);

(b) (∇π∗)(V,W ) = −π∗(TVW );

(c) (∇π∗)(X,V ) = −π∗(∇MX V ) = −π∗(AXV )

for any V ∈ Γ(kerπ∗) and X,Y ∈ (kerπ∗)
⊥.
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Finally, we will mention the following from [25].

Let g1 be a Riemannian metric tensor on the manifold N = M1×M2 and assume that the

canonical foliations DM1 and DM2 intersect perpendiculary everywhere. Then g is the metric

tensor of a usual product of Riemannian manifolds ⇐⇒ DM1 and DM2 are totally geodesic

foliations.

3. Conformal anti-invariant ξ⊥−submersions

In this section, we first define conformal anti-invariant ξ⊥−submersions from an almost

contact metric manifold onto a Riemannian manifold and derive the integrability of dis-

tributions, the geometry of foliations, some conditions related to totally geodesicness and

harmonicity of the map. First of all, we give the definition of the submersion as follows:

Definition 3.1. Let (M,φ, ξ, η, gM ) be an almost contact metric manifold and (N, gN ) be

a Riemannian manifold. We suppose that there exist a horizontally conformal submersion

π : M −→ N such that ξ is normal to kerπ∗ and kerπ∗ is anti-invariant with respect to φ,

i.e., φ(kerπ∗) ⊂ (kerπ∗)
⊥. Then we say that π is a conformal anti-invariant ξ⊥−submersion.

Assume that if π : (M,φ, ξ, η, gM ) −→ (N, gN ) is a conformal anti-invariant ξ⊥−submersion

from a Sasakian manifold (M,φ, ξ, η, gM ) to a Riemannian manifold (N, gN ). Then from

Definition 3.1, we have φ(kerπ∗)
⊥ ∩ kerπ∗ 6= 0. We denote the complementary orthogonal

distribution to φ(kerπ∗) in (kerπ∗)
⊥ by µ. Then we write

(kerπ∗)
⊥ = φ(kerπ∗)⊕ µ. (3.12)

Here, µ is an invariant distribution of (kerπ∗)
⊥, with respect to φ and contains ξ. Given

X ∈ Γ((kerπ∗)
⊥), we have

φX = BX + CX, (3.13)

where BX ∈ Γ(kerπ∗) and CX ∈ Γ(µ). On the other hand, since π∗((kerπ∗)
⊥) = TN

and π is a conformal submersion, using (3.13) we obtain λ−2gN (π∗φV, π∗CX) = 0 for any

X ∈ Γ((kerπ∗)
⊥) and V ∈ Γ(kerπ∗), which implies that

TN = π∗(φkerπ∗)⊕ π∗(µ). (3.14)

Remark 3.1. We note that every anti-invariant ξ⊥−submersion from an almost contact

manifold onto a Riemannian manifold is a conformal anti-invariant ξ⊥−submersion with

λ = 1 [20].
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Lemma 3.1. Let π be a conformal anti-invariant ξ⊥-submersion from a Sasakian manifold

(M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then we have

AXξ = −BX, (3.15)

TV ξ = 0, (3.16)

gM (CY, φW ) = 0, (3.17)

gM (∇MX CY, φW ) = −gM (CY, φAXW ) (3.18)

for Y, ξ,X ∈ Γ((kerπ∗)
⊥) and W ∈ Γ(kerπ∗).

Proof. By using (2.3), (2.9) and (3.13) we have (3.15). Using (2.3) and (2.7) we get

(3.16). Given Y ∈ Γ((kerπ∗)
⊥), W ∈ Γ(kerπ∗) and using (2.2), we have

gM (CY, φW ) = gM (φY −BY, φW ) = gM (φY, φW ) = gM (Y,W )+η(Y )η(W ) = gM (Y,W ) = 0,

due to BY ∈ Γ(kerπ∗) and φW, ξ ∈ Γ((kerπ∗)
⊥). Differentiating (3.17) with respect to X,

we get

gM (∇MX CY, φW ) = −gM (CY,∇MX φW )

= −gM (CY, (∇MX φ)W )− gM (CY, φ(∇MXW ))

= −gM (CY, φ(∇MXW ))

= −gM (CY, φAXW )− gM (CY, φV∇MXW )

= −gM (CY, φAXW )

due to φV∇MXW ∈ Γ(φkerπ∗). One can easily obtain the others.

As we know the distribution kerπ∗ is integrable, we only deal with the integrability of the

distribution (kerπ∗)
⊥ and the geometry of the distributions.

Theorem 3.1. Let π : (M,φ, ξ, η, gM ) −→ (N, gN ) be a conformal anti-invariant ξ⊥−submersion.

Then the following conditions are equivalent to each other;

(a) The distribution (kerπ∗)
⊥ is integrable,

(b) λ−2gN (∇Nπ∗Y π∗CX −∇
π
Xπ∗CY, π∗φW ) = gM (AXBY −AY BX − CY (lnλ)X + CX(lnλ)Y

− 2gM (CX,Y ) lnλ− η(Y )X + η(X)Y, φW )

for any Y,X ∈ Γ((kerπ∗)
⊥) and W ∈ Γ(kerπ∗).
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Proof. In view of (2.2) and (2.3), we get

gM (∇MX Y,W ) = gM (∇MX φY, φW )− η(Y )gM (X,φW ) (3.19)

for any X,Y ∈ Γ((kerπ∗)
⊥) and W ∈ Γ(kerπ∗). Then, using (3.13) and (3.19), we find

gM ([X,Y ],W ) = gM (∇MX φY, φW )− gM (∇MY φX, φW )− η(Y )gM (X,φW ) + η(X)gM (Y, φW )

= gM (∇MX BY, φW ) + gM (∇MX CY, φW )− gM (∇MY BX,φW )− gM (∇MY CX,φW )

− η(Y )gM (X,φW ) + η(X)gM (Y, φW ).

Using the property of π and (2.8) we derive

gM ([X,Y ],W ) = gM (AXBY −AY BX,φW ) + λ−2gN (π∗(∇MX CY ), π∗φW )

− λ−2gN (π∗(∇MY CX), π∗φW )− η(Y )gM (X,φV ) + η(X)gM (Y, φW ).

Hence, from (2.11) and Lemma 2.2 we get

gM ([X,Y ],W ) = gM (AXBY −AY BX,φW )− gM (H∇ lnλ,X)gM (CY, φW )

− gM (H∇ lnλ, CY )gM (X,φW ) + gM (X, CY )gM (H∇ lnλ, φW )

+ λ−2gN (∇Nπ∗Xπ∗CY, π∗φW ) + gM (H∇ lnλ, Y )gM (CX,φW )

+ gM (H∇ lnλ, CX)gM (Y, φW )− gM (Y, CX)gM (H∇ lnλ, φW )

− λ−2gN (∇Nπ∗Y π∗CX,π∗φW )− η(Y )gM (X,φW ) + η(X)gM (Y, φW ).

Furthermore, by using (3.17), we obtain

gM ([X,Y ],W ) = gM (AXBY −AY BX − CY (lnλ)X + CX(lnλ)Y − 2gM (CX,Y ) lnλ

− η(Y )X + η(X)Y, φW )− λ−2gN (∇Nπ∗Y π∗CX −∇
N
π∗Xπ∗CY, π∗φW ).

which means that (a)⇔ (b).

Using the integrability of (kerπ∗)
⊥, from Theorem 3.1, we deduce:

Theorem 3.2. Let π be a conformal anti-invariant ξ⊥−submersion from a Sasakian manifold

(M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then any two assertions below imply

the third;

(a) The distribution (kerπ∗)
⊥ is integrable.

(b) The map π is horizontally homothetic submersion.

(c) gN (∇πY π∗CX −∇πXπ∗CY, π∗φW ) = λ2gM (AXBY −AY BX − η(Y )X + η(X)Y, φW )

for X,Y ∈ Γ((kerπ∗)
⊥) and W ∈ Γ(kerπ∗).
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Proof. By the proof of Theorem 3.1, for any Y,X ∈ Γ((kerπ∗)
⊥) and W ∈ Γ(kerπ∗),

we have

gM ([X,Y ],W ) = gM (AXBY −AY BX − CY (lnλ)X + CX(lnλ)Y − 2gM (CX,Y ) lnλ

− η(Y )X + η(X)Y, φW )− λ−2gN (∇πY π∗CX −∇πXπ∗CY, π∗φW ).

Now, if we have (a) and (c), then we obtain

− gM (H∇ lnλ, CY )gM (X,φW ) + gM (H∇ lnλ, CX)gM (Y, φW ) (3.20)

− 2gM (CX,Y )gM (H∇ lnλ, φW ) = 0.

Now, taking Y = φW in (3.20) for W ∈ Γ(kerπ∗), using (2.2) and (3.17), we derive

gM (H∇ lnλ, CX)gM (φW,φW )) = gM (H∇ lnλ, CX){gM (W,W )− η(W )η(W )}

= gM (H∇ lnλ, CX)gM (W,W ) = 0.

Hence λ is a constant on Γ(µ). On the other hand, taking Y = CX in (3.20) for X ∈ Γ(µ)

and using (3.17) we obtain

− gM (H∇ lnλ, C2Y )gM (X,φW ) + gM (H∇ lnλ, CX)gM (CX,φW )

− 2gM (CX, CX)gM (H∇ lnλ, φW ) = 0.

Thus, we get 2gM (CX, CX)gM (H∇ lnλ, φW ) = 0 which means that the dilation λ is a con-

stant on Γ(φkerπ∗). One can easily obtain the others.

Remark 3.2. We assume that (kerπ∗)
⊥ = φkerπ∗ ⊕ {ξ}. Using (3.13) one can prove that

CX = 0.

Hence we obtain,

Corollary 3.1. Let π : (M,φ, ξ, η, gM ) −→ (N, gN ) be a conformal anti-invariant ξ⊥−submersion

with (kerπ∗)
⊥ = φ(kerπ∗)⊕ < ξ >. Then the following conditions are equivalent to each

other;

(a) The distribution (kerπ∗)
⊥ is integrable

(b) AXφY + η(X)Y = AY φX + η(Y )X

(c) (∇π∗)(X,φY ) + η(Y )π∗X = (∇π∗)(Y, φX) + η(X)π∗Y

for X,Y ∈ Γ((kerπ∗)
⊥).

For the geometry of the distribution (kerπ∗)
⊥, we get:
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Theorem 3.3. Let π : (M,φ, ξ, η, gM ) −→ (N, gN ) be a conformal anti-invariant ξ⊥-

submersion. Then the following assertions are equivalent to each other;

(a) (kerπ∗)
⊥ defines a totally geodesic foliation on the total space.

(b) −λ−2gN (∇Nπ∗Xπ∗CY, π∗φW ) = gM (AXBY − CY (lnλ)X + gM (X, CY ) lnλ− η(Y )X,φW )

for Y,X ∈ Γ((kerπ∗)
⊥) and W ∈ Γ(kerπ∗).

Proof. Given Y,X ∈ Γ((kerπ∗)
⊥), W ∈ Γ(kerπ∗) and by using (2.2), (2.8), (2.9),

(3.12), (3.13) and (3.19), we have

gM (∇MX Y,W ) = gM (AXBY, φW ) + gM (∇MX CY, φW )− η(Y )gM (X,φW ).

Using the property of π, (2.11) and Lemma (2.2) we arrive at

gM (∇MX Y,W ) = gM (AXBY, φW )− λ−2gM (H∇ lnλ,X)gN (π∗CY, π∗φW )

− λ−2gM (H∇ lnλ, CY )gN (π∗X,π∗φW )

+ λ−2gM (X, CY )gN (π∗(H∇ lnλ, π∗φW )

+ λ−2gN (∇Nπ∗Xπ∗CY, π∗φV )− η(Y )gM (X,φW )

and using Definition 3.1 and (3.17) we arrive at

gM (∇MX Y,W ) = gM (AXBY − CY (lnλ)X + gM (X, CY ) lnλ− η(Y )X,φW )

+ λ−2gN (∇Nπ∗Xπ∗CY, π∗φW )

which tells that (i)⇔ (ii).

From Theorem 3.3, we obtain

Theorem 3.4. Let π be a conformal anti-invariant ξ⊥−submersion from a Sasakian manifold

(M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then any two assertions below imply

the third;

(a) The distribution (kerπ∗)
⊥ defines a totally geodesic foliation on the total space.

(b) The map π is a horizontally homothetic submersion.

(c) gN (∇πXπ∗CY, π∗φW ) = λ2gM (−AXBY + η(Y )X,φW )

for any Y,X ∈ Γ((kerπ∗)
⊥) and W ∈ Γ(kerπ∗).
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Proof. Given Y,X ∈ Γ((kerπ∗)
⊥) and W ∈ Γ(kerπ∗), by the proof of Theorem 3.3,

we have

gM (∇MX Y,W ) = gM (AXBY − CY (lnλ)X + gM (X, CY ) lnλ− η(Y )X,φW )

+ λ−2gN (∇πXπ∗CY, π∗φW ).

Now, if we have (a) and (c), then we obtain

− gM (H∇ lnλ, CY )gM (X,φW ) + gM (H∇ lnλ, φW )gM (X, CY ) = 0. (3.21)

Now, taking X = CY ) in (3.21) and using (3.17), we get gM (H∇ lnλ, φW )gM (X, CY ) = 0.

Hence, λ is a constant on Γ(φkerπ∗). On the other hand, taking X = φW in (3.21) and

using (3.17) we find

gM (H∇ lnλ, CY )gM (φW,φW )) = gM (H∇ lnλ, CY ){gM (W,W )− η(W )η(W )}

= gM (H∇ lnλ, CY )gM (W,W ) = 0

which means that λ is a constant on Γ(µ). One can easily obtain the other assertions.

From the above theorem, we have the following:

Corollary 3.2. Let π : (M,φ, ξ, η, gM ) −→ (N, gN ) be a conformal anti-invariant ξ⊥-

submersion with (kerπ∗)
⊥ = φ(kerπ∗)⊕ < ξ >. Given Y,X ∈ Γ((kerπ∗)

⊥) and W ∈

Γ(kerπ∗), the following conditions are equivalent to each other;

(i) The distribution (kerπ∗)
⊥ defines a totally geodesic foliation on the total space.

(ii) AXBY = η(Y )X

(iii) (∇π∗)(X,φW ) = −η(Y )π∗X.

Now, we investigate the geometry of kerπ∗.

Theorem 3.5. Let π be a conformal anti-invariant ξ⊥−submersion from a Sasakian manifold

(M,φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then for any V,W ∈ Γ(kerπ∗) and

X ∈ Γ((kerπ∗)
⊥) the following conditiones are equivalent to each other;

(a) The distribution kerπ∗ defines a totally geodesic foliation on the total space.

(b) −λ−2gN (∇Nφ∗Wπ∗φV, π∗φCX) = gM (φCX(lnλ)φV − TV BX,φV ) + η(∇MφWV )η(CX).
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Proof. Given V,W ∈ Γ(kerπ∗) and ξ ∈ Γ((kerπ∗)
⊥), since gM (W, ξ) = 0, by using

(2.3) we get gM (∇MV W, ξ) = −gM (W,∇MV ξ) = −gM (W,φV ) = 0. Thus we get

gM (∇MV W,X) = gM (φ∇MV W,φX) + η(∇MV W )η(X)

= gM (φ∇MV φW,φX)

= gM (∇MV φW,φX)− gM ((∇MV φ)W,φX).

Using (2.3), (2.6) and (3.13) we have

gM (∇MV W,X) = gM (TV φW,BX) + gM (H∇MV φW, CX).

Since ∇M is a Levi-Civita connection and [V, φW ] ∈ Γ(kerπ∗) we derive

gM (∇MV W,X) = gM (TV φW,BX) + gM (∇MφWV, CX).

Using (2.3), (2.9) and taking into account µ is invariant, we have

gM (∇MV W,X) = gM (TV φW,BX) + gM (φ∇MφWV, φCX) + η(∇MφWV )η(CX)

= gM (TV φW,BX) + gM (∇MφWφV, φCX) + η(∇MφWV )η(CX).

Now, using (2.11) and Lemma 2.2 (i) and using the property of π, we obtain

gM (∇MU V,X) = gM (TV φW,BX) + λ−2gM (H∇ lnλ, φW )gN (π∗φV, π∗φCX)

− λ−2gM (H∇ lnλ, φV )gN (π∗φW, π∗φCX)

+ gM (φW,φV )λ−2gN (π∗(H∇ lnλ, π∗φCX)

+ λ−2gN (∇Nπ∗φWπ∗φV, π∗φCX) + η(∇MφWV )η(CX)

and from Definition 3.1 and (3.17), we have

gM (∇MU V,X) = gM (φCX(lnλ)φV − TV BX,φV ) + η(∇MφWV )η(CX)

+ λ−2gN (∇Nπ∗φWπ∗φV, π∗φCX)

so that we get (i)⇔ (ii).

From the above theorem, we deduce:

Theorem 3.6. Let π : (M,φ, ξ, η, gM ) −→ (N, gN ) be a conformal anti-invariant ξ⊥-

submersion. Then, for any V,W ∈ Γ(kerπ∗) and X ∈ Γ((kerπ∗)
⊥), any two conditions

below imply the third;

(a) The distribution kerπ∗ defines a totally geodesic foliation on the total space.
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(b) The dilation λ is a constant on Γ(µ).

(c) −λ−2gN (∇Nπ∗φWπ∗φV, π∗φCX) = gM (TV φW,BX) + η(∇MφWV )η(CX).

Proof. Given V,W ∈ Γ(kerπ∗) and X ∈ Γ((kerπ∗)
⊥), by the proof of Theorem (3.5)

we have

gM (∇MWV,X) = gM (φCX(lnλ)φV − TV BX,φV ) + η(∇MφWV )η(CX)

+ λ−2gN (∇Nπ∗φWπ∗φV, π∗φCX).

Now, if we have (a) and (c), then we get gM (φW,φV )gM (H∇ lnλ, φCX) = 0, which means

that the dilation λ is a constant on Γ(µ). One can easily obtain the others.

Also we have,

Corollary 3.3. Let π : (M,φ, ξ, η, gM ) −→ (N, gN ) be a conformal anti-invariant ξ⊥-

submersion with (kerπ∗)
⊥ = φ(kerπ∗)⊕ < ξ >. Then the following assertiones are equivalent

to each other;

(a) The distribution kerπ∗ defines a totally geodesic foliation on the total space.

(b) TV φW = 0

for V,W ∈ Γ(kerπ∗) and X ∈ Γ((kerπ∗)
⊥).

We note that a differential map π between two Riemannian manifolds is called a totally

geodesic map ⇐⇒ (∇π∗)(Z1, Z2) = 0, for any Z1, Z2 ∈ Γ(TM).

Theorem 3.7. Let π : (M,φ, ξ, η, gM ) −→ (N, gN ) be a conformal anti-invariant ξ⊥−submersion.

Then π is a totally geodesic map if

−∇Nπ∗Xπ∗Y2 = π∗(φ(AXφY1 + V∇MX BY2 +AXCY2) + C(H∇MX φY1 +AXBY2 +H∇MX CY2))

− η(Y2)π∗X − {gM (X,φY1) + gM (X, CY2)}π∗ξ (3.22)

for X ∈ Γ((kerπ∗)
⊥), Y = Y1 + Y2 ∈ Γ(TM), where Y1 ∈ Γ(kerπ∗) and Y2 ∈ Γ((kerπ∗)

⊥).

Proof. Using (2.2) and (2.11) we have

(∇π∗)(X,Y ) = ∇Nπ∗Xπ∗Y + π∗(−∇MX Y )

= ∇Nπ∗Xπ∗Y + π∗(φ∇XφY − g(X,φY )ξ − η(Y )X)
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for any X ∈ Γ((kerπ∗)
⊥), Y ∈ Γ(TM). Then by using (2.8), (2.9) and (3.13) we get

(∇π∗)(X,Y ) = ∇Nπ∗Xπ∗Y2 + π∗(φAXφY1 + BH∇MX φY1 + CH∇MX φY1 + BAXBY2

+ CAXBY2 + φV∇MX BY2 + φAXCY2 + BH∇MX CY2 + CH∇MX CY2)

− η(Y2)π∗X − {gM (X,φY1) + gM (X, CY2)}π∗ξ

for any Y = Y1 + Y2 ∈ Γ(TM), where Y1 ∈ Γ(kerπ∗) and Y2 ∈ Γ((kerπ∗)
⊥). Thus taking

into account the vertical parts, we obtain

(∇π∗)(X,Y ) = ∇Nπ∗Xπ∗Y + π∗(φ(AXφY1 + V∇MX BY2 +AXCY2)

+ C(H∇MX φY1 +AXBY2 +H∇MX CY2))

− η(Y2)π∗X − {gM (X,φY1) + gM (X, CY2)}π∗ξ.

Hence (∇π∗)(X,Y ) = 0 ⇐⇒ (3.22) is satisfied.

For the totally geodesicness of the map, we also get:

Theorem 3.8. Let π : (M,φ, ξ, η, gM ) −→ (N, gN ) be a conformal anti-invariant ξ⊥-

submersion. π is a totally geodesic map if and only if

(a) TUφV = 0 and H∇MU φV ∈ Γ(φkerπ∗),

(b) The map π is a horizontally homotetic map,

(c) AZφV = 0 and H∇MZ φV ∈ Γ(φkerπ)

for X,Y, Z ∈ Γ((kerπ∗)
⊥) and U, V ∈ Γ(kerπ∗).

Proof. For any U, V ∈ Γ(kerπ∗), by using (2.3) and (2.11) we have

(∇π∗)(U, V ) = ∇Nπ∗Uπ∗V + π∗(−∇MU V )

= π∗(φ∇MU φV − gM (U, φV )ξ − η(V )X)

= π∗(φ∇MU φV ).

Then from (2.6) and (2.7) we arrive at

(∇π∗)(U, V ) = π∗(φTUφV + CH∇MU φV ).

From above equation, (∇π∗)(U, V ) = 0 ⇐⇒ π∗(φTUφV + CH∇MU φV ) = 0. Since φ is non-

singular, TUφV = 0 and H∇MU φV ∈ Γ(φkerπ∗). On the other hand, from Lemma 2.2 we

derive

(∇π∗)(X,Y ) = X(lnλ)π∗Y + Y (lnλ)π∗X − gM (X,Y )π∗(∇ lnλ)



ON THE GEOMETRY OF CONFORMAL ANTI-INVARIANT ξ⊥−SUBMERSIONS 63

for any X,Y ∈ Γ(µ). It is obvious that if π is a horizontally homotetic map, it follows that

(∇π∗)(X,Y ) = 0. Conversely, if (∇π∗)(X,Y ) = 0, taking Y = φX in the above equation, we

get

X(lnλ)π∗φX + φX(lnλ)π∗X = 0.

Taking inner product with π∗φX at the above equation we obtain

gM (∇ lnλ,X)λ2gM (φX, φX) + gM (∇ lnλ, φX)λ2gM (X,φX) = 0. (3.23)

From (3.23), λ is a constant on Γ(µ). On the other hand, for U, V ∈ Γ(kerπ∗), from Lemma

2.2 we have

(∇π∗)(φU, φV ) = φU(lnλ)π∗φV + φV (lnλ)π∗φU − gM (φU, φV )π∗(∇ lnλ).

Again if π is a horizontally homothetic map, then (∇π∗)(φU, φV ) = 0. Conversely, if (∇π∗)(φU, φV ) =

0, putting U instead of V in above equation, we derive

2φU(lnλ)π∗(φU)− gM (φU, φU)π∗(∇ lnλ) = 0. (3.24)

Taking inner product with π∗φU at (3.24) and since π is a conformal submersion, we have

gM (φU, φU)λ2gM (∇ lnλ, φU) = 0

which means that the dilation λ is a constant on Γ(φkerπ∗). Thus the dilation λ is a constant

on Γ((kerπ∗)
⊥). Now, for Z ∈ Γ(µ) and V ∈ Γ(kerπ∗), from (2.3) and (2.11) we have

(∇π∗)(Z, V ) = π∗(φ∇MZ φV ).

In view of (2.8) and (2.9) we have

(∇π∗)(Z, V ) = π∗(φAZφV + CH∇MZ φV ).

Hence (∇π∗)(Z, V ) = 0⇐⇒ π∗(φAZφV +CH∇MZ φV ) = 0. Since φ is non-singular, AZφV = 0

and H∇MZ φV ∈ Γ(φkerπ∗). Therefore, we obtain the proof.

Now, we give some conditions related to harmonicity of the submersion.

Theorem 3.9. Let π : (M2(m+n)+1, φ, ξ, η, gM ) −→ (Nm+2n+1, gN ) be a conformal anti-

invariant ξ⊥−submersion. Then the tension field τ of π is

τ(π) = −mπ∗(µkerπ∗) + (1−m− 2n)π∗(∇ lnλ) (3.25)

where µkerπ∗ is the mean curvature vector field of the distribution of kerπ∗.
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Proof. Let {e1, ..., em, φe1, ..., φem, ξ, µ1, ..., µn, φµ1, ..., φµn} be orthonormal basis of

Γ(TM) such that {e1, ..., em} be orthonormal basis of Γ(kerπ∗), {φe1, ..., φem} be orthonor-

mal basis of Γ(φkerπ∗) and {ξ, µ1, ..., µn, φµ1, ..., φµn} be orthonormal basis of Γ(µ). Then

the trace of second fundamental form (restriction to kerπ∗ × kerπ∗) is given by

tracekerπ∗∇π∗ =
m∑
i=1

(∇π∗)(ei, ei).

Then using (2.11) we obtain

tracekerπ∗∇π∗ = −mπ∗(µkerπ∗) (3.26)

and also, we have

trace(kerπ∗)
⊥∇π∗ =

m∑
i=1

(∇π∗)(φei, φei) +

2n∑
i=1

(∇π∗)(µi, µi) + (∇π∗)(ξ, ξ).

From Lemma 2.2 we get

trace(kerπ∗)
⊥∇π∗ =

m∑
i=1

2gM (H∇ lnλ, φei)π∗φei −mπ∗(∇ lnλ)

+
2n∑
i=1

2gM (H∇ lnλ, µi)π∗µi − 2nπ∗(∇ lnλ)

+ 2ξ(lnλ)π∗ξ − π∗(∇ lnλ).

Since { 1
λ(p)π∗p(φei),

1
λ(p)π∗p(µh), 1

λ(p)π∗pξ}p∈M, 1≤i≤m, 1≤h≤n is an orthonormal basis of Tπ(p)N

and using the properties of π, we derive

trace(kerπ∗)
⊥∇π∗ =

m∑
i=1

2gN (π∗∇ lnλ,
1

λ
π∗φei)

1

λ
π∗φei −mπ∗(∇ lnλ)

+
2n∑
i=1

2gN (π∗∇ lnλ,
1

λ
π∗µi)

1

λ
π∗µi − 2nπ∗(∇ lnλ)

+ 2gN (π∗∇ lnλ,
1

λ
π∗ξ)

1

λ
π∗ξ − π∗(∇ lnλ)

= (1−m− 2n)π∗(∇ lnλ) (3.27)

Then proof follows from (3.26) and (3.27).

From the above theorem, we have

Theorem 3.10. Let π : (M2(m+n)+1, φ, ξ, η, gM ) −→ (Nm+2n+1, gN ) be a conformal anti-

invariant ξ⊥−submersion. Then any two conditions below imply the third:

(a) The map π is harmonic

(b) The fibres are minimal



ON THE GEOMETRY OF CONFORMAL ANTI-INVARIANT ξ⊥−SUBMERSIONS 65

(c) The map π is a horizontally homothetic map.

Also, we have,

Corollary 3.4. Let π : (M2(m+n)+1, φ, ξ, η, gM ) −→ (Nm+2n+1, gN ) be a conformal anti-

invariant ξ⊥−submersion. π is harmonic if and only if the fibres are minimal.

Now, we give some decomposition theorems comes from Theorem 3.3 and Theorem 3.5 in

the following:

Theorem 3.11. Let π : (M,φ, ξ, η, gM ) −→ (N, gN ) be a conformal anti-invariant ξ⊥-

submersion. Then M is a locally product manifold if

−λ−2gN (∇πXπ∗CY, π∗φV ) = gM (AXBY − CY (lnλ)X + gM (X, CY ) lnλ− η(Y )X,φV )

and

−λ−2gN (∇πφWπ∗φV, π∗φCX) = gM (φCX(lnλ)φV − TV BX,φV ) + η(∇φWV )η(CX)

for X,Y ∈ Γ((kerπ∗)
⊥) and U, V ∈ Γ(kerπ∗), where M(kerπ∗)⊥ and M(kerπ∗) are integral

manifolds of the distributions (kerπ∗)
⊥ and (kerπ∗). Conversely, if M is a locally product

manifold of the form M(kerπ∗)⊥ ×M(kerπ∗) then we have

λ−2gN (∇πXπ∗CY, π∗φV ) = gM (CY (lnλ)X − gM (X, CY ) lnλ+ η(Y )X,φV )

and

−λ−2gN (∇πφWπ∗φV, π∗φCX) = gM (φCX(lnλ)φV, φV ) + η(∇φWV )η(CX).

From Corollary 3.2 and Corollary 3.3, we have

Theorem 3.12. Let π : (M,φ, ξ, η, gM ) −→ (N, gN ) be a conformal anti-invariant ξ⊥-

submersion with (kerπ∗)
⊥ = φ(kerπ∗)⊕ < ξ >. Then M is a locally product manifold if

AXBY = η(Y )X and TV φW = 0 for X,Y ∈ Γ((kerπ∗)
⊥) and V,W ∈ Γ(kerπ∗).
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Acknowledgement

The authors are grateful to the referee for his/her valuable comments and suggestions.

References

[1] Akyol, M. A., Conformal anti-invariant submersions from cosymplectic manifolds, Hacettepe Journal of

Mathematics and Statistics, 46(2), (2017), 177-192.
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