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ON f-BIHARMONIC AND BI-f-HARMONIC FRENET LEGENDRE

CURVES
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Abstract. This paper is devoted to study the f -harmonic, f -biharmonic, bi-f -harmonic,

biminimal and f -biminimal Frenet Legendre curves in three dimensional normal almost

paracontact metric manifolds and determine the necessary and sufficient conditions for these

properties. Besides these, some characterizations for such curves have been defined in par-

ticular cases of a three dimensional normal almost paracontact metric manifold and some

nonexistence theorems have been obtained.
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1. Introduction

The theory of curves is one of the most important topic in differential geometry and up

to date from the past to the present. In the theory of curves there are many special types

such as Frenet curves; slant curves, Legendre curves and these are studied in many different

manifolds. In particular, Legendre curves have an important role in geometry and topology

of almost contact manifolds. Among the papers on Legendre curves studied on contact

manifolds in the literature, the most basic ones can be listed as [3, 19].
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On the other hand, studies on Frenet Legendre curves are newer. These studies, which

are a source of motivation for us, can be briefly listed as [27, 23]. In this study, different from

previous studies which are focused on curvature and torsion, we handled the maps, which

briefly mentioned below, in terms of different cases of α, β and δ.

Harmonic maps which were defined by Sampson and Eells, in [8] have a wide field of study

due to their wide applications such as physics, mathematics and engineering.

Besides, in [14], Jiang obtained biharmonic maps between the Riemannian manifolds by

generalizing harmonic maps.

f -harmonic maps have a physical meaning as the solution of inhomogeneous Heisenberg

spin systems and continuous spin systems, [4]. For this reason, the maps in question are

of interest not only for mathematicians but also for physicists. f -harmonic maps between

Riemannian manifolds were introduced by Lichnerowicz in 1970 and then examined by Eells

and Lemaire in [9].

On the other hand, the strong relationship between f -harmonic and harmonic maps is

summarized by Perktaş et.al. as follows, in [25]. The first one, extending bienergy functional

to bi-f -energy functional and obtaining a new type of harmonic map called bi-f -harmonic

map. The second one extending the f -energy functional to the f -bienergy functional and ob-

tain another type of harmonic map called f -biharmonic map as critical points of f -bienergy

functional, [30, 22].

f -biharmonic maps, which are the generalization of biharmonic maps, are defined by Lu,

in [18]. Lu defined also f -biharmonic maps between Riemannian manifolds, in [6]. However,

Ou gave complete classification of f -biharmonic curves in three dimensional Euclidean space

and characterization of f -biharmonic curves in n-dimensional space forms, [21]. In addition,

recent studies can be summarized as; [12, 1, 13, 16].

Moreover, bi-f -harmonic maps as a generalization of biharmonic and f -harmonic maps

introduced by Ouakkas et. al., in [22]. In addition, Roth defined a non-f -harmonic, f -

biharmonic map as a proper f -biharmonic map, [26]. It should be emphasized that there is

no relationship between f -biharmonic and bi-f -harmonic maps.

Biminimal immersions and biminimal curves in a Riemannian manifold were defined by

Loubeau and Montaldo, [17].

Finally, f -biminimal immersions were defined by Karaca and Özgür, in [11]. They con-

sidered f -biminimal curves in a Riemannian manifolds.

Based on these studies in this paper, first we give basic notions which will be needed
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in other sections. In section 3.1, we show that there is no f -harmonic Frenet Legendre

curve in three dimensional normal almost paracontact metric manifold. In section 3.2, we

get f -biharmonicity condition of a Frenet Legendre curve in three dimensional normal al-

most paracontact metric manifold and determine this condition in different cases such as

β-para-Sasakian, α-para-Kenmotsu and paracosymplectic manifolds. In section 3.3, we ob-

tain bi-f -harmonicity condition of a Frenet Legendre curve in three dimensional normal

almost paracontact metric manifold and also discuss this condition in various manifolds. In

section 3.4, we obtain biminimality condition of a Frenet Legendre curve in three dimensional

normal almost paracontact metric manifold. Finally in section 3.5, we get f -biminimality

conditions of Frenet Legendre curves in three dimensional normal almost paracontact metric

manifold.

2. Preliminaries

This section, includes some definitions and propositions that will be required throughout

the paper.

Definition 2.1. Let (N, g) and (N̄ , ḡ) be Riemannian manifolds, then a harmonic map

ϕ : (N, g) → (N̄ , ḡ) is defined as the critical point of the energy functional

E(ϕ) =
1

2

∫
N
|dϕ|2dvg,

where vg is the volume element of (N, g). Then by using Euler-Lagrange equation τ(ϕ) of the

energy functional E(ϕ), where it is the tension field of map ϕ, a map called as harmonic if

τ(ϕ) := trace∇dϕ = 0. (2.1)

Here ∇ is the connection induced from the Levi-Civita connection ∇N̄ of N̄ and the pull-back

connection ∇ϕ, [11].

Biharmonic maps, which can be considered as a natural generalization of harmonic maps,

are defined as below.

Definition 2.2. A map ϕ : (N, g) → (N̄ , ḡ) is defined as a biharmonic map if it is a critical

point, for all variations, of the bienergy functional

E2(ϕ) =
1

2

∫
N
|τ(ϕ)|2dvg.
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Then the Euler-Lagrange equation τ2(ϕ), for the bienergy functional E2(ϕ), where τ2(ϕ) is

the bitension field of map ϕ equals to

τ2(ϕ) = trace(∇ϕ∇ϕ −∇ϕ
∇)τ(ϕ)− trace(RN̄ (dϕ, τ(ϕ))dϕ) = 0, (2.2)

if ϕ is a biharmonic map. Here RN̄ , the curvature tensor field of N̄ , is defined as

RN̄ (X,Y )Z = ∇N̄
X∇N̄

Y Z −∇N̄
Y ∇N̄

XZ −∇N̄
[X,Y ]Z,

for any X,Y, Z ∈ Γ(TN̄) and ∇ϕ is the pull-back connection, [11].

One can easily see that harmonic maps are always biharmonic. Biharmonic maps which

are not harmonic are called proper biharmonic maps, [24].

Definition 2.3. A map ϕ : (N, g) → (N̄ , ḡ) is said to be an f -harmonic if it is critical point

of f -energy functional,

Ef (ϕ) =
1

2

∫
N
f |dϕ|2dvg,

where f ∈ C∞(N,R) is a positive smooth function. Then the f -harmonic map equation

obtained by using Euler-Lagrange equation as follows;

τf (ϕ) = fτ(ϕ) + dϕ(gradf) = 0, (2.3)

where τf (ϕ) is the f -tension field of the map ϕ.

f -harmonic maps are generalizations of harmonic maps, [2, 7].

Definition 2.4. A map ϕ : (N, g) → (N̄ , ḡ) is said to be an f -biharmonic if it is critical

point of the f -bienergy functional

E2,f (ϕ) =
1

2

∫
N
f |τ(ϕ)|2dvg.

The Euler-Lagrange equation for the f -biharmonic map is given by

τ2,f (ϕ) = fτ2(ϕ) + ∆fτ(ϕ) + 2∇ϕ
gradfτ(ϕ) = 0, (2.4)

where τ2,f (ϕ) is the f -bitension field of the map ϕ.

A f -biharmonic map turns into a biharmonic map if f is a constant, [6].

Definition 2.5. A map ϕ : (N, g) → (N̄ , ḡ) is said to be a bi-f -harmonic if it is critical

point of the bi-f -energy functional

Ef,2(ϕ) =
1

2

∫
N
|τf (ϕ)|2dvg.
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The Euler-Lagrange equation for the bi-f -harmonic map is given by

τf,2(ϕ) = trace
(
(∇ϕf(∇ϕτf (ϕ))− f∇ϕ

∇N τf (ϕ) + fRN̄ (τf (ϕ), dϕ)dϕ
)
= 0, (2.5)

where τf,2(ϕ) is the bi-f -tension field of the map ϕ, [22].

Definition 2.6. An immersion ϕ : (N, g) → (N̄ , ḡ) is called biminimal if it is critical point

of the bienergy functional E2(ϕ) for variations normal to the image ϕ(N) ⊂ N̄ , with fixed

energy. Equivalently, there exists a constant λ ∈ R such that ϕ is a critical point of the

λ-bienergy functional,

E2,λ(ϕ) = E2(ϕ) + λE(ϕ).

The Euler-Lagrange equation for a λ- biminimal immersion is

[τ2,λ(ϕ)]
⊥ = [τ2(ϕ)]

⊥ − λ[τ(ϕ)]⊥ = 0, (2.6)

for some value of λ ∈ R, where [.]⊥ denotes the normal component of [.]. An immersion is

called free biminimal if it is biminimal for λ = 0, [11, 17].

Definition 2.7. An immersion ϕ : (N, g) → (N̄ , ḡ) is called f -biminimal if it is a critical

point of the f -bienergy functional E2,f (ϕ) for variations normal to the image ϕ(N) ⊂ N̄ ,

with fixed energy. Equivalently, there exists a constant λ ∈ R such that ϕ is a critical point

of the λ-f -bienergy functional,

E2,λ,f (ϕ) = E2,f (ϕ) + λEf (ϕ).

Using the Euler-Lagrange equations for f -harmonic and f -biharmonic maps, an immersion

is f -biminimal if

[τ2,λ,f (ϕ)]
⊥ = [τ2,f (ϕ)]

⊥ − λ[τf (ϕ)]
⊥ = 0, (2.7)

for some value of λ ∈ R. An immersion is called free f -biminimal if it is f -biminimal for

λ = 0. If f is a constant then the immersion is biminimal, [11].

Definition 2.8. A differentiable manifold N2n+1 is called almost paracontact metric man-

ifold if it admits a tensor field φ of type (1, 1), a vector field ξ, a 1-form η and a pseudo-

Riemannian metric g satisfying the following conditions:

φ2 = I − η ⊗ ξ, η(ξ) = 1, φξ = 0, g(φX,φY ) = −g(X,Y ) + η(X)η(Y ), (2.8)
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where X, Y ∈ TN and I is the identity endomorphism on vector fields. g is called compatible

metric and any compatible metric is necessarily of signature (n+1, n). In an almost paracon-

tact metric manifold N, η ◦ φ = 0 and rank(φ) = 2n. From (2.8), g(X,φY ) = −g(φX, Y )

and g(X, ξ) = η(X), for any X, Y ∈ TN . The fundamental 2-form of N is defined by

Φ(X,Y ) = g(X,φY ). An almost paracontact metric manifold (N,φ, ξ, η, g) is said to be nor-

mal if N (X,Y )− 2dη(X,Y )ξ = 0, where N is the Nijenhuis torsion tensor of φ, [15, 29].

Proposition 2.1. [27] For a three dimensional almost paracontact metric manifold N , the

following conditions are mutually equivalent:

i- N is normal,

ii- there exist α, β functions on N such that

(∇X φ)Y = α (g(φX, Y ) ξ − η(Y )φX) + β (g(X,Y )ξ − η(Y )X) , (2.9)

iii- there exist α, β functions on N such that

∇X ξ = α (X − η(X)ξ) + βφX. (2.10)

Moreover, the functions α, β realizing (2.9) as well as (2.10) are given by

2α = trace{X → ∇X ξ}, 2β = trace{X → φ∇X ξ}.

For a three dimensional normal almost paracontact metric manifold where α, β = constant,

the curvature tensor field equation becomes

R(X,Y )Z =
(r
2
+ 2

(
α2 + β2

))
(g(Y, Z)X − g(X,Z)Y )

+ g(X,Z)
(r
2
+ 3

(
α2 + β2

))
η(Y )ξ

−
(r
2
+ 3(α2 + β2)

)
η(Y )η(Z)X

− g(Y,Z)
(r
2
+ 3(α2 + β2)

)
η(X)ξ

+
(r
2
+ 3(α2 + β2)

)
η(X)η(Z)Y, (2.11)

where X,Y, Z ∈ TN and r is the scalar curvature, [24].

Definition 2.9. A three dimensional normal almost paracontact metric manifold is called;

. β-para-Sasakian if α = 0, β ̸= 0 and β is constant,

. para-Sasakian if α = 0, β = −1,

. quasi-para-Sasakian if α = 0 and β ̸= 0,

. α-para-Kenmotsu if α ̸= 0, β = 0 and α is constant,
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. paracosymplectic if α = β = 0, [29].

Definition 2.10. Let (N,φ, ξ, η, g) be a three dimensional normal almost paracontact metric

manifold where α, β = constant. The structural function of the immersed curve γ : I ⊂ R →

(N, g) is the map cγ : I → R given by

cγ(s) = g(T (s), ξ) = η(T (s)),

where T = γ
′
. Then the curve γ called as Legendre curve if cγ = η(T (s)) = 0, [5].

With the help of these definitions, we get f -tension field, f -bitension field, bi-f -tension

field, the biminimality and f -biminimality conditions of a Frenet Legendre curve in a three

dimensional normal almost paracontact metric manifold as in following sections.

3. FRENET LEGENDRE CURVES

Let γ : I −→ N be a curve in a three dimensional pseudo-Riemannian manifold N such

that g(γ
′
, γ

′
) = ε1 where ε1 = ±1 and ∇γ′γ

′
denotes the covariant differentiation along γ.

Then γ is a Frenet curve with {T,N,B} Frenet Frame if one of the following three cases

hold:

(1) γ is of osculating order 1, ∇γ′γ
′
= 0 (geodesics),

(2) γ is of osculating order 2, there exist two ortonormal vector fields T,N and a positive

function κ along γ such that

∇γ′T = κε2N, ∇γ′N = −κε1T,

(3) γ is of osculating order 3, there exist three ortonormal vector fields T,N,B and two

positive function κ and τ along γ such that

∇γ′T = κε2N, ∇γ′N = −κε1T + τε3B, ∇γ′B = −τε2N,

where T = γ
′
, g(N,N) = ε2 = ±1, g(B,B) = ε3 = ±1, κ is the curvature and τ is

the torsion function, [27].

Note that in this paper, we study with γ : I ⊂ R −→ N non-null curve parametrized by

arc length on a pseudo-Riemannian manifold N which is a three dimensional normal almost

paracontact metric manifold where α, β = constant. In this case, from Definition 2.1 and

Definition 2.2, tension and bitension fields reduces to

τ(γ) = ∇TT (3.12)
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and

τ2(γ) = ∇3
TT −R(T,∇TT )T = 0 (3.13)

[20].

Now, let γ : I −→ N be a Frenet Legendre curve in N and {T, φT, ξ} are ortonormal vector

fields along γ where γ
′
= T . By differentiating g(T, ξ) = 0 along γ, it is obvious that

g(∇TT, ξ) = −ε1α. Then ∇TT obtained as below

∇TT = −ε1αξ − ε1δφT, (3.14)

where δ is a function defined by δ = g(∇TT, φT ), [27].

Let investigate the necessary and sufficient conditions of a Frenet Legendre curve to be f -

harmonic, f -biharmonic, bi-f -harmonic, biminimal and f -biminimal in a three dimensional

normal almost paracontact metric manifold in terms of different cases of α, β and δ.

It should be noted that; throughout our paper, for the sake of shortness, only N will be

called instead of a three dimensional normal almost paracontact metric manifold N where

α, β = constant.

4. f-Harmonic Frenet Legendre Curves

In this subsection, we investigated the f -harmonicity condition of a Frenet Legendre curve

in N .

Let γ : I −→ N be a Frenet Legendre curve in N . Then with the help of Definition 2.3 and

equation (3.12), f -harmonicity condition obtained as below;

τf (γ) = fτ(γ) + dγ(gradf) = f∇TT + f
′
T = 0. (4.15)

Based on this result, we can express the following theorem:

Theorem 4.1. There is no f -harmonic Frenet Legendre curve in a three dimensional normal

almost paracontact metric manifold where α, β = constant.

Proof. The f -harmonicity condition for this kind of curves obtained by substituting

equation (3.14), in equation (4.15) as below;

τf (γ) = f∇TT + f
′
T

= f(−ε1αξ − ε1δφT ) + f
′
T

= f
′
T − (ε1αf)ξ − (ε1δf)φT = 0. (4.16)
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From equation (4.16); it is easy to see that f
′
= 0 namely, f is a constant function. This is

a contradiction with the definition of f -harmonic curves.

5. f-Biharmonic Frenet Legendre Curves

In this section, we obtain the f -biharmonicity condition of a Frenet Legendre curve in

N . In addition, we make detailed examinations for α-para-Kenmotsu, β-para-Sasakian and

paracosymplectic manifolds.

First, let determine the f -biharmonicity condition for this kind of curves. By using tension

and bitension field equations, f -bitension field τ2,f (γ) obtained as below, [21];

τ2,f (γ) = fτ2(γ) + (∆f)τ(γ) + 2∇γ
gradfτ(γ)

= f(∇3
TT −R(T,∇TT )T ) + f

′′∇TT + 2f
′∇2

TT = 0. (5.17)

Then by differentiating ∇TT = −ε1αξ− ε1δφT with respect to T , we obtain ∇2
TT and ∇3

TT

as below;

∇2
TT = (δ2 − ε1α

2)T − ε1(αβ + δ
′
)φT − δβξ (5.18)

and

∇3
TT = 3δδ

′
T + (α2δ − δβ2 − ε1δ

3 − ε1δ
′′
)φT + (α3 − αβ2 − ε1αδ

2 − 2βδ
′
)ξ. (5.19)

After that by substutiting ∇TT into the curvature tensor field formula (2.11) we find,

R(T,∇TT )T = −α(α2 + β2)ξ + δ(
r

2
+ 2(α2 + β2))φT. (5.20)

Finally, we determined the f -biharmonicity condition as below:

τ2,f (γ) = f(∇3
TT −R(T,∇TT )T ) + f

′′∇TT + 2f
′∇2

TT

= (3δδ
′
f + 2(δ2 − ε1α

2)f
′
)T

+ ((−α2δ − 3β2δ − ε1δ
3 − ε1δ

′′ − r

2
δ)f − 2ε1(αβ + δ

′
)f

′ − ε1δf
′′
)φT

+ ((2α3 − ε1αδ
2 − 2βδ

′
)f − 2δβf

′ − ε1αf
′′
)ξ

= 0. (5.21)

With the help of this result, we can state the following theorems:

Theorem 5.1. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length in

three dimensional normal almost paracontact metric manifold N where α, β are constants.
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Then γ is an f -biharmonic Frenet Legendre curve iff the following equations hold:

3δδ
′
f + 2(δ2 − ε1α

2)f
′
= 0,

(α2δ + 3β2δ + ε1δ
3 + ε1δ

′′
+

r

2
δ)f + 2ε1(αβ + δ

′
)f

′
+ ε1δf

′′
= 0,

(2α3 − ε1αδ
2 − 2βδ

′
)f − 2δβf

′ − ε1αf
′′
= 0.

(5.22)

Theorem 5.2. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length in

three dimensional normal almost paracontact metric manifold N where α, β are constants.

Then γ is an f -biharmonic Frenet Legendre curve if and only if the function f and the scalar

curvature r are given by;

f = (ε1α
2 − δ2)−

3
4 + c

and

r = −2
[
α2+3β2+ε1δ

2+ε1
δ
′′

δ
+3

ε1δ
′
(αβ + δ

′
)

ε1α2 − δ2
+
6(δ

′
)2α2 + 6δδ

′′
α2 − 6ε1δ

3δ
′′
+ 15ε1(δδ

′
)2

4(ε1α2 − δ2)2
]
,

where 2α3 − ε1αδ
2 − 2βδ

′ − 2δβA− ε1α(A
′
+A2) = 0 for A = 3δδ

′

2(ε1α2−δ2)
and ε1α

2 − δ2 ̸= 0.

Now, we give the interpretations of Theorem 5.1.

Case I : Assume that δ is not equal to a constant.

Case I-1: If N is a three dimensional β-para-Sasakian manifold and δ ̸= constant then

we have following equations from (5.22);
3δδ

′
f + 2δ2f

′
= 0,

(3β2δ + ε1δ
3 + ε1δ

′′
+ r

2δ)f + 2ε1δ
′
f

′
+ ε1δf

′′
= 0,

βδ
′
f + δβf

′
= 0.

(5.23)

Hence we obtain the following theorem;

Theorem 5.3. There is no f -biharmonic Frenet Legendre curve in a three dimensional β-

para-Sasakian manifold where δ ̸= constant.

Proof. By solving the first and third equations of (5.23) together, it is easy to see

that there is a contradiction between them.
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Case I-2: If N is a three dimensional α-para-Kenmotsu manifold and δ ̸= constant then

we have following equations from (5.22);
3δδ

′
f + 2(δ2 − ε1α

2)f
′
= 0,

(α2δ + ε1δ
3 + ε1δ

′′
+

r

2
δ)f + 2ε1δ

′
f

′
+ ε1δf

′′
= 0,

(2α3 − ε1αδ
2)f − ε1αf

′′
= 0.

So we have the following corollary;

Corollary 5.1. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length in a

three dimensional α-para-Kenmotsu manifold N with δ is not equal to a constant. Then γ is

an f -biharmonic Frenet Legendre curve if and only if the function f and the scalar curvature

r are given by;

f = (ε1α
2 − δ2)−

3
4 + c

and

r = −2
[
α2 + ε1δ

2 + ε1
δ
′′

δ
+ 3

ε1δ
′
δ
′

ε1α2 − δ2
+

6(δ
′
)2α2 + 6δδ

′′
α2 − 6ε1δ

3δ
′′
+ 15ε1(δδ

′
)2

4(ε1α2 − δ2)2
]
,

where 2α3 − ε1αδ
2 − ε1α(A

′
+A2) = 0 for A = 3δδ

′

2(ε1α2−δ2)
and ε1α

2 − δ2 ̸= 0.

Case I-3: If N is a three dimensional paracosymplectic manifold and δ ̸= constant then

we have following equations from (5.22);
3δδ

′
f + 2δ2f

′
= 0,

(ε1δ
3 + ε1δ

′′
+

r

2
δ)f + 2ε1δ

′
f

′
+ ε1δf

′′
= 0.

Therefore, we obtain the following corollary.

Corollary 5.2. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length

in a three dimensional paracosymplectic manifold N . Then for δ ̸= constant; γ is an f -

biharmonic Frenet Legendre curve if and only if the function f and the scalar curvature r

equal to:

f = δ−
3
2 + c

and

r = −2ε1
[
δ2 + δ−1δ

′′ − 3δ−2(δ
′
)2 +

15

4
δ−2δ

′ − 3

2
δ
′′
δ−1

]
.
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Case II : Assume that δ = constant ̸= 0. Then we investigate the following subcases:

Case II-1: If N is a three dimensional β-para-Sasakian manifold and δ = constant ̸= 0

then we have following equations from (5.22);
δ2f

′
= 0,

(3β2 + ε1δ
2 + r

2)f + ε1f
′′
= 0,

βf
′
= 0.

(5.24)

Hence we obtain the following theorem;

Theorem 5.4. There is no proper f -biharmonic Frenet Legendre curve in a three dimen-

sional β-para-Sasakian manifold with δ = constant ̸= 0.

Proof. For δ = constant ̸= 0, from the first equation of (5.24) we obtain that f
′
= 0,

this situation contradicts the definition of the f -biharmonic curve.

Case II-2: If N be a three dimensional α-para-Kenmotsu manifold and δ = constant ̸= 0

then we have following equations from (5.22);
(δ2 − ε1α

2)f
′
= 0,

(α2 + ε1δ
2 +

r

2
)f + ε1f

′′
= 0,

(2α2 − ε1δ
2)f − ε1f

′′
= 0.

So, we have;

Corollary 5.3. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length in a

three dimensional α-para-Kenmotsu manifold N . Then γ is an f -biharmonic Frenet Legendre

curve if and only if the function f and the constant scalar curvature r are given by

f = c1e
αs + c2e

−αs

and

r = −6α2,

where f ∈ C∞(N,R) is a positive smooth function dependent on s arc length parameter,

δ = |α| and ε1 = 1.
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Case II-3: LetN be a three dimensional paracosymplectic manifold and δ = constant ̸= 0

then we have followings from (5.22);


δ2f

′
= 0,

(ε1δ
2 +

r

2
)f + ε1f

′′
= 0.

(5.25)

Hence we have the following nonexistence theorem;

Theorem 5.5. There is no proper f -biharmonic Frenet Legendre curve in a three dimen-

sional paracosymplectic manifold where δ = constant ̸= 0.

6. Bi-f-Harmonic Frenet Legendre Curves

In this subsection, we handle bi-f -harmonic Frenet Legendre curves in N . Also we ob-

tained bi-f -harmonicity conditions for α-para-Kenmotsu, β-para-Sasakian and paracosym-

plectic manifolds.

First let determine the bi-f -harmonicity condition in a three dimensional normal almost

paracontact metric manifold. By substutiting equations (3.14), (5.18), (5.19) and (5.20) into

the bi-f -tension field formula, τf,2(γ) obtained as below, [25];

τf,2(γ) = trace(∇γf(∇γτf (γ))− f∇γ
∇N τf (γ) + fR(τf (γ), dγ)dγ)

= (ff
′′
)
′
T + (3ff

′′
+ 2(f

′
)2)∇TT + 4ff

′∇2
TT + f2∇3

TT + f2R(∇TT, T )T

= [(ff
′′
)
′
+ 4ff

′
(δ2 − ε1α

2) + 3f2δδ
′
]T

+ [−3ε1αff
′′ − 2ε1α(f

′
)2 − 4ff

′
δβ + f2(2α3 − ε1αδ

2 − 2βδ
′
)]φT

+ [−3ε1δff
′′ − 2ε1δ(f

′
)2 − 4ε1ff

′
(αβ + δ

′
)

+f2(−r

2
δ − α2δ − 3β2δ − ε1δ

3 − ε1δ
′′
)]ξ

= 0, (6.26)

which implies the following.

Theorem 6.1. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length

in three dimensional normal almost paracontact metric manifold N where α, β = constant.
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Then γ is a bi-f -harmonic curve iff the following equations hold:

(ff
′′
)
′
+ 4(δ2 − ε1α

2)ff
′
+ 3δδ

′
f2 = 0,

3ε1αff
′′
+ 2ε1α(f

′
)2 + 4δβff

′ − (2α3 − ε1αδ
2 − 2βδ

′
)f2 = 0,

3δff
′′
+ 2δ(f

′
)2 + 4(αβ + δ

′
)ff

′
+ (

r

2
ε1δ + α2δε1 + 3β2δε1 + δ3 + δ

′′
)f2 = 0.

(6.27)

Now, we give the interpretations of Theorem 6.1.

Case I : Assume that δ is not equal to constant. Then we investigate the following

subcases:

Case I-1: If N a three dimensional β-para-Sasakian manifold and δ ̸= constant then we

have following equations from (6.27);

(ff
′′
)
′
+ 4δ2ff

′
+ 3δδ

′
f2 = 0,

2δf
′
+ δ

′
f = 0,

3δff
′′
+ 2δ(f

′
)2 + 4δ

′
ff

′
+ (

r

2
ε1δ + 3β2ε1δ + δ3 + δ

′′
)f2 = 0.

Then we obtain the following corollary.

Corollary 6.1. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional β-para-

Sasakian manifold N . Then γ is a bi-f -harmonic curve where the function f and the constant

scalar curvature r are given by;

f = δ−
1
2 + c

and

r = 3ε1δ
−2(δ

′
)2 + ε1δ

−1δ
′′ − 9

2
ε1δ

−2δ
′ − 2ε1δ

2 − 6β2,

for where δ ̸= constant is the solution of −9(δ
′
)3 + 10δδ

′
δ
′′ − 2δ2δ

′′′
+ 4δ4δ

′
= 0 differential

equation.

Case I-2: If N is a three dimensional α-para-Kenmotsu manifold and δ ̸= constant then

from (6.27), we obtain following equations;

(ff
′′
)
′
+ 4(δ2 − ε1α

2)ff
′
+ 3δδ

′
f2 = 0,

3ff
′′
+ 2(f

′
)2 + f2(δ2 − 2α2ε1) = 0,

3δff
′′
+ 2δ(f

′
)2 + 4δ

′
ff

′
+ (

r

2
ε1δ + α2δε1 + δ3 + δ

′′
)f2 = 0.

(6.28)
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So, we have the following corollary.

Corollary 6.2. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length

in three dimensional α-para-Kenmotsu manifold N where δ ̸= constant. Then γ is a bi-f -

harmonic curve iff f is a solution of the non-linear differential equations given in (6.28).

Case I-3: If N is a three dimensional paracosymplectic manifold and δ ̸= constant then

from (6.27), we obtain the following equations;
(ff

′′
)
′
+ 4ff

′
δ2 + 3δδ

′
f2 = 0,

3δff
′′
+ 2δ(f

′
)2 + 4δ

′
ff

′
+ (

r

2
ε1δ + δ3 + δ

′′
)f2 = 0.

(6.29)

Hence we obtain following corollary.

Corollary 6.3. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length

in three dimensional paracosymplectic manifold N where δ ̸= constant. Then γ is a bi-f -

harmonic curve iff f is a solution of the non-linear differential equations given in (6.29).

Case I-4: If N ff
′′
= 0 and δ ̸= constant then via equation (6.27), we obtain following

equations;

4f
′
(δ2 − ε1α

2) + 3fδδ
′
= 0,

2ε1α(f
′
)2 + 4ff

′
δβ − f2(2α3 − ε1αδ

2 − 2βδ
′
) = 0,

2δ(f
′
)2 + 4ff

′
(αβ + δ

′
) + f2(

r

2
δε1 + α2δε1 + 3β2δε1 + δ3 + δ

′′
) = 0.

(6.30)

We have the following corollary.

Corollary 6.4. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length

in a three dimensional normal almost paracontact metric manifold N where ff
′′
= 0 and

δ ̸= constant. Then γ is a bi-f -harmonic Frenet Legendre curve where the function f and

the scalar curvature r are given by;

f = (ε1α
2 − δ2)−

3
8 + c

and

r = −2
[
α2 + 3β2 + ε1δ

2 + ε1
δ
′′

δ
+ 3

(αβ + δ
′
)δ

′

ε1α2 − δ2
+

9δ2(δ
′
)2

8(ε1α2 − δ2)2
]
,

where 2ε1αA
2 + 4Aδβ − (2α3 − ε1αδ

2 − 2βδ
′
) = 0 for A = 3δδ

′

4(ε1α2−δ2)
and ε1α

2 − δ2 ̸= 0.
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Case I-5: If N a three dimensional β-para-Sasakian manifold, ff
′′
= 0 and δ ̸= constant

then from equation (6.30), we obtain following equations;

4f
′
δ + 3δ

′
f = 0,

2f
′
δ + δ

′
f = 0,

2ε1δ(f
′
)2 + 4ε1δ

′
ff

′
+ f2(

r

2
δ + 3β2δ + ε1δ

3 + ε1δ
′′
) = 0.

(6.31)

We have the following nonexistence theorem.

Theorem 6.2. There is no bi-f -harmonic Frenet Legendre curve in a three dimensional

β-para-Sasakian manifold where ff
′′
= 0 and δ ̸= constant.

Proof. When first and the second equations of (6.31) solved together, we obtain

δ
′
f = 0. For δ ̸= constant and δ

′
f = 0; we get that f = 0 which is a contradiction to the

definition of bi-f -harmonic curve.

Case I-6: If N a α-para-Kenmotsu manifold, ff
′′
= 0 and δ ̸= constant then from

equation (6.30) we have following equations;

4f
′
(δ2 − ε1α

2) + 3δδ
′
f = 0,

2ε1(f
′
)2 − f2(2α2 − ε1δ

2) = 0,

2ε1δ(f
′
)2 + 4ε1ff

′
δ
′
+ f2(

r

2
δ + α2δ + ε1δ

3 + ε1δ
′′
) = 0.

Then, we have the following corollary.

Corollary 6.5. Let N be a α-para-Kenmotsu manifold where ff
′′
= 0, δ ̸= constant and

γ : I −→ N be a Frenet Legendre curve. Then γ is a bi-f -harmonic curve where the function

f and the scalar curvature r are given by;

f = (ε1α
2 − δ2)−

3
8 + c

and

r = −2
[
α2 + ε1δ

2 + ε1
δ
′′

δ
+ 3

(δ
′
)2

ε1α2 − δ2
+

9δ2(δ
′
)2

8(ε1α2 − δ2)2
]
,

where δ is the solution of 3ε1δ
2(δ

′
)2−2(2α2− ε1δ

2)(ε1α
2− δ2)2 = 0 differential equation and

and ε1α
2 − δ2 ̸= 0.
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Case I-7: If N is a paracosymplectic manifold, ff
′′
= 0 and δ ̸= constant then from

(6.30), we obtain following equations;


4ff

′
δ2 + 3f2δδ

′
= 0,

2ε1δ(f
′
)2 + 4ε1ff

′
δ
′
+ f2(

r

2
δ + ε1δ

3 + ε1δ
′′
) = 0.

We have the following corollary.

Corollary 6.6. Let N be a paracosymplectic manifold where ff
′′
= 0, δ ̸= constant and

γ : I −→ N be a Frenet Legendre curve. Then γ is a bi-f -harmonic curve where the function

f and the scalar curvature r are given by;

f = δ−
3
4 + c

and

r = −2ε1δ
2 − 2ε1

δ
′′

δ
+

6ε1δ
′

δ2
− 9ε1

4δ2
.

Case II : Assume that δ = constant is not equal to 0. Then we shall investigate the

following subcases:

Case II-1: If N a three dimensional β-para-Sasakian manifold then we have following

equations from (6.27);



(ff
′′
)
′
+ 4ff

′
δ2 = 0,

ff
′
β = 0,

3ff
′′
+ 2(f

′
)2 + f2(

r

2
ε1 + 3β2ε1 + δ2) = 0.

(6.32)

Hence, we give the following theorem;

Theorem 6.3. There is no proper bi-f -harmonic Frenet Legendre curve in a three dimen-

sional β-para-Sasakian manifold where δ = constant ̸= 0.

Proof. From (6.32), the proof is obvious.
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Case II-2: If N a three dimensional α-para-Kenmotsu manifold and δ = constant ̸= 0

then we have following equations from (6.27);

(ff
′′
)
′
+ 4ff

′
(δ2 − ε1α

2) = 0,

3ff
′′
+ 2(f

′
)2 − f2(2α2ε1 − δ2) = 0,

3ff
′′
+ 2(f

′
)2 + f2(

r

2
ε1 + α2ε1 + δ2) = 0.

So, we have the following corollary;

Corollary 6.7. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional α-

para-Kenmotsu manifold N . Then γ is a bi-f -harmonic curve where δ = constant ̸= 0,

the constant scalar curvature equals to r = −6α2 and the function f is a solution of the

non-linear differential equations given as;
(ff

′′
)
′
+ 4ff

′
(δ2 − ε1α

2) = 0,

3αff
′′
+ 2α(f

′
)2 − f2(2α3ε1 − αδ2) = 0.

Case II-3: If N a three dimensional paracosymplectic manifold and δ = constant ̸= 0

then we obtain the following equations from (6.27);
(ff

′′
)
′
+ 4ff

′
δ2 = 0,

3ff
′′
+ 2(f

′
)2 + f2(

r

2
ε1 + δ2) = 0.

(6.33)

Then we have,

Corollary 6.8. Let γ : I −→ N be a Frenet Legendre curve in a pracosymplectic manifold

N . Then γ is a bi-f -harmonic curve where δ = constant ̸= 0, the scalar curvature r is given

by;

r = −6ε1
f

′′

f
− 4ε1(

f
′

f
)2 − 2ε1δ

2

and the function f is a solution of the non-linear differential equations given in equation

(6.33).

Case II-4: If N a three dimensional normal almost paracontact metric manifold, ff
′′
= 0

and δ = constant ̸= 0 then from (6.27), we obtain that γ is a bi-f -harmonic Frenet Legendre
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curve if and only if

4ff
′
(δ2 − ε1α

2) = 0,

2ε1α(f
′
)2 + 4ff

′
δβ − f2(2α3 − ε1αδ

2) = 0,

2ε1δ(f
′
)2 + 4ε1ff

′
αβ + f2(

r

2
δ + α2δ + 3β2δ + ε1δ

3) = 0.

(6.34)

Hence we give,

Corollary 6.9. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length in N

where α, β = constant, ff
′′
= 0 and δ = constant ̸= 0. Then γ is a bi-f -harmonic curve iff

f is a solution of non-linear differential equations given in equation (6.34).

Case II-5: If N a three dimensional β-para-Sasakian manifold and δ = constant ̸= 0

then we have following equations from (6.27);

4ff
′
δ2 = 0,

ff
′
δβ = 0,

ε1δ(f
′
)2 + f2

2 ( r2δ + 3β2δ + ε1δ
3) = 0.

(6.35)

So, we have the following nonexistence theorem.

Theorem 6.4. There is no proper bi-f -harmonic Frenet Legendre curve in a three dimen-

sional β-para-Sasakian manifold where δ = constant ̸= 0.

Case II-6: If N a three dimensional α-para-Kenmotsu manifold and δ = constant ̸= 0

then we have following equations from (6.27);

ff
′
(δ2 − ε1α

2) = 0,

2ε1(f
′
)2 − f2(2α2 − ε1δ

2) = 0,

2ε1(f
′
)2 + f2(

r

2
+ α2 + ε1δ

2) = 0.

(6.36)

Corollary 6.10. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length in

three dimensional α-para-Kenmotsu manifold N where δ = constant ̸= 0. Then γ is a proper

bi-f -harmonic curve iff the scalar curvature equals to r = −6α2 and the function f is the

solution of 2(f
′
)2 + ff

′
(ε1δ

2 − α2)− f2(2ε1α
2 − δ2) = 0.
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Case II-7: If N a three dimensional paracosymplectic manifold and δ = constant ̸= 0

then we have following equations from (6.27);
4ff

′
δ2 = 0,

ε1δ(f
′
)2 + f2

2 ( r2δ + ε1δ
3) = 0.

(6.37)

Then we give

Theorem 6.5. There is no bi-f -harmonic Frenet Legendre curve in a three dimensional

paracosymplectic manifold where δ = constant ̸= 0.

7. Biminimal Frenet Legendre Curves

In this section, the conditions for a Frenet curve to be biminimal are obtained in N . Be-

sides, detailed calculations have been made for various manifolds as in the previous sections.

By using normal components of tension and bitension fields, the condition of being biminimal

curve is obtained by using the formula given as below, [11, 17];

[τ2,λ(γ)]
⊥ = [τ2(γ)]

⊥ − λ[τ(γ)]⊥ = 0. (7.38)

Let determine the biminimality condition for a Frenet Legendre curve in N . First, let give

the tension and bitension fields respectively;

τ(γ) = −ε1αξ − ε1δφT,

τ2(γ) = 3δδ
′
T + (−3β2δ − α2δ − r

2
δ − ε1δ

3 − ε1δ
′′
)φT + (−2βδ

′
+ 2α3 − αε1δ

2)ξ.

Hence by using normal components of tension and bitension fields the biminimality condition

is obtained as below;

[τ2,λ(γ)]
⊥ = (−3β2δ − α2δ − r

2
δ − ε1δ

3 − ε1δ
′′
+ λε1δ)φT

+ (−2βδ
′
+ 2α3 − αε1δ

2 + λε1α)ξ

= 0. (7.39)

By using this condition, we can give the following theorems;

Theorem 7.1. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional normal

almost paracontact metric manifold N where α, β = constant. Then γ is a biminimal curve
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iff the following equations hold:
3β2δ + α2δ + r

2δ + ε1δ
3 + ε1δ

′′ − λε1δ = 0,

−2βδ
′
+ 2α3 − αε1δ

2 + λε1α = 0.

(7.40)

Theorem 7.2. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional normal

almost paracontact metric manifold N where α, β = constant. Then γ is a biminimal curve

where the scalar curvature r is given by;

r = −2ε1
δ
′′

δ
− 4

β

α
δ
′ − 6α2 − 6β2,

where δ is the solution of the second differential equation of (7.40).

Now, we give the interpretations of Theorem 7.1.

Case I: Assume that δ is not constant. Then we shall investigate the following subcases.

Case I-1: If N is a three dimensional β-para-Sasakian manifold and δ ̸= constant then

from (7.40), we obtain following equations;
3β2δ + r

2δ + ε1δ
3 + ε1δ

′′ − λε1δ = 0,

2βδ
′
= 0.

(7.41)

Then we obtain the following nonexistence theorem.

Theorem 7.3. There is no biminimal Frenet Legendre curve in a β-para-Sasakian manifold

where δ ̸= constant.

Case I-2: If N is a three dimensional α-para-Kenmotsu manifold and δ ̸= constant then

from (7.40), we obtain following equations;
−α2δ − r

2δ − ε1δ
3 − ε1δ

′′
+ λε1δ = 0,

2α3 − αε1δ
2 + λε1α = 0.

(7.42)

So we give,

Theorem 7.4. There is no biminimal Frenet Legendre curve in a three dimensional α-para-

Kenmotsu manifold N where δ ̸= constant.
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Proof. From (7.42), we find that δ =
√
2ε1α2 + λ but we accept δ ̸= constant where

α = constant.

Case I-3: If N is a three dimensional paracosymplectic manifold and δ ̸= constant then

from (7.40), we obtain following equation;

r

2
δ + ε1δ

3 + ε1δ
′′ − λε1δ = 0.

Hence we have,

Corollary 7.1. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional para-

cosymplectic manifold N and δ ̸= constant. Then γ is a biminimal curve iff the scalar

curvature r is given by;

r = −2ε1
δ
′′

δ
− 2ε1δ

2 − 2λε1.

Case II: Assume that δ=constant is not equal to 0. Then we shall investigate the following

subcases:

Case II-1: If N is a three dimensional β-para-Sasakian manifold and δ = constant ̸= 0

then from (7.40), we obtain following equation;

3β2 +
r

2
+ ε1δ

2 − λε1 = 0.

Hence, we give the following theorem.

Corollary 7.2. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional β-para-

Sasakian manifold N and δ = constant ̸= 0. Then γ is a biminimal curve where the constant

scalar curvature r is given by;

r = 2ε1δ
2 − 6β2 + 2λε1.

Case II-2: If N is a three dimensional α-para-Kenmotsu manifold and δ = constant ̸= 0

then from (7.40), we obtain we obtain following equations;
−α2 − r

2 − ε1δ
2 + λε1 = 0,

2α2 − ε1δ
2 + λε1 = 0.

Then we obtain the following corollary.
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Corollary 7.3. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional α-

para-Kenmotsu manifold N and δ = constant ̸= 0. Then γ is a biminimal curve where the

constant scalar curvature r is given by;

r = −6α2.

Case II-3: If N is a three dimensional paracosymplectic manifold and δ = constant ̸= 0

then from (7.40), we obtain following equation;

r

2
+ ε1δ

2 − λε1 = 0.

So we have,

Corollary 7.4. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional para-

cosymplectic manifold N . Then γ is a biminimal curve where the constant scalar curvature

r is given by;

r = −2ε1δ
2 + 2λε1.

8. f-Biminimal Frenet Legendre Curves

Finally in this section, we give f -biminimality conditions for a Frenet curve in N and also

particular cases such as: β-para-Sasakian, α-para-Kenmotsu and paracosymplectic manifolds.

From the Definition 2.7, we know that the condition of being f -biminimal curve given as

below, [11];

[τ2,λ,f (γ)]
⊥ = [τ2,f (γ)]

⊥ − λ[τf (γ)]
⊥ = 0.

Then using the normal components of tension and bitension fields, given by (4.16) and

(5.21), f -biminimality condition is obtained as below;

[τ2,λ,f (γ)]
⊥ =

[
(−α2δ − 3β2δ − ε1δ

3 − ε1δ
′′ − r

2
δ + λε1δ)f

− 2ε1(αβ + δ
′
)f

′ − ε1δf
′′]
φT

+ ((2α3 − ε1αδ
2 − 2βδ

′
+ λε1α)f − 2δβf

′ − ε1αf
′′
)ξ

= 0. (8.43)

Theorem 8.1. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional normal

almost paracontact metric manifold where α, β = constant. Then γ is an f -biminimal curve
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iff the following equations hold:
(α2δε1 + 3β2δε1 + δ3 + δ

′′
+

r

2
ε1δ − λδ)f + 2(αβ + δ

′
)f

′
+ δf

′′
= 0,

(2α3 − ε1αδ
2 − 2βδ

′
+ λε1α)f − 2δβf

′ − ε1αf
′′
= 0.

(8.44)

Now, we give the interpretations of Theorem 8.1.

Case I: Assume that δ is not constant. Then we shall investigate the following subcases:

Case I-1: If N is a three dimensional β-para-Sasakian manifold and δ ̸= constant then

from (8.44), we obtain following equations;
(3β2δε1 + δ3 + δ

′′
+

r

2
ε1δ − λδ)f + 2δ

′
f

′
+ δf

′′
= 0,

β(δf)
′
= 0.

(8.45)

Corollary 8.1. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length

in three dimensional β-para-Sasakian manifold N where δ ̸= constant. Then γ is an f -

biminimal curve iff the function f and the scalar curvature r equals:

f =
1

δ
+ c

and

r = 2ε1(λ− δ2 − δ
′′

δ
− 3β2ε1)− 4ε1(

δ
′

δ
)2 − 2ε1δ(2(δ)

′
δ
′′ − δ

′′
δ−2).

Case I-2: If N is a three dimensional α-para-Kenmotsu manifold and δ ̸= constant then

from (8.44), we obtain following equations;
(α2δε1 + δ3 + δ

′′
+

r

2
ε1δ − λδ)f + 2δ

′
f

′
+ δf

′′
= 0,

(2α3 − ε1αδ
2 + λε1α)f − ε1αf

′′
= 0.

(8.46)

Corollary 8.2. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length in

three dimensional α-para-Kenmotsu manifold N and δ ̸= constant. Then γ is an f -biminimal

curve iff f is a solution of non-linear differential equations given in (8.46).

Case I-2: If N is a three dimensional paracosymplectic manifold and δ ̸= constant then

from (8.44), we obtain following equation;

(ε1δ
3 + ε1δ

′′
+

r

2
δ − λε1δ)f + 2ε1δ

′
f

′
+ ε1δf

′′
= 0. (8.47)
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Corollary 8.3. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length in

three dimensional paracosymplectic manifold N and δ ̸= constant. Then γ is an f -biminimal

curve iff f is a solution of non-linear differential equation given in (8.47).

Case II: Assume that δ = constant is not equal to 0. Then we shall investigate the

following subcases:


(α2δε1 + 3β2δε1 + δ3 +

r

2
ε1δ − λδ)f + 2(αβ)f

′
+ δf

′′
= 0,

(2α3 − ε1αδ
2 + λε1α)f − 2δβf

′ − ε1αf
′′
= 0.

(8.48)

Case II-1: If N is a three dimensional β-para-Sasakian manifold and δ = constant ̸= 0 then

from (8.44), we obtain following equations;
(3β2δε1 + δ3 +

r

2
ε1δ − λδ)f + δf

′′
= 0,

2δβf
′
= 0.

(8.49)

Then we obtain the following nonexistence theorem;

Theorem 8.2. There is no proper f -biminimal Frenet Legendre curve in a three dimensional

β-para-Sasakian manifold where δ = constant ̸= 0.

Proof. From the second equation of (8.49), the proof is obvious.

Case II-2: If N is a three dimensional α-para-Kenmotsu manifold and δ = constant ̸= 0

then from (8.44), we obtain following equations;
(α2ε1 + δ2 +

r

2
ε1 − λ)f + f

′′
= 0,

(2α2ε1 − δ2 + λ)f − f
′′
= 0.

(8.50)

Corollary 8.4. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional α-

para-Kenmotsu manifold N and δ = constant ̸= 0. Then γ is an f -biminimal curve where

the constant scalar curvature equals to r = −6α2 and the function f is a solution of the

non-linear differential equations given in (8.50).
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