
Volume 5 

Issue 1 

2022 



VOLUME 5 ISSUE 1 March 2022 

ISSN 2636-7467 https://www.journalmim.com 

International Journal of Maps in 

Mathematics 

 
 

 

Editor-in-Chief 

 

Bayram Sahin 

Department of Mathematics, Faculty of Science, Ege University, Izmir, Turkey 
journalofmapsinmathematics@gmail.com  

https://www.journalmim.com/
mailto:journalofmapsinmathematics@gmail.com


 

Managing Editor 

 

Arif Gursoy 

Department of Mathematics, Faculty of Science, Ege University, Izmir, Turkey  

arif.gursoy@ege.edu.tr 

Editorial Board 

Syed Ejaz Ahmed 
Brock University, Canada 

Kamil Rajab Ayda-zade 
Azerbaijan National Academy of Sciences, Azerbaijan 

Erdal Ekici 
Canakkale Onsekiz Mart University, Turkey 

Arif Gursoy 
Ege University, Turkey 

Zulfiqar Habib 
COMSATS Institute of Information Technology, Pakistan 

Vatan Karakaya 
Yildiz Technical University, Turkey 

Andrey L. Karchevsky 
Sobolev Mathematical Institute, Russia 

Selcuk Kutluay 
Inonu University, Turkey 

Jae Won Lee 
Gyeongsang National University, Republic of Korea 

Jung Wook Lim 
Kyungpook National University, Republic of Korea 

Takashi Noiri 
Yatsushiro College of Technology, Japan 

Aldo Figallo Orellano 
Universidad Nacional del Sur, Argentina 

Bayram Sahin 
Ege University, Turkey 

Ali Taghavi 
University of Mazandaran, Iran 

Adnan Tercan 
Hacettepe University, Turkey 

Gabriel Eduard Vilcu 
Petroleum-Gas University of Ploiesti, Romania 

 

Technical Assistants 

 

Ibrahim Senturk 

Department of Mathematics, Faculty of Science, Ege 

University, Izmir, Turkey 

Deniz Poyraz 

Department of Mathematics, Faculty of Science, Ege 

University, Izmir, Turkey



 

 

 

 

 

 

This page intentionally left blank 

 



International Journal of Maps in Mathematics

Volume 5, Issue 1, 2022, Pages:1

ISSN: 2636-7467 (Online)

www.journalmim.com

EDITORIAL

BAYRAM ŞAHIN ID

Dear Readers,

With this new issue, the International Journal of Maps in Mathematics has pub-

lished its first issue in its 5th year. It is important for a scientific journal to complete 5

years. It proves that this journal is recognized by the scientific community and shows that it

is an accepted platform for researchers working on the scope of the journal. We would like

to thank our readers, editors, referees, technical assistants and you, our readers, who have

contributed significantly to our journal’s fifth year. The International Journal of Maps

in Mathematics will continue to be a qualified platform for researchers in the research

areas of the journal.
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THE APPROXIMATION OF BIVARIATE GENERALIZED

BERNSTEIN-DURRMEYER TYPE GBS OPERATORS

ECEM ACAR ID ∗ AND AYDIN İZGİ ID

Abstract. In the present paper, we introduce the generalized Bernstein-Durrmeyer type

operators and obtain some approximation properties of these operators studied in the space

of continuous functions of two variables on a compact set. The rate of convergence of these

operators are given by using the modulus of continuity. The order of approximation using

Lipschitz function and Peetre’s K- functional are given. Further, we introduce Bernstein-

Durrmeyer type GBS (Generalized Boolean Sum) operator by means of Bögel continuous

functions which is more extensive than the space of continuous functions. We obtain the

degree of approximation for these operators by using the mixed modulus of smoothness and

mixed K-functional. Finally, we show comparisons by some illustrative graphics in Maple

for the convergence of the operators to some functions.

Keywords: Bernstein-Durrmeyer operators, Modulus of continuity, Peetre’s K- functional,

GBS operators, B-continuous function, B-differentiable function, Mixed modulus of smooth-

ness, Mixed K-functional.

2010 Mathematics Subject Classification: 41A10, 41A25, 41A36, 41A63.

1. Introduction

Let f(x) be a function defined on the closed interval [0, 1] the expression

Bnf(x) = Bn(f ;x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k (1.1)
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is called Bernstein polynomial of order n of the function f(x). The polynomials Bnf(x)

were introduced by S. Bernstein (see [5]) to give an especially simple proof of Weierstrass

approximation theorem. The generalizations of Bernstein polynomials (1.1) were investigated

in [15]- [12]. In 1988, [15] the function of two real variables function f be given over the unit

square

s : [0, 1]× [0, 1]

then the bivariate Bernstein polynomial of degree (n,m), corresponding to the function f , is

defined by means of the formula

Bn,m(x) = Bn,m(f ;x, y) =
n∑

k=0

m∑
j=0

f

(
k

n
,
j

m

)(
n

k

)(
m

j

)
xk(1− x)n−kyj(1− y)m−j . (1.2)

There are many investigations devoted to the problem of approximating continuous func-

tions by classical Bernstein polynomials, as well as by two-dimensional Bernstein polynomials

and their generalizations.

In 1967, Durrmeyer [11] introduced the following positive linear operators of the classical

Bernstein operators, which modify with each function f integrable on the interval [0, 1] the

polynomial

Mn(f(x)) = (n+ 1)

n∑
k=0

pn,k(x)

∫ 1

0
pn,k(t)f(t)dt,

which pn,k(x) =
(
k
n

) (
n
k

)
xk(1−x)n−k. D. C. Morales and V. Gupta [9] studied two families of

Bernstein-Durrmeyer type operators. The Baskakov Durrmeyer operators were introduced

in 1985 and many properties of such operators were studied comprehensively. Gupta [13]

presented the approximation properties of these operators. In 2007 [1] local approximation

properties of a variant of the Bernstein-Durrmeyer operators were given.

In this paper, firstly we introduce bivariate generalized Bernstein-Durrmeyer operators.

We investigate the properties of approximation of generalized Bernstein-Durrmeyer polyno-

mials and the order of approximation using Lipschitz function and Peetre’s K- functional.

Then, we define the Generalized Boolean Sum (GBS) operators of generalized Bernstein-

Durrmeyer type and study the degree of approximation in terms of the mixed modulus of

smoothness.
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2. Construction of the Bivariate Generalized Bernstein-Durrmeyer Type

Operators

Let D = [−1, 1] × [−1, 1], (x, y) ∈ D, n,m ∈ N and f defined on the interval C(D). We

define the linear positive operators Dn,m(f ;x, y) in the following way:

Dn,m(f ;x, y) =
n+ 1

2

m+ 1

2

n∑
k=0

m∑
j=0

ϕk,j
n,m(x, y)

∫ 1

−1

∫ 1

−1
ϕk,j
n,m(t, u)f(t, u)dtdu (2.3)

where

ϕk,j
n,m(x, y) = φk

n(x)φ
j
m(y)

and

φk
n(x) =

1

2n

(
n

k

)
(1 + x)k(1− x)n−k.

Lemma 2.1. For ∀(x, y) ∈ D and ∀n,m ∈ N, Bernstein-Durrmeyer operators (2.3) satisfy

the following equalities:

Dn,m(1;x, y) = 1 (2.4)

Dn,m(t;x, y) = x− 2x

n+ 2

Dn,m(u;x, y) = y − 2y

m+ 2

Dn,m(t2 + u2;x, y) =x2 − (6n+ 6)x2 − 4nx

(n+ 2)(n+ 3)
+

2− 2n

(n+ 2)(n+ 3)

+y2 − (6m+ 6)y2 − 4my

(m+ 2)(m+ 3)
+

2− 2m

(m+ 2)(m+ 3)

(2.5)

Dn,m(t3 + u3;x, y) =x3 − 12n2 + 24n+ 24

(n+ 2)(n+ 3)(n+ 4)
x3 +

6n2 + 6n

(n+ 2)(n+ 3)(n+ 4)
x

+
12n+ 48

(n+ 2)(n+ 3)(n+ 4)
+ y3 − 12m2 + 24m+ 24

(m+ 2)(m+ 3)(m+ 4)
y3

+
6m2 + 6m

(m+ 2)(m+ 3)(m+ 4)
y +

12m+ 48

(m+ 2)(m+ 3)(m+ 4)

Dn,m(t4 + u4;x, y) =x4 − 20n3 + 60n2 + 160n+ 120

(n+ 2)(n+ 3)(n+ 4)(n+ 5)
x4 +

12n3 − 16n2 + 4n

(n+ 2)(n+ 3)(n+ 4)(n+ 5)
x2

+
−4n3 − 16n2 + 32n

(n+ 2)(n+ 3)(n+ 4)(n+ 5)
x+ y4 − 20m3 + 60m2 + 160m+ 120

(m+ 2)(m+ 3)(m+ 4)(m+ 5)
y4

+
12m3 − 16m2 + 4m

(m+ 2)(m+ 3)(m+ 4)(m+ 5)
y2 +

−4m3 − 16m2 + 32m

(m+ 2)(m+ 3)(m+ 4)(m+ 5)
y.
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From Lemma 2.1, we obtained the following lemma.

Lemma 2.2. If the operator Dn,m is defined by (2.3), then for ∀(x, y) ∈ D and n,m ∈ N

Dn,m((t− x)2;x, y) =
(−2n+ 6)x2 + 4nx+ 2− 2n

(n+ 2)(n+ 3)
(2.6)

Dn,m((u− y)2;x, y) =
(−2m+ 6)y2 + 4my + 2− 2m

(m+ 2)(m+ 3)
(2.7)

Dn,m((t− x)4;x, y) =
72n3 + 852n2 + 1916n+ 1680

(n+ 2)(n+ 3)(n+ 4)(n+ 5)
x4 +

24n

(n+ 2)(n+ 3)
x3

+
−24n3 − 272n2 − 830n+ 840

(n+ 2)(n+ 3)(n+ 4)(n+ 5)
x2 +

−4n3 − 64n2 − 464n− 960

(n+ 2)(n+ 3)(n+ 4)(n+ 5)
x

Dn,m((u− y)4;x, y) =
72m3 + 852m2 + 1916m+ 1680

(m+ 2)(m+ 3)(m+ 4)(m+ 5)
y4 +

24m

(m+ 2)(m+ 3)
y3

+
−24m3 − 272m2 − 830m+ 840

(m+ 2)(m+ 3)(m+ 4)(m+ 5)
y2 +

−4m3 − 64m2 − 464m− 960

(m+ 2)(m+ 3)(m+ 4)(m+ 5)
y.

Let C(D) is a continuous functions space on the D = [−1, 1] × [−1, 1]. C(D) is a linear

normed space with the norm

∥f∥C(D) = max
x∈[−1,1]×[−1,1]

|f(x, y)| .

If fn,m is a sequence on the space C(D), for f ∈ C(D)

lim
n,m→∞

∥fn,m − f∥ = 0,

then it is called uniformly convergence to the function f .

Lemma 2.3. Let n ∈ N, for every fixed x0 ∈ [−1, 1], there exists a positive constant M1(x0)

such that Dn,n

(
(t− x0)

4 ;x0, y
)
≤ M1(x0)n

−1.

Theorem 2.1. If Tn,m is a sequence of linear positive operators satisfying the conditions

lim
n,m→∞

∥Tn,m(1;x, y)− 1∥C(X) =0,

lim
n,m→∞

∥Tn,m((t− x);x, y)− x∥C(X) =0,

lim
n,m→∞

∥Tn,m((u− y);x, y)− y∥C(X) =0,

lim
n,m→∞

∥∥Tn,m(t2 + u2;x, y)− (x2 + y2)
∥∥
C(X) =0,

then for any function f ∈ C(X), which is bounded in R2 and X is a compact set,

lim
n,m→∞

∥Tn,m(f ;x, y)− f(x, y)∥C(X) = 0.
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In the following theorem we show that the linear positive operator Dn,m convergences to

f uniformly with the help of Theorem 2.1 given by Volkov [18].

Theorem 2.2. Let f ∈ C(D), the operators Dn,m defined by (2.3) converge uniformly to f

on D ⊂ R2 as n,m → ∞.

Proof. From (2.4)-(2.5), we obtain

lim
n,m→∞

∥Dn,m(1;x, y)− 1∥C(D) =0,

lim
n,m→∞

∥Dn,m((t− x);x, y)− x∥C(D) =0,

lim
n,m→∞

∥Dn,m((u− y);x, y)− y∥C(D) =0,

lim
n,m→∞

∥∥Dn,m(t2 + u2;x, y)− (x2 + y2)
∥∥
C(D) =0.

The proof is obvious from Volkov’s Theorem.

2.1. Degree of Approximation by Dn,m.

Definition 2.1. Let f ∈ C(D) be a continuous function and δ a positive number. For

x, y ∈ D, the full continuity modulus of the function f(x, y) is

ω(f ; δ) = max√
(x1−x2)2+(y1−y2)2≤δ

|f(x1, y1)− f(x2, y2)|

and its partial continuity moduli with respect to x and y are defined by

ω(1)(f ; δ) = max
−1≤y≤1

max
|x1−x2|≤δ

|f(x1, y)− f(x2, y)|

ω(2)(f ; δ) = max
−1≤x≤1

max
|y1−y2|≤δ

|f(x, y1)− f(x, y2)| .

It is also known that limδ→0 ω(f ; δ) = 0 and ω(f ;λδ) ≤ (λ + 1)ω(f ; δ) for any λ ≥ 0. The

same properties are satisfied by partial continuity moduli.

Theorem 2.3. Let f ∈ C(D), the following inequalities hold:

∥Dn,m(f ;x, y)− f∥C(D) ≤ 3

(
ω(1)

(
f ;

1√
n

)
+ ω(2)

(
f ;

1√
n

))
(2.8)

∥Dn,m(f ;x, y)− f∥C(D) ≤ 3ω

(
f ;

√
1

n
+

1

m

)
. (2.9)
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Proof. From (2.3)-(2.4) and using the properties of the modulus of continuity we

obtain

|Dn,m(f ;x, y)− f(x, y)| ≤ |Dn,m(f(t, u)− f(t, y);x, y)|+ |Dn,m(f(t, y)− f(x, y);x, y)|

≤Dn,m (|f(t, u)− f(t, y)|) +Dn,m (|f(t, y)− f(x, y)|)

≤ω(1) (f ; δn)

{
1 +

1

δn

n+ 1

2

n∑
k=0

φk
n(x)

∫ 1

−1
|t− x|φk

n(t)dt

}

+ω(2) (f ; δm)

1 +
1

δm

m+ 1

2

m∑
j=0

φj
m(y)

∫ 1

−1
|u− y|φj

m(u)du


where δn, δm are the sequences which tend to zero as n,m → ∞. Applying the Cauchy-

Schwartz inequality we obtain

|Dn,m(f ;x, y)− f(x, y)|

≤ ω(1) (f ; δn)

{
1 +

1

δn

n+ 1

2

n∑
k=0

φk
n(x)

(∫ 1

−1
(t− x)2φk

n(t)dt

)1/2(∫ 1

−1
φk
n(t)dt

)1/2
}

+ω(2) (f ; δm)

1 +
1

δm

m+ 1

2

m∑
j=0

φj
m(y)

(∫ 1

−1
(u− y)2φj

m(u)du

)1/2(∫ 1

−1
φj
m(u)du

)1/2
 .

Hence we get

|Dn,m(f ;x, y)− f(x, y)| ≤ ω(1) (f ; δn)

1 +
1

δn

n+ 1

2

(
n∑

k=0

φk
n(x)

)1/2(∫ 1

−1
(t− x)2φk

n(t)dt

)1/2


+ω(2) (f ; δm)

1 +
1

δm

m+ 1

2

 m∑
j=0

φj
m(y)

1/2(∫ 1

−1
(u− y)2φj

m(u)du

)1/2


=ω(1) (f ; δn)

{
1 +

1

δn

(
Dn,m((t− x)2;x, y)

)1/2}
+ ω(2) (f ; δm)

{
1 +

1

δm

(
Dn,m((u− y)2;x, y)

)1/2}
.

From (2.6) and (2.7), we obtain (2.8). Using (2.3), (2.4) and letting

δ =
√
(t− x)2 + (u− y)2

we have

|f(t, u)− f(x, y)| ≤ ω (f ; δnm)

(√
(t− x)2 + (u− y)2

δnm
+ 1

)
.
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Hence, we obtain

|Dn,m(f ;x, y)− f(x, y)| ≤Dn,m(|f(t, u)− f(x, y)| ;x, y)

≤ω (f ; δnm)

{
1 +

1

δnm
Dn,m

(√
(t− x)2 + (u− y)2;x, y

)}

≤ω (f ; δnm)

1 +
1

δnm

n+ 1

2

m+ 1

2

n∑
k=0

m∑
j=0

ϕk,j
n,m(x, y)

∫ 1

−1

∫ 1

−1

(√
(t− x)2 + (u− y)2

)
ϕk,j
n,m(t, u)dtdu

}
applying the Cauchy-Schwartz inequality, we obtain

|Dn,m(f ;x, y)− f(x, y)| ≤ω (f ; δnm)

1 +
1

δnm

n+ 1

2

m+ 1

2

n∑
k=0

m∑
j=0

ϕk,j
n,m(x, y)

∫ 1

−1

∫ 1

−1

(
(t− x)2 + (u− y)2

)2
ϕk,j
n,m(t, u)dtdu

)1/2
}

≤ω (f ; δnm)

{
1 +

1

δnm

(
Dn,m

(
(t− x)2 + (u− y)2;x, y

))1/2}
.

With (2.6) and (2.7) we get desired result (2.9).

Now, we give the order of approximation using Lipschitz function and Peetre’s K- func-

tional.

Corollary 2.1. If f additionally satisfies a Lipschitz condition

|f(x1, y1)− f(x2, y2)| ≤ K
(
(x1 − x2)

2 + (y1 − y2)
2
)α/2

, 0 ≺ α ≤ 1

then the inequality

|Dn,n(f ;x, y)− f(x, y)| ≤ K ′
(
1

n
+

1

m

)α/2

,

where K ′ = 3K.

Corollary 2.2. If f additionally satisfies a Lipschitz condition

|f(x1, y)− f(x2, y)| ≤ K1 |x1 − x2|α/2

and

|f(x, y1)− f(x, y2)| ≤ K2 |y1 − y2|γ/2

then the inequality

|Dn,n(f ;x, y)− f(x, y)| ≤ K ′
1

(
1

n

)α/2

+K ′
2

(
1

m

)α/2

,

where K ′
1 = 3K1, K

′
2 = 3K2 holds.
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Let C2(D) be the space of all functions f ∈ C(D) such that ∂if
∂xi ,

∂if
∂yi

∈ C(D) for i = 1, 2.

The norm on the space C2(D) is defined as

∥f∥C2(D) = ∥f∥C(D) +
2∑

i=1

(∥∥∥∥∂if

∂xi

∥∥∥∥
C(D)

+

∥∥∥∥∂if

∂yi

∥∥∥∥
C(D)

)
.

Definition 2.2. Let f ∈ C(D). The Peetre’s K-functional is defined by

K (f ; δ) = inf
g∈C2(D)

{
∥f − g∥C(D) + δ ∥g∥C2(D) , δ > 0

}
. (2.10)

Theorem 2.4. For the function f ∈ C(D), we get

|Dn,m (f ;x, y)− f(x, y)| ≤ 2K (f ; δn,m(x, y)) ,

where δn,m(x, y) = max
(

2
n+2 ,

2
m+2

)
.

Proof. Let g ∈ C2(D) and t, s ∈ [−1, 1]. If we use Taylor’s theorem at point (x, y)

for the function g(t, s), we get

g(t, s)− g(x, y) =
∂g(x, y)

∂x
(t− x) +

∫ t

x
(t− x)

∂2g(u, y)

∂u2
du+

∂g(x, y)

∂y
(s− y)

+

∫ s

y
(s− v)

∂2g(x, v)

∂v2
dv.

From Lemma 2.1, we haveDn,m (t− x;x, y) = − 2x
n+2 veDn,m (u− y;x, y) = − 2y

m+2 . Applying

the operator Dn,m on the above equation, we obtain

Dn,m (g;x, y)− g(x, y) =− 2x

n+ 2
gx +Dn,m

(∫ t

x
(t− u)

∂2g(u, y)

∂u2
du;x, y

)
− 2y

m+ 2
gy +Dn,m

(∫ s

y
(s− v)

∂2g(x, v)

∂v2
dv;x, y

)
.

Hence,

|Dn,m (g;x, y)− g(x, y)|

≤
∣∣∣∣ 2x

n+ 2
gx +

2y

m+ 2
gy

∣∣∣∣+Dn,m

(∣∣∣∣∫ t

x
|t− u|

∣∣∣∣∂2g(u, y)

∂u2

∣∣∣∣ du∣∣∣∣ ;x, y)
+Dn,m

(∣∣∣∣∫ s

y
|s− v|

∣∣∣∣∂2g(x, v)

∂v2

∣∣∣∣ dv∣∣∣∣ ;x, y)
≤
∣∣∣∣ 2x

n+ 2
gx +

2y

m+ 2
gy

∣∣∣∣+ 1

2

∣∣∣∣∂2g

∂x2

∣∣∣∣ ∣∣Dn,m

(
(t− x)2;x, y

)∣∣
+

1

2

∣∣∣∣∂2g(x, v)

∂v2

∣∣∣∣ ∣∣Dn,m

(
(u− y)2;x, y

)∣∣ .
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Using norm for ∀x, y ∈ (D), we get

∥Dn,m (g;x, y)− g(x, y)∥C(D) ≤
2

n+ 2
∥gx∥C(D) +

2

m+ 2
∥gy∥C(D)

+
1

n+ 2

∥∥∥∥∂2g

∂x2

∥∥∥∥
C(D)

+
1

m+ 2

∥∥∥∥∂2g

∂y2

∥∥∥∥
C(D)

≤max

(
1

n+ 2
,

1

m+ 2

)(
∥gx∥C(D) + ∥gy∥C(D)

+

∥∥∥∥∂2g

∂x2

∥∥∥∥
C(D)

+

∥∥∥∥∂2g

∂y2

∥∥∥∥
C(D)

)

≤δn,m ∥g∥C2(D) ,

where δn,m = max
(

2
n+2 ,

2
m+2

)
. Since Dn,m is a linear operator and for ∀ f ∈ C(D), g ∈

C2(D), we have

∥Dn,m (f ;x, y)− f(x, y)∥C(D) ≤∥Dn,m (f − g;x, y)∥C(D)

+ ∥Dn,m (g;x, y)− g(x, y)∥C(D) + ∥f − g∥C(D)

≤∥f − g∥C(D) |Dn,m (1;x, y)|

+ ∥Dn,m (g;x, y)− g(x, y)∥C(D) + ∥f − g∥C(D) .

Hence

∥Dn,m (f ;x, y)− f(x, y)∥C(D) ≤ 2
(
∥f − g∥C(D) + δn,m ∥g∥C2(D)

)
Taking the infimum on the right hand side, we get

|Dn,m (f ;x, y)− f(x, y)| ≤ 2K (f ; δn,m(x, y)) .

3. Construction of GBS Operator of Generalized Bernstein-Durrmeyer Type

In 1934, Bögel introduced the term B-continuous and B-differentiable function and es-

tablished important result for these functions [6]-[7]. In 1966, Dobrescu and Matei [10]

gave some approximation properties for bivariate Bernstein polynomials using a generalized

boolean sum. The Test function theorem is given by Badea et al. [4] for Bögel continuous

functions. Sidharth et al. introduced GBS operators of Bernstein–Schurer–Kantorovich type

and studied the degree of approximation by means of the mixed modulus of smoothness and

the mixed Peetre’s K -functional in [17].

In this section, we introduce Bernstein-Durrmeyer type GBS (Generalized Boolean Sum)

operator by means of Bögel continuous functions which is more extensive than the space
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of continuous functions. The degree of approximation for Bernstein-Durrmeyer type GBS

operators are obtained by using the mixed modulus of smoothness and mixed K-functional.

Let X and Y be a compact real intervals and let ∆(x,y)f [x0, y0;x, y] be mixed difference

of f defined by

∆(x,y)f [x0, y0;x, y] = f(x, y)− f(x, y0)− f(x0, y) + f(x0, y0)

for (x, y), (x0, y0) ∈ X × Y . A function f : X × Y → R is called B-continuous (Bögel

continuous) at (x0, y0) ∈ X × Y , if

lim
(x,y)→(x0,y0)

∆(x,y)f [x0, y0;x, y] = 0

for (x, y) ∈ X × Y . Let the function f : X × Y → R if there exist M > 0 such that∣∣∆(x,y)f [x0, y0;x, y]
∣∣ ≤ M

for every (x, y), (x0, y0) ∈ X × Y , then the function f is defined by B-bounded (Bögel

bounded) on X × Y .

Throughout this paper Bb(X×Y ) denotes all B-bounded functions on X×Y and Cb(X×

Y ) denotes B-continuous functions on X × Y . As usual B(X × Y ) and C(X × Y ) predicate

the space of all bounded functions and the space of all continuous functions on X × Y .

The mixed modulus of smoothness of f ∈ Cb(X × Y ) is defined by

ωmixed (f ; δ1, δ2) := sup
{∣∣∆(x,y)f [x0, y0;x, y]

∣∣ : |x− x0| < δ1, |y − y0| < δ2
}

(3.11)

for (x, y), (x0, y0) ∈ X×Y and for any (δ1, δ2) ∈ (0,∞)×(0,∞) with ωmixed : [0,∞)×[0,∞) →

R.

In 1988-90’s, Badea obtained the basic properties of the mixed modulus of smoothness

ωmixed and these properties are similar to usual modulus of continuity. Also; the mixed

modulus of smoothness provide the next inequality for δ1, δ2 > 0

ωmixed (f ;λ1δ1, λ2δ2) ≤ (1 + λ1)(1 + λ2)ωmixed (f ; δ1, δ2) . (3.12)

Let give the concept of Bögel differentiable function. A function f : X × Y ⊂ R2 → R is

called B-differentiable function at the point (x0, y0) ∈ X × Y if the limit

lim
(x,y)→(x0,y0)

∆(x,y)f [x0, y0;x, y]

(x− x0)(y − y0)

exists and is finite. The limit is call to be the B-differential of f at the point (x0, y0) and

is denoted by Txyf(x0, y0) := TB(f ;x0, y0). The space of all B-differentiable functions is

denoted by TB(X × Y ).
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Let f ∈ Cb(D), the mixed K-functional definition is given by

Kmixed (f ; t1, t2) = inf
g1,g2,h

{
∥f − g1 − g2 − h∥∞ + t1

∥∥∥T 2,0
B g1

∥∥∥
∞

+ t2

∥∥∥T 0,2
B g2

∥∥∥
∞

+t1t2

∥∥∥T 2,2
B h

∥∥∥
∞

}
,

where g1 ∈ C2,0
B , g2 ∈ C0,2

B , h ∈ C2,2
B and for 0 ≤ p, q ≤ 2 Cp,q

B denotes the space of the

functions f ∈ Cb(D) with continuous mixed partial derivates T a,b
B f , 0 ≤ a ≤ p, 0 ≤ b ≤ q.

The partial derivates are

Txf(x0, y0) := T 1,0
B (f ;x0, y0) = lim

x→x0

∆xf ([x0, x] ; y0)

(x− x0)

and

Tyf(x0, y0) := T 0,1
B (f ;x0, y0) = lim

y→y0

∆yf (x0; [y0, y])

(y − y0)

where

∆xf ([x0, x] ; y0) = f(x, y0)− f(x0, y0)

and

∆yf (x0; [y0, y]) = f(x0, y)− f(x0, y0).

Definition 3.1. For f ∈ C(D) and m,n ∈ N, we define the Generalized Boolean Sum (GBS)

operator of generalized Bernstein-Durrmeyer type operator Dn,m as follows:

Sn,m (f(t, s);x, y) =
n+ 1

2

m+ 1

2

n∑
k=0

m∑
j=0

ϕk,j
n,m(x, y)

∫ 1

−1

∫ 1

−1
ϕk,j
n,m(t, u)

× (f(t, y) + f(x, s)− f(t, s)) dtdu,

(3.13)

for (x, y) ∈ D where the operator Sn,m is well defined on the space Cb(D) and f ∈ Cb(D).

3.1. Degree of Approximation by Sn,m.

Theorem 3.1. For every f ∈ Cb(D), the operator (3.13) satisfy the following inequality at

each point (x, y) ∈ D

|Sn,m (f ;x, y)− f(x, y)| ≤ 9ωmixed

(
f ;n−1/2,m−1/2

)
.

Proof. Using the definition of ωmixed (f ; δ1, δ2) and for δ1, δ2 > 0 taking the inequality

ωmixed (f ;λ1δ1, λ2δ2) ≤ (1 + λ1)(1 + λ2)ωmixed (f ; δ1, δ2)
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we can write ∣∣∆(x,y)f [t, s;x, y]
∣∣ ≤ωmixed (f ; |t− x|, |s− y|)

≤
(
1 +

|t− x|
δ1

)(
1 +

|s− y|
δ2

)
ωmixed (f ; δ1, δ2)

(3.14)

for every (x, y), (t, s) ∈ D and for any (δ1, δ2) > 0. From the definition of ∆(x,y)f [t, s;x, y],

we have

f(x, s) + f(t, y)− f(t, s) = f(x, y)−∆(x,y)f [t, s;x, y] . (3.15)

If we apply this equality the operator Dn,m and take the definition Sn,m, we can write

Sn,m (f ;x, y) = f(x, y)Dn,m (1;x, y)−Dn,m

(
∆(x,y)f [t, s;x, y] ;x, y

)
.

From (2.4), we have Dn,m (1;x, y) = 1. Taking (3.14) into account and applying Cauchy-

Schwarz inequality, we obtain

|Sn,m (f ;x, y)− f(x, y)| ≤Dn,m

(
∆(x,y)f [t, s;x, y] ;x, y

)
≤
(
Dn,m (1;x, y) + δ−1

1

√
Dn,m ((t− x)2;x, y)

+δ−1
2

√
Dn,m ((s− y)2;x, y)

+ δ−1
1 δ−1

2

√
Dn,m ((t− x)2;x, y)Dn,m ((s− y)2;x, y)

)
×ωmixed (f ; δ1, δ2) .

From Lemma 2.2 and for every (x, y) ∈ D, we have

Dn,m((t− x)2;x, y) ≤ 4

n

and

Dn,m((u− y)2;x, y) ≤ 4

m
.

Therefore, choosing δ1 = n−1/2 ve δ2 = m−1/2 we get

|Sn,m (f ;x, y)− f(x, y)| ≤ 9ωmixed

(
f ;n−1/2,m−1/2

)
.

Theorem 3.2. Let take TBf ∈ B(D) with the function f ∈ Tb(D). Then, for every (x, y) ∈ D,

we get

|Sn,m(f ;x, y)− f(x, y)| ≤ M.
[
∥TBf∥∞ + ωmixed

(
TBf ;n

−1/2,m−1/2
)]

(nm)−1/2 (3.16)

where M is any positive constant.
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Proof. Let the function f ∈ Tb(D). From [8], we have the identity

∆(x,y)f [t, s;x, y] = (t− x)(s− y)TBf (ς, ρ) , x < ς < t, y < ρ < s. (3.17)

From the definition ∆(x,y)f [t, s;x, y] and appliying TBf to each side of the equality (3.15),

we get

TBf (ς, ρ) = ∆(x,y)TBf (ς, ρ) + TBf (ς, y) + TBf (x, ρ)− TBf (x, y) .

Taking TBf ∈ B(D) and above equation into account, we can write

|Dn,m

(
∆(x,y)f [t, s;x, y] ;x, y

)∣∣
= |Dn,m ((t− x)(s− y)TBf (ς, ρ) ;x, y)|

≤Dn,m

(
|t− x||s− y|

∣∣∆(x,y)TBf (ς, ρ)
∣∣ ;x, y)

+Dn,m (|t− x||s− y| (|TBf (ς, y)|+ |TBf (x, ρ)|+ |TBf (x, y)|) ;x, y)

≤Dn,m (|t− x||s− y|ωmixed (TBf ; |ς − x|, |ρ− y|) ;x, y)

+ 3 ∥TBf∥∞Dn,m (|t− x||s− y|;x, y) .

Also, since the mixed modulus of smoothness ωmixed is nondecreasing, we have

ωmixed (TBf ; |ς − x|, |ρ− y|) ≤ωmixed (TBf ; |t− x|, |s− y|)

≤
(
1 + δ−1

1 |t− x|
) (

1 + δ−1
2 |s− y|

)
ωmixed (f ; δ1, δ2) .

Substituting in the above equality and applying the linearity of the operator Dn,m and using

the inequality of Cauchy-Schwarz, we get
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|Sn,m (f ;x, y)− f(x, y)| =
∣∣Dn,m

(
∆(x,y)f [t, s;x, y] ;x, y

)∣∣
≤3 ∥TBf∥∞

√
Dn,m ((t− x)2(s− y)2;x, y)

+ [Dn,m (|t− x||s− y|;x, y)

+ δ−1
1 Dn,m

(
(t− x)2|s− y|;x, y

)
+ δ−1

2 Dn,m

(
|t− x|(s− y)2;x, y

)
+δ−1

1 δ−1
2 Dn,m

(
(t− x)2(s− y)2;x, y

)]
ωmixed (f ; δ1, δ2)

≤3 ∥TBf∥∞
√

Dn,m ((t− x)2(s− y)2;x, y)

+

[√
Dn,m ((t− x)2(s− y)2;x, y)

+ δ−1
1

√
Dn,m ((t− x)4(s− y)2;x, y)

+ δ−1
2

√
Dn,m ((t− x)2(s− y)4;x, y)

+δ−1
1 δ−1

2 Dn,m

(
(t− x)2(s− y)2;x, y

)]
ωmixed (f ; δ1, δ2) .

From Lemma 2.2, we have

Dn,m((t− x)2;x, y) ≤ 4

n

and

Dn,m((u− y)2;x, y) ≤ 4

m
.

For (x, y), (t, s) ∈ D, p, q ∈ 1, 2 and taking

Dn,m

(
(t− x)2p(s− y)2q;x, y

)
= Dn,m

(
(t− x)2p;x, y

)
Dn,m

(
(s− y)2q;x, y

)
into account, choosing δ1 = n−1/2 ve δ2 = m−1/2, we get the desired result (3.16).

In the following theorem, we evaluate the order of approximation of the sequence {Sn,m(f)}

to the function f ∈ Cb(D) in terms of mixed K-functional.

Theorem 3.3. Let the operator Sn,m given in (3.13). Then, for every f ∈ Cb(D) we get

|Sn,m (f ;x, y)− f(x, y)| ≤ 2Kmixed

(
f ;

2

n
,
2

m

)
. (3.18)

Proof. For the function g1 ∈ C2,0
B (D) using Taylor formula, we get

g1(t, s) = g1(x, y) + (t− x)T 1,0
B g1(x, y) +

∫ t

x
(t− u)T 2,0

B g1(u, y)du
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([6]). Since the operator Sn,m reproduces linear functions

Sn,m (g1;x, y) = g1(x, y) + Sn,m

(∫ t

x
(t− u)T 2,0

B g1(u, y)du;x, y

)
and the definition of Sn,m operator for g1 ∈ C2,0

B (D), we get

|Sn,m (g1;x, y)− g1(x, y)| =
∣∣∣∣Dn,m

(∫ t

x
(t− u)

[
T 2,0
B g1(u, y)− T 2,0

B g1(u, s)
]
du;x, y

)∣∣∣∣
≤Dn,m

(∣∣∣∣∫ t

x
|t− u|

∣∣∣T 2,0
B g1(u, y)− T 2,0

B g1(u, s)
∣∣∣ du;x, y∣∣∣∣)

≤
∥∥∥T 2,0

B g1

∥∥∥
∞
Dn,m

(
(t− x)2;x, y

)
<
∥∥∥T 2,0

B g1

∥∥∥
∞

· 4
n
.

For g2 ∈ C0,2
B (D),

|Sn,m (g2;x, y)− g2(x, y)| =
∣∣∣∣Dn,m

(∫ s

y
(s− v)

[
T 0,2
B g2(v, y)− T 0,2

B g2(v, s)
]
dv;x, y

)∣∣∣∣
≤Dn,m

(∣∣∣∣∫ s

y
|s− v|

∣∣∣T 0,2
B g2(v, y)− T 0,2

B g2(v, s)
∣∣∣ dv;x, y∣∣∣∣)

≤
∥∥∥T 0,2

B g2

∥∥∥
∞
Dn,m

(
(s− y)2;x, y

)
<
∥∥∥T 0,2

B g2

∥∥∥
∞

· 4

m
.

For h ∈ C2,2
B (D), we get

h(t, s) =h(x, y) + (t− x)T 1,0
B h(x, y) + (s− y)T 0,1

B h(x, y) + (t− x)(s− y)T 1,1
B h(x, y)

+

∫ t

x
(t− u)T 2,0

B h(u, y)du+

∫ s

y
(s− v)T 0,2

B h(x, v)dv

+

∫ t

x
(s− y)(t− u)T 2,1

B h(u, y)du+

∫ s

y
(t− x)(s− v)T 1,2

B h(x, v)dv

+

∫ t

x

∫ s

y
(t− u)(s− v)T 2,2

B h(u, v)dvdu.

Since Sn,m ((t− x);x, y) = 0, Sn,m ((s− y);x, y) = 0 and the definition of the operator Sn,m

|Sn,m (h;x, y)− h(x, y)| ≤
∣∣∣∣Dn,m

(∫ t

x

∫ s

y
(t− u)(s− v)T 2,2

B h(u, v)dvdu;x, y

)∣∣∣∣
≤Dn,m

(∣∣∣∣∫ t

x

∫ s

y
(t− u)(s− v)T 2,2

B h(u, v)dvdu

∣∣∣∣ ;x, y)
≤Dn,m

(∫ t

x

∫ s

y
|t− u||s− v|

∣∣∣T 2,2
B h(u, v)

∣∣∣ dvdu;x, y)
≤1

4

∥∥∥T 2,2
B h

∥∥∥
∞
Dn,m

(
(t− x)2(s− y)2;x, y

)
≤4
∥∥∥T 2,2

B h
∥∥∥
∞

1

n

1

m
.
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Therefore, we get

|Sn,m (f ;x, y)− f(x, y)| ≤ |(f − g1 − g2 − h) (x, y)|+ |(g1 − Sn,mg1) (x, y)|

+ |(g2 − Sn,mg2) (x, y)|+ |(h− Sn,mh) (x, y)|

+ |Sn,m ((f − g1 − g2 − h);x, y)|

≤2 ∥f − g1 − g2 − h∥∞ + 4
∥∥∥T 2,0

B g1

∥∥∥
∞

1

n

+ 4
∥∥∥T 0,2

B g2

∥∥∥
∞

1

m
+ 4

∥∥∥T 2,2
B h

∥∥∥
∞

1

n

1

m

for f ∈ Cb(D). Since the definition of the mixed K-functional and taking the infimum over

all g1 ∈ C2,0
B (D), g2 ∈ C0,2

B (D), h ∈ C2,2
B (D) we get the desired result (3.18).

3.2. Numerical Examples. The convergence of the operators by illustrative graphics in

Maple to certain functions for two dimensional cases are given and some numerical values

are calculated as follows. For n,m = 1, 2, 5, 10 and the function f(x, y) = x2y + y2, the

convergence of the operators Dn,m is shown in Fig 1. For n,m = 1, 2, 5, 10 and the function

f(x, y) = 1 − x3 + y3, the convergence of the operators Dn,m is shown in Fig 2. It is seen

that if the values of n,m increase, the convergence of Dn,m to the function f becomes better.

Finally, one can see that the convergence of the GBS operator Sn,m has better approach than

the operator Dn,m for the function f(x, y) = (1 + x+ y)sin(x+ y) in Fig 3.

Figure 1. The convergence of the Dn,m operators for f(x, y) = x2y+y2 and

n,m = 1, 2, 5, 10.
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Table 1. Mean errors of figure 1

(n,m) maximize |Dn,m(x, y)− f(x, y)|

n,m=5 1,0204

n,m=15 0,5113

n,m=25 0,3390

n,m=50 0,1836

n,m=100 0,0957

n,m=150 0,0647

Figure 2. The convergence of the Dn,m operators for f(x, y) = 1 − x3 + y3

and n,m = 1, 2, 5, 10.
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Table 2. Mean errors of figure 2

(n,m) maximize |Dn,m(x, y)− f(x, y)|

n,m=5 1,0476

n,m=10 0,7362

n,m=50 0,2139

n,m=100 0,1131

n,m=500 0,0066

Figure 3. The convergence of the Dn,m operators and the Sn,m operators

for f(x, y) = (1 + x+ y)sin(x+ y) and n,m = 5.
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[6] Bögel, K. (1934). Mehrdimensionale differentiation von funktionen mehrerer veranderlicher. J. Reine

Angew. Math., 170, 197-217.
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Abstract. There are many studies about rectifying curves. In this present study, we ex-

amine the ruled surfaces that have rectifying curves as base curves. We say that co-centrode
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1. Introduction

The curves are the fundamental structure of differential geometry. In this study, we

examine rectifying curves which are one of the subfamilies of the curves in Euclidean 3-

space. A regular curve α (s) is called a rectifying curve, if its position vector always lies its

rectifying plane. So, the position vector of a rectifying curve satisfies the equation

α (s) = λ (s)T (s) + µ (s)B (s)
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for differentiable functions λ and µ according to arc length parameter s. The notion of

rectifying curves is introduced by B.Y. Chen in [1]. Also B.Y. Chen and Dillen show that

there exists a relationship between the rectifying curves and the centrodes [2].

In the differential geometry of a regular curve, the curvature functions κ and τ of a regular

curve play an important role to determine what is the type of the curve. One of the most

interesting characteristics of rectifying curves is that the ratio of their torsion and curvature

is a non-constant linear function of the arc length parameter s.

There are many studies about rectifying curves. K. Ilarslan et.al in [4, 5] introduce the

rectifying curves in the Minkowski 3−space. Also E. Özbey et.al study rectifying curves in

dual Lorentzian space and they show that rectifying dual Lorentzian curves can be stated

by the aid of dual unit spherical curves in [7]. In recent years, the rectifying curves from

various viewpoints have been studied in Pseudo-Galilean space and three-dimensional sphere

in [6, 8].

In this paper, we define the ruled surface whose the base curve is a rectifying curve by

using modified Darboux vector field in Euclidean 3−space. So, we examine the relationship

between rectifying curves and ruled surfaces. In [2], Chen and Dillen introduce co-centrode

curves. Accordingly, we say that co-centrode curves are the parameter curve for the special

case u = 1 on this ruled surface. Also, we give the hypothesis that the curve whose the

base curve for the given surface is a rectifying curve. Finally, we investigate the connection

between the rectifying curve and the parameter curves of the surface which are the geodesic.

We study the whole theory for the any orthonormal frame and also examine for special cases.

2. Preliminaries

Let α : I ⊂ R → E3 be an arbitrary curve in three dimensional Euclidean space. A moving

orthonormal frame is defined as {N1, N2, N3} in the E3 along to curve α. Derivative of the

frame is given by 
N

′
1 (s)

N
′
2 (s)

N
′
3 (s)

 =


0 κ1 (s) κ2 (s)

−κ1 (s) 0 κ3 (s)

−κ2 (s) −κ3 (s) 0




N1 (s)

N2 (s)

N3 (s)

 (2.1)

where κ1 (s), κ2 (s) and κ3 (s) are the curvatures of the curve α. This any orthonormal

frame encompasses some other frames. So, this frame is substantially important in terms

of generality. For example, if we take N1 = T,N2 = N,N3 = B, κ1 = κ, κ2 = 0 and

κ3 = τ, above orthonormal frame coincides with the Serret Frenet frame. Also, if we take
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N1 = T,N2 = N1, N3 = N2, κ1 = k1, κ2 = 0 and κ3 = k3, we have Bishop frame. Similarly, if

we take N1 = T,N2 = Y,N3 = Z, κ1 = kg, κ2 = kn and κ3 = τr, orthonormal frame coincides

with the Darboux frame on a curve. Using the equations N1 = N,N2 = C,N3 = W,κ1 =

f, κ2 = 0 and κ3 = g, we get the alternative moving frame defined by Uzunoglu et.al in [9].

In the Euclidean space, the Darboux vector may be interpreted kinematically as the

direction of the instantaneous axis of rotation in the moving trihedron. The direction of

the Darboux vector is the instantaneous axis of rotation. In terms of the moving frame

apparatus, the general Darboux vector field D can be expressed as

D = κ3 (s)N1 (s)− κ2 (s)N2 (s) + κ1 (s)N3 (s) (2.2)

and it provides the following symmetrical properties

D ×N1 (s) = N
′
1 (s) (2.3)

D ×N2 (s) = N
′
2 (s)

D ×N3 (s) = N
′
3 (s)

where × is the wedge product in Euclidean space E3.

Izumiya and Takeuchi define the modified Darboux vector field as follows

D =
(τ
κ

)
(s)T (s) +B (s)

with κ (s) ̸= 0 and another modified Darboux vector field is defined as D̃ = T (s) +(κ
τ

)
(s)B (s) with τ (s) ̸= 0 [3].

In [1], Chen proves that the curve α (s) is congruent to a rectifying curve if and only if

the ratio
τ

κ
with κ > 0 is a non-constant linear according to arc length parameter s in E3.

3. Ruled Surfaces with The Base Rectifying Curves in Euclidean 3-Space

In this section, we examine the relationship between rectifying curves and ruled surfaces

according to any orthonormal frame {N1, N2, N3} . We consider this any orthonormal frame

with κ2 = 0 but note that the frame different from Frenet frame. Also, we give the hypothesis

the parameter curves of the ruled surfaces with the base rectifying curve are geodesic. We

can define the rectifying curve with this orthonormal frame. So, if the rate of the curvatures
κ3
κ1

is a non-constant linear function according to arc length function s, then we can say the

curve is a rectifying curve.
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Theorem 3.1. Let α (s) =
∫
N1 (s) ds be a unit speed curve with any orthonormal frame

{N1, N2, N3, κ1, κ3} . The curve α is a rectifying curve if and only s−parameter curves of the

surface ϕ (s, u) = α (s)+uD (s) are rectifying curve where D (s) =

(
κ3
κ1

)
N1+N3 is modified

Darboux vector field and u ̸= −1

a
.

Proof. Let α (s) =
∫
N1 (s) ds be a unit speed and rectifying curve with the frame

apparatus {N1, N2, N3, κ1, κ3} . If the parameter u is a constant, we obtain the s−parameter

curves of the surface as β (s) =
∫
N1 (s) ds + u

((
κ3
κ1

)
(s)N1 (s) +N3 (s)

)
. If we take the

derivative of β according to its arc length parameter, then we have

dβ

ds
=

dβ

ds

ds

ds
,

N1 =

(
1 + u

(
κ3
κ1

)′)
N1

ds

ds

where
{
N1, N2, N3, κ1, κ3

}
is the any orthonormal frame apparatus of β. If we take the norm

of both sides of above equation, we have

ds =

(
1 + u

(
κ3
κ1

)′)
ds.

If we integrate the last equation, we obtain

s = s+ u

(
κ3
κ1

)
+ c, c constant, (3.4)

and we can easily see that

N1 = N1.

Similarly, if a derivative of this equation is taken with respect to s, we obtain

dN1

ds

ds

ds
= κ1N2,

κ1N2 = κ1N2
1

1 + u

(
κ3
κ1

)′

where

(
κ3
κ1

)′

̸= −1

u
. If we take the norm of last equation, we get

κ1 =
κ1

1 + u

(
κ3
κ1

)′ . (3.5)

So, we can easily see that

N2 = N2.
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Hence, we know that N3 = N3. If we take the derivative of this equation according to s, we

have

κ3 =
κ3

1 + u

(
κ3
κ1

)′ . (3.6)

If we look at the ratio of the Eq. (3.5) and Eq. (3.6), we can say that

κ3
κ1

=
κ3
κ1

. (3.7)

Since α is a rectifying curve, we know that
κ3
κ1

= as+b non-constant linear function for some

constants a and b with a ̸= 0 and a ̸= −1

u
. Let us write this equality in equation (3.4).

s = s+ u (as+ b) + c,

s = (1 + au) s+ buc,

s = es+ f,

where e, f are some constants with e ̸= 0. So, we obtain the arc length parameter of the

curve α as follows

s =
s− f

e
.

From equation (3.7), we get

κ3
κ1

=
κ3
κ1

= a

(
s− f

e

)
+ b.

Hence, we can easily see that

κ3
κ1

= λs+ µ

where λ and µ are some constants with λ ̸= 0.

Finally, if the curve α is a rectifying curve, then s-parameter curves of the surface ϕ (s, u) =∫
N1 (s) ds+ u

((
κ3
κ1

)
N1 +N3

)
are rectifying curve.

Conversely, let s-parameter curves of the surface β (s) =
∫
N1 (s) ds+u

((
κ3
κ1

)
N1 +N3

)
are

rectifying curve. The ratio of the curvatures of the curve β is the non-constant linear function

according to s for some constants λ and µ with λ ̸= 0 as

κ3
κ1

= λs+ µ.

From the equations (3.4) and (3.7), we can easily see that

κ3
κ1

=
κ3
κ1

= λ

(
s+ u

(
κ3
κ1

)
+ c

)
+ µ.



26 B. YILMAZ AND Y. YAYLI

If the necessary arrangements are made, we get

κ3
κ1

= as+ b

where a, b are some constants with a ̸= 0. This means that α is a rectifying curve.

Corollary 3.1. Let β (s) =
∫
N3 (s) ds be a unit speed curve with {N1, N2, N3, κ1, κ3} . The

curve β is a rectifying curve if and only if s-parameter curves of the surface ϕ (s, u) =

β (s) + vD̃ (s) are rectifying curve where D̃ (s) = N1 +

(
κ1
κ3

)
N3 is modified Darboux vector

field.

Corollary 3.2. Let γ (s) =
∫
T (s) ds be a unit speed curve with {T,N,B, κ, τ} . Then the

curve γ is a rectifying curve if and only if s-parameter curves of the surface ϕ (s, u) =

γ (s)+uD (s) are rectifying curve where D (s) =
(τ
κ

)
T +B is modified Darboux vector field.

Remark 3.1. For a regular curve γ in E3 with κ ̸= 0, the curve given by the Darboux vector

D = τT+κB is called the centrode of γ and the curves C± = γ±D are called the co-centrodes

of γ. Chen and Dillen show that a curve γ with non-zero constant curvature and non-constant

torsion is a rectifying curve if and only if one of its co-centrodes is a rectifying curve [2]. If

we select u = 1 for u constant parameter curves, then we define the u constant parameter

curves correspond to the co-centrodes.

Corollary 3.3. Let σ (s) =
∫
N (s) be a unit speed curve with {N,C,W, f, g} defined by

Uzunoğlu [9]. The curve σ is a rectifying curve if and only if s-parameter curves of the

surface ϕ (s, u) = σ (s) + uD (s) are rectifying curve where D (s) =

(
g

f

)
N +W is modified

Darboux vector field.

Theorem 3.2. Let α (s) =
∫
N1 (s) ds be a unit speed curve with any orthonormal frame

apparatus {N1, N2, N3, κ1, κ3} . If α is a rectifying curve, the parameter curves of the surface

ϕ (s, u) = α (s)+uD (s) are geodesic curve where D (s) =

(
κ3
κ1

)
N1+N3 is modified Darboux

vector field and u ̸= −1

a
.

Proof. The curve α has been always geodesic on the surface, but the parameter

curves of the surface are geodesic if α is a rectifying curve. The normal vector of the surface
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is as follows

ϕs =

(
1 + u

(
κ3
κ1

)′)
N1 and ϕu =

(
κ3
κ1

)
N1 +N3,

Nϕ = −

(
1 + u

(
κ3
κ1

)′)
N2.

Let α be a unit speed rectifying curve. Let’s examine s-parameter curves of the surface

ϕ (s, u) =

∫
N1 (s) ds+ u

((
κ3
κ1

)
(s)N1 (s) +N3 (s)

)
,

β (s) =

∫
N1 (s) ds+ u

((
κ3
κ1

)
N1 +N3

)
,

dβ

ds
=

dβ

ds

ds

ds
= aN1

ds

ds
,

d2β

ds2
=

d2β

ds2
ds2

ds2
= bκ1N2,

where a and b are some constants.

Similar to the above thought, if we examine u-parameter curves of the surface ϕ (s, u) =∫
N1 (s) ds+ u

((
κ3
κ1

)
N1 +N3

)
, then we have

β (s) =

∫
N1 (s) ds+ u

((
κ3
κ1

)
N1 +N3

)
,

d2β

du2
= 0.

So, if the curve α is a rectifying curve, then the parameter curves of the surface ϕ (s, u) =

α (s) + u

((
κ3
κ1

)
N1 +N3

)
are geodesic curve.

Corollary 3.4. Let γ =
∫
T (s) ds be a unit speed curve with {T,N,B, κ, τ} . If γ is a

rectifying curve, the parameter curves of the surface ϕ (s, u) = γ (s) + uD (s) are geodesic

curve where D (s) =
(τ
κ

)
T +B is modified Darboux vector field.

Corollary 3.5. Let σ (s) =
∫
N (s) be a unit speed curve with {N,C,W, f, g}. If σ is a

rectifying curve, the parameter curves of the surface ϕ (s, u) = σ (s) + uD (s) are geodesic

curve where D (s) =

(
g

f

)
N +W is modified Darboux vector field.
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1. Introduction

The differential geometry of curves in manifolds investigated by several authors. Especially

the curves in contact and para-contact manifolds drew attention and studied by the authors.

B. Olszak[17], derived the conditions for an a.c.m structure on M to be normal and point

out some of their consequences. B. Olszak completely characterized the local nature of

normal a.c.m. structures on M by giving suitable examples. Moreover B. Olszak gave some

restrictions on the scalar curvature in contact metric manifolds which are conformally flat or

of constant ϕ-sectional curvature in[16].

J. Welyczko[22], generalized some of the results for Legendre curves in three dimensional

normal a.c.m. manifolds, especially, quasi-Sasakian manifolds. J. Welyczko [23], studied
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the curvatures of slant Frenet curves in three-dimensional normal almost paracontact metric

manifolds.

B. E. Acet and S. Y. Perktaş [1] obtained the curvatures of Legendre curves in 3-dimensional

(ε, δ) trans-Sasakian manifolds. Ji-Eun Lee, defined Lorentzian cross product in a three-

dimensional almost contact Lorentzian manifold and proved that κ
τ−1 = cons. along a Frenet

slant curve in a Sasakian Lorentzian three-manifold. Furthermore, Ji-Eun Lee proved that

γ is a slant curve if and only if M is Sasakian for a contact magnetic curve γ in contact

Lorentzian 3-manifold M in[12]. Ji-Eun Lee, also gave some characterizations for the gener-

alized Tanaka-Webster connection in a contact Lorentzian manifold in[13].

A. Yıldırım[25] obtained the Frenet apparatus for Frenet curves on three dimensional

normal almost contact manifolds and characterized some results for these curves.

U.C.De and K.De[10] studied Lorentzian Trans-Sasakian and conformally flat Lorentzian

Trans-Sasakian manifolds.

The LCS manifolds was introduced by [19] with an example. A. A. Shaikh[20] studied

various types of (LCS)n-manifolds and proved that in such a manifold the Ricci operator

commutes with the structure tensor φ.

In this framework, the paper is organized in the following way. Section 2 with two subsec-

tions, we give basic definitions of a (LCS)n-manifolds manifold. In the second subsection we

give the Frenet-Serret equations of a curve in (LCS)3 manifold. We give finally the Frenet

elements of a Frenet curve in (LCS)3 manifold and give theorems, corollaries and examples

for these curves in the third and fourth sections.

2. Preliminaries

2.1. Lorentzian Concircular Structure Manifolds. A Lorentzian manifold of dimension

n is a doublet
(
N̄ , ḡ

)
, where N̄ is a smooth connected para-compact Hausdorff manifold of

dimension n and ḡ is a Lorentzian metric, that is, N̄ admits a smooth symmetric tensor field

g of type (0, 2)such that for each point p ∈ N̄ the tensor ḡp : TpN̄ × TpN̄ −→ R is a non

degenerate inner product of signature (−,+, ...,+), where TpN̄ denotes the tangent space of

N̄ at p and R is the real number space. A non zero vector field V ∈ TpN̄ is called spacelike

(resp.non-spacelike, null and timelike) if it satisfies ḡp (V, V ) > 0 (resp., ≤ 0,=, < 0).[15]

Definition 2.1. In a Lorentzian manifold
(
N̄ , ḡ

)
a vector field w is defined by

ḡ(U, ρ) = A(U) (2.1)
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for any U ∈ χ(N̄) is said to be a concircular vector field if

(∇UA)(V ) = α {ḡ(U, V ) + w(U)w(V )} , (2.2)

where α is a non-zero scalar and w is a closed 1-form.[24]

If a Lorentzian manifold N̄ admits a unit timelike concircular vector field ξ, called gener-

ator of the manifold, then we have

ḡ(ξ, ξ) = −1. (2.3)

Since ξ is the unit concircular vector field on N̄ , there exists a non-zero 1-form η such that

ḡ(U, ξ) = η(U), (2.4)

which satisfies the following equation

(∇Uη)(V ) = α {ḡ(U, V ) + η(U)η(V )} , (α ̸= 0) (2.5)

for all vector fields U and V, where ∇ gives the covariant differentiation with respect to the

Lorentzian metric ḡ and α is a non-zero scalar function satisfies

(∇Uα) = Uα = dα(U) = ρη(U), (2.6)

where ρ is a certain scalar function defined by ρ = −(ξα). If we take

φU =
1

α
∇Uξ, (2.7)

then with the help of (2.3), (2.4) and (2.6), we can find

φU = U + η(U)ξ, (2.8)

which shows that φ is a tensor field of type (1,1), called the structure tensor of the manifold

N̄ . Hence the Lorentzian manifold N̄ of class C∞ equipped with a unit timelike concircular

vector field ξ, its associated 1-form η and (1,1) tensor field φ is said to be a Lorentzian

concircular structure manifold (i.e. (LCS)n manifold)[19]. Moreover, if α = 1, then we have

the LP-Sasakian structure of Matsumoto[14]. So we can say the generalization of LP-Sasakian

manifold gives us the (LCS)n manifold. It is noteworthy to mention that LCS-manifold is

invariant under a conformal change whereas LP-Sasakian structure is not so[18]. In (LCS)3

manifolds, the following relations hold[19]

φ2U = U + η(U)ξ, η(ξ) = −1, (2.9)

φ(ξ) = 0, η(φU) = 0,
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and

ḡ(φU,φV ) = ḡ(U, V ) + η(U)η(V ). (2.10)

2.2. Frenet Curves. Let ζ : I → N̄ be a unit speed curve in (LCS)3 manifold N̄ such that

ζ
′
satisfies ḡ(ζ

′
, ζ

′
) = ε1 = ∓1. The constant ε1 is called the casual character of ζ. The

constants ε2 and ε3 defined by ḡ(n, n) = ε2 and ḡ(b, b) = ε3 and called the second casual

character and third casual character of ζ, respectively. Thus we ε1ε2 = −ε3.

A unit speed curve ζ is said to be a spacelike or timelike if its casual character is 1 or -1,

respectively. A unit speed curve ζ is said to be a Frenet curve if ḡ(ζ
′
, ζ

′
) ̸= 0. A Frenet curve

ζ admits an orthonormal frame field {t = ζ
′
, n, b} along ζ. Then the Frenet-Serret equations

given as follows:

∇ζ′ t = ε2κn

∇ζ′n = −ε1κt− ε3τb (2.11)

∇ζ′ b = ε2τn

where κ = |∇ζ′ ζ
′ | is the geodesic curvature of ζ and τ is geodesic torsion [12]. The vector

fields t, n and b are called the tangent vector field, the principal normal vector field and the

binormal vector field of ζ, respectively.

If the geodesic curvature of the curve ζ vanishes, then the curve is called a geodesic curve. If

κ = cons. and τ = 0, then the curve is called a pseudo-circle and pseudo-helix if the geodesic

curvature and torsion are constant.

A curve in a three dimensional Lorentzian manifold is a slant curve if the tangent vector

field of the curve has constant angle with the Reeb vector field,i.e. η(ζ ′) = −ḡ(ζ ′, ξ) = cosθ =

constant. If η(ζ ′) = −ḡ(ζ ′, ξ) = 0, then the curve ζ is called a Legendre curve[12].

3. Main Results

In this section we consider a (LCS)3 manifold N̄ . Let ζ : I → N̄ be a Frenet curve

with the geodesic curvature κ ̸= 0, given with the arc-parameter s and ∇̄ be the Levi-Civita

connection on N̄ . From the basis (ζ
′
, φζ

′
, ξ) we obtain an orthonormal basis {e1, e2, e3} which
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satisfy the equations

e1 = ζ
′
,

e2 =
ε2φζ

′√
ε1 + ρ2

, (3.12)

e3 = ε2
ε1ξ − ρζ

′√
ε1 + ρ2

where

η(ζ
′
) = ḡ(ζ

′
, ξ) = ρ. (3.13)

Then if we write the covariant differentiation of ζ
′
as

∇̄ζ′e1 = νe2 + µe3 (3.14)

such that

ν = ḡ(∇̄ζ′e1, e2) (3.15)

is a certain function. Moreover we obtain ν by

µ = ḡ(∇̄ζ′e1, e3) = ε2

(
ρ′√

ε1 + ρ2
− ε1α

√
ε1 + ρ2

)
, (3.16)

where ρ′(s) = dρ(ζ(s))
ds . Then we find

∇̄ζ′e2 = −νe1 +

(
ε3α+

ε1ρν√
ε1 + ρ2

)
e3 (3.17)

and

∇̄ζ′e3 = −µe1 −

(
ε3α+

ε1ρν√
ε1 + ρ2

)
e2. (3.18)

The fundamental forms of the tangent vector ζ ′ on the basis of the equation (3.12) is

[ωij(ζ
′)] =


0 ν µ

−ν 0 ε3α+ ε1ρν√
ε1+ρ2

−µ −ε3α− ε1ρν√
ε1+ρ2

0

 (3.19)

and the Darboux vector connected to the vector ζ ′ is

ω(ζ ′) =

(
ε3α+

ε1ρν√
ε1 + ρ2

)
e1 − µe2 + νe3. (3.20)

So we can write

∇̄ζ′ei = ω(ζ ′) ∧ εiei (1 ≤ i ≤ 3). (3.21)
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Thus, for any vector field Z =
∑3

i=1 θ
iei ∈ χ(N̄) strictly dependent on the curve ζ on N̄ and

we have the following equation

∇̄ζ′Z = ω(ζ ′) ∧ Z +
3∑

i=1

εiei[θ
i]ei. (3.22)

3.1. Frenet Elements of ζ. Let a curve ζ : I → N̄ be a Frenet curve with the geodesic

curvature κ ̸= 0, given with the arc parameter s and the elements {t, n, b, κ, τ}. The Frenet

elements of the curve ζ can be calculated as above:

If we consider the equation (3.14), then we get

ε2κn = ∇̄ζ′e1 = νe2 + µe3. (3.23)

If we consider (3.16) and (3.23) we find

κ =

√√√√ν2 +

(
ρ′√

ε1 + ρ2
− ε1α

√
ε1 + ρ2

)2

. (3.24)

On the other hand

∇̄ζ′n =

(
ν

ε2κ

)′
e2 +

ν

ε2κ
∇ζ′e2 +

(
µ

ε2κ

)′
e3 +

µ

ε2κ
∇ζ′e3 (3.25)

= −ε1κt− ε3τB.

By means of the equation (3.17) and (3.18) we find

−ε3τB =

[(
ν

ε2κ

)′
− µ

ε2κ

(
ε3α+

ε1ρν√
ε1 + ρ2

)]
e2 (3.26)

+

[(
µ

ε2κ

)′
+

ν

ε2κ

(
ε3α+

ε1ρν√
ε1 + ρ2

)]
e3.

By a direct computation we find following[(
ν

ε2κ

)′]2
+

[(
µ

ε2κ

)′]2
=

[
−
(

ν

ε2κ

)′ µ

ε2κ
+

ν

ε2κ

(
µ

ε2κ

)′]2
. (3.27)

Taking the norm of the last equation by using (3.26) and if we consider the equations (3.16)

and (3.27) in (3.26) we obtain

τ =

∣∣∣∣∣∣∣∣∣∣
ε3α+

ε1ρν√
ε1 + ρ2

−

√√√√√√√√
[(

ν

ε2κ

)′]2
+


ε2

(
ρ′√
ε1+ρ2

− ε1α
√
ε1 + ρ2

)
κ


′

2
∣∣∣∣∣∣∣∣∣∣
. (3.28)

Moreover we can write the Frenet vector fields of ζ as in the following theorem
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Theorem 3.1. Let N̄ be a (LCS)3 manifold and ζ be a Frenet curve on N̄ . The Frenet

vector fields t, n and b are in the form of

t = ζ ′ = e1,

n =
ν

ε2κ
e2 +

µ

ε2κ
e3, (3.29)

b = − 1

ε3τ

[(
ν

ε2κ

)′
− µ

ε2κ

(
ε3α+

ε1ρν√
ε1 + ρ2

)]
e2

− 1

ε3τ

[(
µ

ε2κ

)′
+

ν

ε2κ

(
ε3α+

ε1ρν√
ε1 + ρ2

)]
e3.

Note that

ξ = ε1ρt−
µ
√

ε1 + ρ2

κ
n (3.30)

−
√
ε1 + ρ2

ε3τ

[(
µ

ε2κ

)′
+

ν

ε2κ

(
ε3α+

ε1ρν√
ε1 + ρ2

)]
b.

Let ζ be a non-geodesic Frenet curve given with the arc-parameter s in (LCS)3 manifold

N̄ . So one can state the above theorems.

Theorem 3.2. Let N̄ be a (LCS)3 manifold and ζ be a Frenet curve on N̄ . ζ is a slant

curve (ρ = η(ζ ′) = cosθ = cons.) on N̄ if and only if the Frenet elements {t, n, b, κ, τ} of ζ

are as follows

t = e1 = ζ ′,

n = e2 =
ε2φζ

′
√
ε1 + cos2θ

,

b = e3 = ε2
ε1ξ − cosθζ ′√
ε1 + cos2θ

, (3.31)

κ =
√

ν2 + α2 (ε1 + cos2θ),

τ =

∣∣∣∣∣∣∣ε3α+
ε1cosθν√
ε1 + cos2θ

−

√√√√[( ν

ε2κ

)′]2
+

[(
α
√
ε1 + cos2 θ

κ

)′]2∣∣∣∣∣∣∣ .
Proof. Let the curve ζ be a slant curve in (LCS)3 manifold N̄ . If we take account

the condition ρ = η(ζ ′) = cosθ = constant in the equations (3.12), (3.24) and (3.28) we find

(3.31). If the equations in (3.31) hold, from the definition of slant curves it is obvious that

the curve ζ is a slant curve.
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Corollary 3.1. Let N̄ be a (LCS)3 manifold and ζ be a slant curve on N̄ . If the ge-

odesic curvature κ of the curve ζ is non-zero constant, then the geodesic torsion of ζ is

τ =

∣∣∣∣(ε3α+ ε1
cosθν√
ε1+cos2 θ

)∣∣∣∣ and ζ is a pseudo-helix on N̄ .

Corollary 3.2. Let N̄ be a (LCS)3 manifold and ζ be a slant curve on N̄ . If the geodesic

curvature κ of the curve ζ is not constant and the geodesic torsion of ζ is τ = 0 then ζ is a

plane curve on N̄ and function ν satisfies the equation

ν =

∫
(c1 + c2ν)κ

2ds, (3.32)

where c1 =
ε3√

ε1+cos2 θ
and c2 =

ε1cosθ
α(ε1+cos2 θ)

.

Theorem 3.3. Let N̄ be a (LCS)3 manifold and ζ is a Frenet curve on N̄ . ζ is a spacelike

Legendre curve(ρ = η(ζ ′) = 0) in this manifold if and only if the Frenet elements {t, n, b, κ, τ}

of ζ are as follows

t = e1 = ζ ′,

n = e2 = ε2φζ
′,

b = e3 = −ε3ξ, (3.33)

κ =
√
ν2 + α2,

τ =

∣∣∣∣∣∣ε3α−

√[(
ν

ε2κ

)′]2
+ α2

[
κ′

κ2

]2∣∣∣∣∣∣ .
Proof. Let the curve ζ be a Legendre curve in (LCS)3 manifold N̄ . If we take

account the condition ρ = η(ζ ′) = 0 in the equations (3.12), (3.24) and (3.28) we find (3.33).

If the equations in (3.33) hold, from the definition of Legendre curves it is obvious that the

curve ζ is a Legendre curve on N̄ .

Corollary 3.3. Let the curve ζ is a Legendre curve in (LCS)3 manifold N̄ . If the geodesic

curvature κ of the curve ζ is non-zero constant, then the geodesic torsion of ζ is τ = 0 and

ζ is a plane curve on N̄ .

4. Examples

Let N̄ be the 3-dimensional manifold given

N̄ =
{
(x, y, z) ∈ ℜ3, z ̸= 0

}
, (4.34)
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where (x,y,z) denote the standart co-ordinates in ℜ3. Then

E1 = ez
(
x
∂

∂x
+ y

∂

∂y

)
, E2 = ez

∂

∂y
,E3 =

∂

∂z
(4.35)

are linearly independent of each point of N̄ . Let g be the Lorentzian metric tensor defined

by

ḡ(E1, E1) = ḡ(E2, E2) = 1, ḡ(E3, E3) = −1, (4.36)

ḡ(Ei, Ej) = 0, i ̸= j,

for i, j = 1, 2, 3[2]. Let η be the 1-form defined by η(Z) = ḡ(Z,E3) for any Z ∈ Γ(TN̄). Let

φ be the (1,1)-tensor field defined by

φE1 = E1, φE2 = E2, φE3 = 0. (4.37)

Then using the condition of the linearity of φ and ḡ, we obtain η(E3) = −1,

φ2Z = Z + η(Z)E3, (4.38)

ḡ(φZ,φW ) = ḡ(Z,W ) + η(Z)η(W ),

for all Z,W ∈ Γ(TN̄). Thus for ξ = E3, (φ, ξ, η, ḡ) defines a Lorentzian paracontact structure

on N̄ .

Now, let ∇ be the Levi-Civita connection with respect to the Lorentzian metric ḡ. Then

we obtain

[E1, E2] = −ezE2, [E1, E3] = −E1, [E2, E3] = −E2. (4.39)

If we use the Koszul formulae for the Lorentzian metric tensor ḡ, we can easily calculate the

covariant derivations as follows:

∇E1E1 = −E3, ∇E2E1 = ezE2, ∇E1E3 = −E1,

∇E2E3 = −E2, ∇E2E2 = −ezE1 − E3, (4.40)

∇E1E2 = ∇E3E1 = ∇E3E2 = ∇E3E3 = 0.

From the about represantations, one can easily see that (φ, ξ, η, ḡ) is a (LCS)3 structure on

N̄ , that is, N̄ is an (LCS)3-manifold with α = −1 and ρ = 0.
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Example 4.1. Let β be a spacelike Legendre curve in the (LCS)3 manifold N̄ and defined

as

β : I → N̄

s → β(s) =
(
s2, s2, ln2

)
,

where the curve β parametrized by the arc length parameter t. If we differentiate β(t) and

consider (3.12) we find

e1 = β′(t), (4.41)

e2 =
1√
2
E1 +

1√
2
E2, (4.42)

e3 = ε2E3 . (4.43)

If we consider the equations (3.13), (3.14), (3.16), (3.24) and (3.28) we can write

ρ = 0, µ = −ε2α, ν = − 1√
2
, (4.44)

κ =

√
α2 +

1

2
=

√
3

2
, τ = |α| = 1.

From the above equations we see that the curve β is a Legendre helix curve in N̄ .

Example 4.2. Let υ be a spacelike Legendre curve in the (LCS)3 manifold N̄ and defined

as

υ : I → N̄

s → υ(s) = (coss, sins, 1) ,

where the curve υ parametrized by the arc length parameter t. If we differentiate υ(t) and

consider (3.12) we find

e1 = υ′(t), (4.45)

e2 = ε2

(
−sin(

t

e
)E1 + cos(

t

e
)E2

)
, (4.46)

e3 = ε2∂3. (4.47)

If we consider the equations (3.13), (3.14), (3.16), (3.24) and (3.28) we can write

ρ = 0, µ = −ε2α, ν = 0, (4.48)

κ = τ = |α| .

So, the curve υ(s) is a Legendre helix curve in N̄ .
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[21] Şahin, B. (2012). Manifoldların diferensiyel geometrisi. Nobel Yayın, 310.

[22] Welyczko J. (2007). On Legendre curves in 3-dimensional normal almost contact metric manifolds. Soo-

chow Journal of Mathematics, 33(4), 929-937.



40 M. A. AKGÜN
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Yılmaz Şimşek; ysimsek@akdeniz.edu.tr; https://orcid.org/0000-0002-0611-7141

.

41

HTTPS://ORCID.ORG/0000-0001-5797-6301
HTTPS://ORCID.ORG/0000-0002-0611-7141


42 N. KILAR AND Y. ŞİMŞEK

1. Introduction and preliminaries

Combinatorial sums and combinatorial numbers and polynomials have many applications

in mathematics and other applied sciences. These numbers are related to the special functions

and also some classes of special numbers and polynomials. The motivation of this paper is

to use not only generating functions, but also their functional equations, we give many

new formulas and combinatorial sums involving the Bernoulli numbers and polynomials, the

Euler numbers and polynomials, the Stirling numbers, and also combinatorial numbers and

polynomials such as the Daehee numbers, the Changhee numbers, and the parametrically

generalized polynomials. By using these formulas and combinatorial sums, we provide some

inequalities applications. In order to illustrate graph and plots of special polynomials, here

we use Mathematica with the help of the Wolfram programming language.

Throughout of this paper, we use the following notations and definitions. Let

N = {1, 2, 3, . . .} and N0 = N∪{0} .

As usual, Z, R and C denote the set of integer numbers, the set of real numbers, the set

of complex numbers, respectively. We assume that:

0n =

 1, n = 0

0, n ∈ N.

Furthermore, (
λ

0

)
= 1 and

(
λ

n

)
=

(λ)n
n!

(n ∈ N; λ ∈ C) ,

where (λ)n is the falling factorial defined by

(λ)n = λ (λ− 1) (λ− 2) ... (λ− n+ 1) ,

with (λ)0 = 1 (cf. [1–34]; and references therein).

The Stirling numbers of the second kind are defined by means of the following generating

function:

FS (t, k) =

(
et − 1

)k
k!

=
∞∑
n=0

S2 (n, k)
tn

n!
, (1.1)

(cf. [1–34]; and references therein).

The Stirling numbers of the second kind are also given by the falling factorial polynomials:

xn =
n∑

j=0

S2 (n, j) (x)j , (1.2)

(cf. [1–34]; and references therein).
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By using (1.1), an explicit formula for the numbers S2 (n, k) is given as follows:

S2 (n, k) =
1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jn, (1.3)

where n, k ∈ N0 and for k > n,

S2 (n, k) = 0,

(cf. [1–34]; and references therein).

Let v ∈ Z. The Bernoulli numbers and polynomials of higher order are defined by means

of the following generating functions:

FB (t, v) =

(
t

et − 1

)v

=
∞∑
n=0

B(v)
n

tn

n!
, (1.4)

and

GB (t, x, v) = FB (t, v) ext =

∞∑
n=0

B(v)
n (x)

tn

n!
, (1.5)

such that v = 0,

B(0)
n (x) = xn,

(cf. [13, 23,29,30,34]; and references therein).

Substituting v = 1 and x = 0 into (1.4) and (1.5), the Bernoulli numbers and polynomials

are derived, respectively,

Bn = B(1)
n ,

and

Bn (x) = B(1)
n (x) ,

(cf. [1–34]; and references therein).

By using (1.5), an explicit formula for the polynomials B
(−k)
n (x) is given as follows:

B(−k)
n (x) =

1(
n+k
k

)
k!

k∑
j=0

(−1)k−j

(
k

j

)
(x+ j)n+k , (1.6)

where n ∈ N0 and k ∈ N (cf. [5, Equation (3.20)]).

Putting n = x = k in (1.6), we have the following presumably known result:

B(−n)
n (n) =

n!

(2n)!

n∑
j=0

(−1)n−j

(
n

j

)
(n+ j)2n .

Substituting x = 0 into the above equation, and using (1.3), we have the following well-

known identity:

B(−k)
n =

1(
n+k
k

)S2 (n+ k, k) (1.7)

(cf. [33, Equation (7.17)]).
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Let v ∈ Z. The Euler numbers and polynomials of higher order are defined by means of

the following generating functions:

FE (t, v) =

(
2

et + 1

)v

=
∞∑
n=0

E(v)
n

tn

n!
(1.8)

and

GE (t, x, v) = FE (t, v) ext =
∞∑
n=0

E(v)
n (x)

tn

n!
, (1.9)

such that v = 0,

E(0)
n (x) = xn

(cf. [13, 23,28,29,34]; and references therein).

Substituting v = 1 and x = 0 into (1.8) and (1.9), the Euler numbers and polynomials

are derived, respectively,

En = E(1)
n (0)

and

En (x) = E(1)
n (x)

(cf. [1–34]; and references therein).

By using (1.9), we have

E(−k)
n (x) =

n∑
j=0

(
n

j

)
xn−j

j∑
d=0

(
d− k − 1

d

)
d!(−1)d

2d
S2 (j, d) , (1.10)

where n ∈ N0 and k ∈ N (cf. [23, 28,29,34]).

Putting n = x = k in (1.10), we have the following presumably known result:

E(−n)
n (n) =

n∑
j=0

(
n

j

)
nn−j

j∑
d=0

(
d− n− 1

d

)
d!(−1)d

2d
S2 (j, d) .

By using (1.4) and (1.8), a relation between the numbers E
(−k)
n and the numbers B

(−k)
n

is given as follows:

B(−k)
n =

1

2n

n∑
j=0

(
n

j

)
B

(−k)
j E

(−k)
n−j , (1.11)

where n ∈ N0 and k ∈ N (cf. [13, Equation (3.1)]).

By using (1.1) and (1.8), a relation between the numbers E
(−k)
n and the numbers S2 (n, k)

is given as follows:

S2 (n, k) =
2k−n

k!

n∑
m=0

k∑
j=0

(−1)k−j

(
n

m

)(
k

j

)
jmE

(−k)
n−m, (1.12)

(cf. [13, Theorem 2.14]).



INT. J. MAPS MATH. (2022) 5(1):41–60 / REMARKS ON COMBINATORIAL SUMS... 45

The Euler numbers of the second kind, E∗
n, are defined by means of the following generating

function:

2

et + e−t
=

∞∑
n=0

E∗
n

tn

n!
(1.13)

(cf. [19, 26,28,30]; and references therein).

By using (1.9) and (1.13), a relation between the Euler numbers E∗
n and the Euler poly-

nomials is given as follows:

E∗
n = 2nEn

(
1

2

)
(cf. [19, 21,28,30]).

Kilar and Simsek [13, Corollary 3.5] gave the following identity for the numbers S2 (n, k):

S2 (n+ k, k) =

n∑
j=0

(
n
j

)(
n+k
k

)
2k+n

(
j+k
k

)S2 (j + k, k)B (n− j, k) , (1.14)

where n, k ∈ N0 and

B (n, k) =

n∑
j=0

(
k

j

)
j!2k−jS2 (n, j)

=

k∑
j=0

(
k

j

)
jn

(cf. [32, Identity 12.]; see also [7, 29]).

Substituting n = k into (1.14), we have

S2 (2n, n) =

(
2n

n

) n∑
j=0

(
n
j

)
4n

(
j+n
n

)S2 (j + n, n)B (n− j, n) .

The Daehee numbers, Dn, are defined by means of the following generating function:

log (1 + t)

t
=

∞∑
n=0

Dn
tn

n!
(1.15)

(cf. [17, 25,30]).

By using (1.15), an explicit formula for the Daehee numbers is given by

Dn = (−1)n
n!

n+ 1
(1.16)

(cf. [17, 25,30]).

The Changhee numbers, Chn, are defined by means of the following generating function:

2

2 + t
=

∞∑
n=0

Chn
tn

n!
(1.17)

(cf. [18, 30]).
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By using (1.17), an explicit formula for the Changhee numbers is given by

Chn = (−1)n
n!

2n
(1.18)

(cf. [18, 30]).

Kucukoglu and Simsek [22] defined the numbers βn (k) by means of the following gener-

ating function: (
1− z

2

)k
=

∞∑
n=0

βn (k)
zn

n!
, (1.19)

where k ∈ N0, z ∈ C with |z| < 2.

By using (1.19), we have

βn (k) =
(−1)nn!

2n

(
k

n

)
=

(
k

n

)
Chn (1.20)

where n, k ∈ N0 (cf. [22, Equations (4.9) and (4.10)]).

The polynomials Cn(x, y) and Sn(x, y) are defined by means of the following generating

functions:

GC(t, x, y) = ext cos (yt) =

∞∑
n=0

Cn(x, y)
tn

n!
(1.21)

and

GS(t, x, y) = ext sin (yt) =

∞∑
n=0

Sn(x, y)
tn

n!
, (1.22)

(cf. [9–12,14–16,20,24]).

By using (1.21) and (1.22), the polynomials Cn(x, y) and Sn(x, y) are computed by the

following formulas:

Cn(x, y) =

[n2 ]∑
j=0

(−1)j
(
n

2j

)
xn−2jy2j

and

Sn(x, y) =

[n−1
2 ]∑

j=0

(−1)j
(

n

2j + 1

)
xn−2j−1y2j+1,

respectively (cf. [9–12,14–16,20,24]).

By using (1.21) and (1.22), the polynomials Cn(x, y) and Sn(x, y) are also computed by

the following formulas:

Cn(x, y) =

[n2 ]∑
j=0

n−2j∑
d=0

(−1)j
(
n

2j

)
S2 (n− 2j, d) y2j (x)d (1.23)

and

Sn(x, y) =

[n−1
2 ]∑

j=0

n−2j−1∑
d=0

(−1)j
(

n

2j + 1

)
S2 (n− 2j − 1, d) y2j+1 (x)d (1.24)
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(cf. [2]).

Simsek [31] defined new classes of special numbers and polynomials by means of the

following generating functions:

FY(t, k, a) =
at

4 sinh
(
(k+2)t

2

)
cosh

(
kt
2

) =
∞∑
n=0

Yn(k, a)
tn

n!
(1.25)

and

GY(t, x, k, a) = extFY(t, k, a) =
∞∑
n=0

Qn(x, k, a)
wn

n!
, (1.26)

where k ∈ Z and a ∈ R (or C).

Substituting x = 0 into (1.26), we have

Yn(k, a) = Qn(0, k, a).

Simsek also gave the representation of equation (1.25) as follows:

FY(t, k, a) =
tae(k+1)t(

e(k+2)t − 1
)
(ekt + 1)

.

(cf. [31]).

By using (1.25) and (1.26), a relation between the polynomialsQn(x, k, a) and the numbers

Yn(k, a) is given as follows:

Qn(x, k, a) =
n∑

j=0

(
n

j

)
xn−jYj(k, a)

(cf. [31]).

By using (1.5), (1.8) and (1.25), we have the following identity:

Yn(k, a) =
a

2(k + 2)

n∑
s=0

(
n

s

)
kn−s(k + 2)sEn−sBs

(
k + 1

k + 2

)
, (1.27)

where n ∈ N0 (cf. [31, Equation (15)]).

Recently, Bayad and Simsek [2] defined new classes of the parametrically generalized

polynomials, the polynomials Q
(C)
n (x, y, k, a) and Q

(S)
n (x, y, k, a), by means of the following

generating functions, respectively:

HC(t, x, y, a, k) =
ext cos (yt) at

4 sinh
(
(k+2)t

2

)
cosh

(
kt
2

) =

∞∑
n=0

Q(C)
n (x, y, k, a)

tn

n!
(1.28)

and

HS(t, x, y, a, k) =
ext sin (yt) at

4 sinh
(
(k+2)t

2

)
cosh

(
kt
2

) =
∞∑
n=0

Q(S)
n (x, y, k, a)

tn

n!
, (1.29)

where k ∈ Z and a ∈ R (or C).
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By using (1.28) and (1.29), the polynomials Q
(C)
n (x, y, k, a) and Q

(S)
n (x, y, k, a) are com-

puted by the following formulas:

Q(C)
n (x, y, k, a) =

n∑
j=0

(
n

j

)
Yj(k, a)Cn−j (x, y) (1.30)

and

Q(S)
n (x, y, k, a) =

n∑
j=0

(
n

j

)
Yj(k, a)Sn−j (x, y) (1.31)

(cf. [2]).

The rest of this article is briefly summarized as follows:

In Section 2, by using generating functions and functional equations techniques, we derive

some formulas, combinatorial sums and relations including the parametrically generalized

polynomials, the Bernoulli numbers and polynomials of higher order, the Euler numbers and

polynomials of higher order, the Euler numbers of the second kind, the polynomials Cn (x, y),

and the polynomials Sn (x, y).

In Section 3, we give many inequalities for combinatorial sums including the Bernoulli

numbers of negative order, the Euler numbers of negative order, the Bernoulli polynomials,

the Changhee numbers, the Daehee numbers, the Stirling numbers, the numbers B (n, k) and

the numbers βn (k).

In Section 4, using Mathematica with the help of the Wolfram programming language,

we present some plots of the parametrically generalized polynomials under some of their

randomly selected special cases.

Finally, in Section 5, we give remarks and observations on our results.

2. Combinatorial sums and identities for the parametrically generalized

polynomials, and special numbers and polynomials

In this section, using generating functions and functional equations, we give some interest-

ing identities and combinatorial sums related to the parametrically generalized polynomials,

the polynomials Cn (x, y), the polynomials Sn (x, y), the Bernoulli numbers and polynomials

of higher order, the Euler numbers and polynomials of higher order and the Euler numbers

of the second kind.

Theorem 2.1. Let n ∈ N0 and a ̸= 0. Then we have

Cn (x+ k + 1, y) =

n∑
d=0

d∑
j=0

(
d

j

)(
n

d

)
2 (k + 2)j+1 kd−j

a(j + 1)
E

(−1)
d−j Q

(C)
n−d (x, y, k, a) .
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Proof. Combining (1.28) with (1.4), (1.8) and (1.21), we get the following functional

equation:

a

2 (k + 2)
GC (t, x+ k + 1, y) = FB ((k + 2) t,−1)FE (kt,−1)HC(t, x, y, a, k).

From the above equation, we obtain

a

2 (k + 2)

∞∑
n=0

Cn (x+ k + 1, y)
tn

n!

=
∞∑
n=0

(k + 2)nB(−1)
n

tn

n!

∞∑
n=0

knE(−1)
n

tn

n!

∞∑
n=0

Q(C)
n (x, y, k, a)

tn

n!
.

Therefore

a

2 (k + 2)

∞∑
n=0

Cn (x+ k + 1, y)
tn

n!

=
∞∑
n=0

n∑
d=0

d∑
j=0

(
d

j

)(
n

d

)
(k + 2)j kd−jB

(−1)
j E

(−1)
d−j Q

(C)
n−d (x, y, k, a)

tn

n!
.

Comparing coefficient of tn

n! on both sides of the above equation, and combining with following

well-known formula

B(−1)
n =

1

n+ 1
,

we arrive at the desired result.

Theorem 2.2. Let n ∈ N0 and a ̸= 0. Then we have

Sn (x+ k + 1, y) =
n∑

d=0

d∑
j=0

(
d

j

)(
n

d

)
2 (k + 2)j+1 kd−j

a(j + 1)
E

(−1)
d−j Q

(S)
n−d (x, y, k, a) .

Proof. Combining (1.29) with (1.4), (1.8) and (1.22), we have

a

2 (k + 2)
GS (t, x+ k + 1, y) = FB ((k + 2) t,−1)FE (kt,−1)HS(t, x, y, a, k).

From the above functional equation, we obtain

a

2 (k + 2)

∞∑
n=0

Sn (x+ k + 1, y)
tn

n!

=
∞∑
n=0

(k + 2)nB(−1)
n

tn

n!

∞∑
n=0

knE(−1)
n

tn

n!

∞∑
n=0

Q(S)
n (x, y, k, a)

tn

n!
.

Therefore

a

2 (k + 2)

∞∑
n=0

Sn (x+ k + 1, y)
tn

n!

=
∞∑
n=0

n∑
d=0

d∑
j=0

(
d

j

)(
n

d

)
(k + 2)j kd−jB

(−1)
j E

(−1)
d−j Q

(S)
n−d (x, y, k, a)

tn

n!
.
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Comparing coefficient of tn

n! on both sides of the above equation, after some elementary

calculations, we arrive at the desired result.

Theorem 2.3. Let n ∈ N0 and a ̸= 0. Then we have

Bn =
1

a (n+ 1) (k + 2)n−1

[n+1
2 ]∑

d=0

n+1−2d∑
j=0

(−1)d
(
n+ 1− 2d

j

)(
n+ 1

2d

)
22d+1y2d−1kj (2.32)

×E
(−1)
j

(
−x− k − 1

k

)
B2d

(
1

2

)
Q

(S)
n+1−2d−j (x, y, k, a) .

Proof. By using (1.4), (1.8) and (1.29), we get the following functional equation:

a

(k + 2)
FB ((k + 2) t, 1) =

2

sin (yt)
GE

(
kt,

−x− k − 1

k
,−1

)
HS(t, x, y, a, k).

Combining above equation with the following well-known identity:

t

sin (t)
=

∞∑
n=0

(−1)n 22nB2n

(
1

2

)
t2n

(2n)!
(2.33)

(cf. [19, Equation (2.24)]), we have

ay

2 (k + 2)

∞∑
n=0

(k + 2)nBn
tn+1

n!
=

∞∑
n=0

(−1)n (2y)2nB2n

(
1

2

)
t2n

(2n)!

×
∞∑
n=0

E(−1)
n

(
−x− k − 1

k

)
(kt)n

n!

∞∑
n=0

Q(S)
n (x, y, k, a)

tn

n!
.

Therefore

ay

2

∞∑
n=0

n (k + 2)n−2Bn−1
tn

n!

=
∞∑
n=0

[n2 ]∑
d=0

(
n

2d

) n−2d∑
j=0

(
n− 2d

j

)
kjE

(−1)
j

(
−x− k − 1

k

)

×Q
(S)
n−2d−j (x, y, k, a) (−1)d (2y)2dB2d

(
1

2

)
tn

n!
.

Comparing coefficient of tn

n! on both sides of the above equation, after some elementary

calculations, we arrive at the desired result.

Theorem 2.4. Let n ∈ N0 and a ̸= 0. Then we have

En =
1

akn (n+ 1)

[n+1
2 ]∑

d=0

n+1−2d∑
j=0

(−1)d
(
n+ 1− 2d

j

)(
n+ 1

2d

)
22d+1y2d−1 (k + 2)j+1

×B
(−1)
j

(
−x− k − 1

k + 2

)
B2d

(
1

2

)
Q

(S)
n+1−2d−j (x, y, k, a) .
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Proof. By using (1.5), (1.8) and (1.29), we get the following functional equation:

a

2
FE (kt, 1) =

k + 2

sin (yt)
GB

(
(k + 2) t,

−x− k − 1

k + 2
,−1

)
HS(t, x, y, a, k).

Combining above equation with (2.33), we have

ayt

2

∞∑
n=0

knEn
tn

n!
=

∞∑
n=0

(−1)n (2y)2nB2n

(
1

2

)
t2n

(2n)!

×
∞∑
n=0

(k + 2)nB(−1)
n

(
−x− k − 1

k + 2

)
tn

n!

∞∑
n=0

Q(S)
n (x, y, k, a)

tn

n!
.

Therefore

ay

2

∞∑
n=0

nkn−1En−1
tn

n!
=

∞∑
n=0

[n2 ]∑
d=0

(−1)d
(
n

2d

) n−2d∑
j=0

(
n− 2d

j

)
(k + 2)j

×B
(−1)
j

(
−x− k − 1

k + 2

)
Q

(S)
n−2d−j (x, y, k, a) (2y)

2dB2d

(
1

2

)
tn

n!
.

Comparing coefficient of tn

n! on both sides of the above equation, after some elementary

calculations, we arrive at the desired result.

Theorem 2.5. Let n ∈ N0 and a ̸= 0. Then we have

a

2

n∑
j=0

(
n

j

)
(k + 2)j−1

kj−n
Bj

(
x

k + 2

)
En−j

(
k + 1

k

)
=

[n2 ]∑
j=0

(−1)j
(
n

2j

)
y2jE∗

2jQ
(C)
n−2j (x, y, k, a) .

Proof. By using (1.5), (1.9) and (1.28), we get the following functional equation:

a

2 (k + 2)
GB

(
(k + 2) t,

x

k + 2
, 1

)
GE

(
kt,

k + 1

k
, 1

)
= sec (yt)HC(t, x, y, a, k).

Combining above equation with the following well-known identity:

sec (t) =
∞∑
n=0

(−1)nE∗
2n

t2n

(2n)!
(2.34)

(cf. [19, Equation (2.40)]), we have

a

2 (k + 2)

∞∑
n=0

(k + 2)nBn

(
x

k + 2

)
tn

n!

∞∑
n=0

knEn

(
k + 1

k

)
tn

n!

=
∞∑
n=0

(−1)nE∗
2n

t2n

(2n)!

∞∑
n=0

Q(C)
n (x, y, k, a)

tn

n!
.

Therefore

a

2 (k + 2)

∞∑
n=0

n∑
j=0

(
n

j

)
(k + 2)jkn−jBj

(
x

k + 2

)
En−j

(
k + 1

k

)
tn

n!

=

∞∑
n=0

[n2 ]∑
j=0

(
n

2j

)
(−1)j E∗

2jQ
(C)
n−2j (x, y, k, a)

tn

n!
.
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Comparing coefficient of tn

n! on both sides of the above equation, after some elementary

calculations, we arrive at the desired result.

Combining (1.24) with (1.12), after some elementary calculations, we obtain the following

theorem:

Theorem 2.6. Let n ∈ N. Then we have

Sn(x, y) =

[n−1
2 ]∑

j=0

n−2j−1∑
d=0

(−1)j
(

n

2j + 1

)
2d−n+2j+1y2j+1 (x)d

d!

×
n−2j−1∑
m=0

d∑
v=0

(−1)d−v

(
n− 2j − 1

m

)(
d

v

)
vmE

(−d)
n−2j−1−m.

3. Inequalities applications for combinatorial sums involving special numbers

In this section, we give the upper bound and the lower bound for the special numbers and

polynomials, and combinatorial sums involving the Bernoulli numbers of negative order, the

Euler numbers of negative order, the Changhee numbers, the Daehee numbers, the Stirling

numbers of the second kind, the numbers B (n, k) and the numbers βn (k).

In order to give our results, we need the following inequalities for the special numbers.

Gun and Simsek [8] gave the lower bound and the upper bound for the Bernoulli numbers

of negative order B
(−k)
n as follows:

B(−k)
n ≥ kn(

n+k
k

) (3.35)

and

B(−k)
n ≤

(
n+k−1
k−1

)
kn(

n+k
k

) , (3.36)

where n ∈ N0 and k ∈ N.

Comtet [6] gave the lower bound and the upper bound for the Stirling numbers of the

second kind S2(n, k) as follows:

S2(n, k) ≥ kn−k (3.37)

and

S2(n, k) ≤
(
n− 1

k − 1

)
kn−k. (3.38)

Abramowitz and Stegun [1, p. 805] gave the following inequality for the Bernoulli numbers:

2 (2n)!

(2π)2n
< (−1)n+1B2n <

2 (2n)!

(2π)2n (1− 21−2n)
, (3.39)

where n ∈ N.
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Combining (1.11) with (3.35), we get the following theorem for the Euler numbers of

negative order and the Bernoulli numbers of negative order:

Theorem 3.1. Let n ∈ N0 and k ∈ N. Then we have

n∑
j=0

(
n

j

)
B

(−k)
j E

(−k)
n−j ≥ 2nkn(

k+n
k

) . (3.40)

By using (1.6), (1.10), (1.18) and (3.40), we derive the following corollary:

Corollary 3.1. Let n ∈ N0 and k ∈ N. Then we have

n∑
j=0

k∑
d=0

n−j∑
m=0

(−1)k−d(
j+k
k

)
k!

(
n

j

)(
k

d

)(
m− k − 1

m

)
dj+kChmS2 (n− j,m) ≥ 2nkn(

k+n
k

) .
By using (1.18), (1.20) and (3.40), we get the following corollary:

Corollary 3.2. Let n ∈ N0 and k ∈ N. Then we have

n∑
j=0

(
n

j

)
B

(−k)
j E

(−k)
n−j ≥ (2k)nChk

βk (n+ k)
.

Combining (1.11) with (3.36), we obtain the following theorem:

Theorem 3.2. Let n ∈ N0 and k ∈ N. Then we have

n∑
j=0

(
n

j

)
B

(−k)
j E

(−k)
n−j ≤

2n
(
n+k−1
k−1

)
kn(

n+k
k

) . (3.41)

Substituting n = k into (3.41), we arrive at the following result:

Corollary 3.3. Let n ∈ N. Then we have

n∑
j=0

(
n

j

)
B

(−n)
j E

(−n)
n−j ≤

2n
(
2n−1
n−1

)
nn(

2n
n

) .

By using (1.18), (1.20) and (3.41), we obtain the following corollary:

Corollary 3.4. Let n ∈ N0 and k ∈ N. Then we have

n∑
j=0

(
n

j

)
B

(−k)
j E

(−k)
n−j ≤ (2k)n

βk−1 (n+ k − 1)Chk
βk (n+ k)Chk−1

.

Combining (1.14) with (3.37), we get the following theorem:

Theorem 3.3. Let n ∈ N0 and k ∈ N. Then we have

n∑
j=0

(
n
j

)(
n+k
k

)
2k+n

(
j+k
k

)S2 (j + k, k)B (n− j, k) ≥ kn. (3.42)
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By using (1.14), (1.16), (1.20) and (3.37), we have the following corollary:

Corollary 3.5. Let n ∈ N0 and k ∈ N. Then we have

n∑
j=0

(
n
j

)
βk (n+ k)

2n
(
j+k
k

)
Dk

S2 (j + k, k)B (n− j, k) ≥ (k + 1) kn.

Combining (1.12) with (3.37), we arrive at the following theorem:

Theorem 3.4. Let n ∈ N0 and k ∈ N. Then we have

2k−n

k!

n∑
m=0

k∑
j=0

(−1)k−j

(
n

m

)(
k

j

)
jmE

(−k)
n−m ≥ kn−k.

Combining (1.12) with (1.20) and (3.38), we get the following theorem for the Euler

numbers of negative order:

Theorem 3.5. Let n ∈ N0 and k ∈ N. Then we have

2k−n

k!

n∑
m=0

k∑
j=0

(−1)k−j

(
n

m

)(
k

j

)
jmE

(−k)
n−m ≤ kn−kβk−1 (n− 1)

Chk−1
.

4. Some plots of the parametrically generalized polynomials

In this section, with the help of Wolfram programming language in Mathematica 35, we

illustrated the plots of the parametrically generalized polynomials by applying the formulas

given by (1.30) and (1.31).

Figure 1 is obtained by y = 2, k = −10, a = 2, and n ∈ {0, 1, 2, 3, 4, 5} using (1.30) for

x ∈ [−50, 50].

Figure 1. Plots of the polynomials Q
(C)
n (x, 2,−10, 2) for randomly selected

special cases when n ∈ {0, 1, 2, 3, 4, 5} and x ∈ [−50, 50].
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Figure 2 is obtained by n = 4, y = 2, a = 2, and k ∈ {0, 1, 2, 3, 4, 5} using (1.30) for

x ∈ [−5, 5].

Figure 2. Plots of the polynomials Q
(C)
n (x, 2, k, 2) for randomly selected

special cases when k ∈ {0, 1, 2, 3, 4, 5} with n = 4 and x ∈ [−5, 5].

Figure 3 is obtained by n = 4, k = −8, a = 2, and y ∈ {0, 1, 2, 3, 4, 5} using (1.30) for

x ∈ [−6, 6].

Figure 3. Plots of the polynomials Q
(C)
n (x, y,−8, 2) for randomly selected

special cases when y ∈ {0, 1, 2, 3, 4, 5} with n = 4 and x ∈ [−6, 6].

Figure 4 is obtained by n = 15, k = −8, a = 2, and y ∈ {0, 1, 2, 3, 4, 5} using (1.30) for

x ∈ [−6, 6].
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Figure 4. Plots of the polynomials Q
(C)
n (x, y,−8, 2) for randomly selected

special cases when y ∈ {0, 1, 2, 3, 4, 5} with n = 15 and x ∈ [−6, 6].

Figure 5 is obtained by y = 2, k = −10, a = 2, and n ∈ {0, 1, 2, 3, 4, 5} using (1.31) for

x ∈ [−50, 50].

Figure 5. Plots of the polynomials Q
(S)
n (x, 2,−10, 2) for randomly selected

special cases when n ∈ {0, 1, 2, 3, 4, 5} and x ∈ [−50, 50].

Figure 6 is obtained by n = 4, y = 2, a = 2, and k ∈ {0, 1, 2, 3, 4, 5} using (1.31) for

x ∈ [−5, 5].
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Figure 6. Plots of the polynomials Q
(S)
n (x, 2, k, 2) for randomly selected

special cases when k ∈ {0, 1, 2, 3, 4, 5} with n = 4 and x ∈ [−5, 5].

Figure 7 is obtained by n = 4, k = −8, a = 2, and y ∈ {0, 1, 2, 3, 4, 5} using (1.31) for

x ∈ [−5, 5].

Figure 7. Plots of the polynomials Q
(S)
n (x, y,−8, 2) for randomly selected

special cases when y ∈ {0, 1, 2, 3, 4, 5} with n = 4 and x ∈ [−5, 5].

Figure 8 is obtained by n = 15, k = −8, a = 2, and y ∈ {0, 1, 2, 3, 4, 5} using (1.31) for

x ∈ [−6, 6].
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Figure 8. Plots of the polynomials Q
(S)
n (x, y,−8, 2) for randomly selected

special cases when y ∈ {0, 1, 2, 3, 4, 5} with n = 15 and x ∈ [−6, 6].

5. Conclusion

Special numbers, special polynomials and trigonometric functions are among remarkably

wide used in applied mathematics, combinatorial analysis, mathematical analysis, analytic

number theory, mathematical physics, and engineering. Recently using different techniques

and methods, many properties of parametrically polynomials involving trigonometric func-

tions have been studied by many researchers. Using both the generating functions and their

functional equations techniques and some known results, we obtained many interesting iden-

tities, combinatorial sums and inequalities including the Euler numbers and polynomials of

higher order, the Bernoulli numbers of higher order, the Changhee numbers, the Daehee num-

bers, the parametrically generalized polynomials, the Stirling numbers and also well-known

special polynomials. By using Mathematica with the help of the Wolfram programming

language, we gave some plots of the parametrically generalized polynomials under the spe-

cial cases. Consequently, the results of this article have the potential to be used both pure

and applied mathematics, physics, engineering and other related areas, and to attract the

attention of researchers working in this areas.
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Project Administration of the University of Akdeniz.
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Abstract. Let (Mm, g) be an m-dimensional Riemannian manifold. In this paper, we in-

troduce an other class of metric on (Mm, g) called Mus-gradient metric. First we investigate

the Levi-Civita connection of this metric. Secondly we study some properties of harmonicity

with respect to the Mus-gradient metric. In the last section, we investigate the harmonicity

of Mus-gradient metric on product manifolds. Also, we construct some examples of har-

monic maps.
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1. Introduction

The theory of harmonic maps studies the mapping between different metric manifolds

from the energy-minimization point of view (solutions to a natural geometrical variational

problem). This concept has several applications such as geodesics, minimal surfaces and

harmonic functions. Harmonic maps are also closely related to holomorphic maps in several

complex variables, to the theory of stochastic processes, to nonlinear field theory in theoretical

physics, and to the theory of liquid crystals in materials science. The last years this subject

has been developed extensively by several authors (for example see [1], [3], [4], [5], [7], [8],

[12], [10], [11], [12] etc...).

The main idea in this note consists in the modification of the metric of the Riemannian
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manifold (Mm, g). Firstly we introduce the Mus-gradient metric on M noted by g̃ and

we investigate the Levi-Civita connection of this metric (Theorem 2.1). Secondly we study

the harmonicity with respect to the Mus-gradient metric, then we establish necessary and

sufficient conditions under which the Identity Map is harmonic with respect to this metric

(Theorem 3.2 and Theorem 3.4). Next we study the harmonicity of the map σ : (M, g̃) −→

(N,h) (Theorem 3.6) and the map σ : (M, g) −→ (N, h̃) (Theorem 3.8). In the last section,

we investigate the harmonicity of Mus-gradient metric on product manifolds (Theorem 4.1

to Theorem 4.7). We also construct some examples of harmonic maps.

2. Mus-gradient metric

Definition 2.1. Let (Mm, g) be a Riemannian manifold and f : M →]0,+∞[ be a strictly

positive smooth function. We define the Mus-gradient metric on M noted g̃ by

g̃(X,Y )x = f(x)g(X,Y )x +Xx(f)Yx(f), (2.1)

where x ∈ M and X,Y ∈ ℑ1
0(M), f is called twisting function.

In the following, we consider ∥grad f∥ = 1, where ∥.∥ denote the norm with respect to

(Mm, g).

Lemma 2.1. Let grad f (resp. g̃rad f) denote the gradient of f with respect to g ( resp. g̃),

then we have

g̃rad f =
1

f + 1
grad f. (2.2)

Proof. We have

X(f) = g(X, grad f)

=
1

f

(
g̃(X, grad f)−X(f)(grad f)(f)

)
=

1

f

(
g̃(X, grad f)−X(f)

)
on the other hand, we have X(f) = g̃(X, g̃rad f), then

g̃(X, g̃rad f) =
1

f

(
g̃(X, grad f)− g̃(X, g̃rad f)

)
=

1

f + 1
g̃(X, grad f)

so, thus g̃rad f =
1

f + 1
grad f .
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We shall calculate the Levi-Civita connection ∇̃ of (Mm, g̃), as follows.

Theorem 2.1. Let (Mm, g) be a Riemannian manifold, the Levi-Civita connection ∇̃ of

(Mm, g̃), is given by

∇̃XY = ∇XY +
X(f)

2f
Y +

Y (f)

2f
X

+
(Hessf (X,Y )

f + 1
− X(f)Y (f)

f(f + 1)
− g(X,Y )

2(f + 1)

)
grad f (2.3)

for all vector fields X,Y ∈ ℑ1
0(M), where ∇ denote the Levi-Civita connection of (Mm, g)

and Hessf (X,Y ) = g(∇Xgrad f, Y ) is the Hessian of f with respect to g.

Proof. From Kozul formula and Lemma 2.1, we have

2g̃(∇̃XY,Z) = Xg̃(Y,Z) + Y g̃(Z,X)− Zg̃(X,Y ) + g̃(Z, [X,Y ])

+g̃(Y, [Z,X])− g̃(X, [Y,Z])

= X
(
fg(Y,Z) + Y (f)Z(f)

)
+ Y

(
fg(Z,X) + Z(f)X(f)

)
−Z

(
fg(X,Y ) +X(f)Y (f)

)
+ fg(Z, [X,Y ]) + Z(f)[X,Y ](f)

+fg(Y, [Z,X]) + Y (f)[Z,X](f)− fg(X, [Y,Z])

−X(f)[Y,Z](f)

= X(f)g(Y,Z) + fXg(Y,Z) +X(Y (f))Z(f) + Y (f)X(Z(f))

+Y (f)g(Z,X) + fY g(Z,X) + Y (Z(f))X(f) + Z(f)Y (X(f))

−Z(f)g(X,Y )− fZg(X,Y )− Z(X(f))Y (f)−X(f)Z(Y (f))

+fg(Z, [X,Y ]) + Z(f)
(
X(Y (f))− Y (X(f))

)
+ fg(Y, [Z,X])

+Y (f)
(
Z(X(f))−X(Z(f))

)
− fg(X, [Y,Z])

−X(f)
(
Y (Z(f))− Z(Y (f))

)
= 2fg(∇XY.Z) +X(f)g(Y,Z) + Y (f)g(Z,X)− Z(f)g(X,Y )

+2X(Y (f))Z(f)

= 2g̃(∇XY,Z)− 2(∇XY )(f)Z(f) + 2X(Y (f))Z(f)

+
X(f)

f

(
g̃(Y,Z)− Y (f)Z(f)

)
+

Y (f)

f

(
g̃(Z,X)− Z(f)X(f)

)
−Z(f)g(X,Y ).
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From the definition of Hessian, we obtain

2g̃(∇̃XY,Z) = 2g̃(∇XY,Z) +
X(f)

f
g̃(Y,Z) +

Y (f)

f
g̃(Z,X)

+
(
2Hessf (X,Y )− 2X(f)Y (f)

f
− g(X,Y )

)
Z(f)

= 2g̃(∇XY +
X(f)

2f
Y +

Y (f)

2f
X,Z)

+2
(
Hessf (X,Y )− X(f)Y (f)

f
− 1

2
g(X,Y )

)
g̃(g̃rad f, Z).

From the formula (2.2), we get

∇̃XY = ∇XY +
X(f)

2f
Y +

Y (f)

2f
X

+
(Hessf (X,Y )

f + 1
− X(f)Y (f)

f(f + 1)
− g(X,Y )

2(f + 1)

)
grad f.

Lemma 2.2. Let (Mm, g) be a Riemannian manifold, then for all vector field X ∈ ℑ1
0(M),

we have

∇̃Xgrad f = ∇Xgrad f +
1

2f
X − X(f)

2f(f + 1)
grad f. (2.4)

Proof. Using the theorem 2.1, we have

∇̃Xgrad f = ∇Xgrad f +
X(f)

2f
grad f +

(grad f)(f)

2f
X

+
(Hessf (X, grad f)

f + 1
− X(f)(grad f)(f)

f(f + 1)
− g(X, grad f)

2(f + 1)

)
grad f.

Since ∥grad f∥ = 1, we obtain (grad f)(f) = 1 and Hessf (X, grad f) = 0. then we get

∇̃Xgrad f = ∇Xgrad f +
1

2f
X − X(f)

2f(f + 1)
grad f.

3. Harmonicity of Mus-gradient metric

Consider a smooth map ϕ : (Mm, g) → (Nn, h) between two Riemannian manifolds, then

the second fundamental form of ϕ is defined by

(∇dϕ)(X,Y ) = ∇ϕ
Xdϕ(Y )− dϕ(∇XY ). (3.5)

Here ∇ is the Riemannian connection on M and ∇ϕ is the pull-back connection on the

pull-back bundle ϕ−1TN . The tension field of ϕ is defined by

τ(ϕ) = traceg∇dϕ =
m∑
i=1

(
∇ϕ

Ei
dϕ(Ei)− dϕ(∇EiEi)

)
, (3.6)

where {Ei}i=1,m is an orthonormal frame on (Mm, g). A map ϕ is called harmonic if and

only if τ(ϕ) = 0.
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Remark 3.1. Let (Mm, g) be a Riemannian manifold and g̃ the Mus-gradient metric on M .

If {Ei}i=1,m be an orthonormal frame on (Mm, g), such that E1 = grad f , the set {Ẽi}i=1,m,

which is defined as below, is an orthonomal frame on (Mm, g̃), then

Ẽ1 =
1√
f + 1

E1, Ẽi =
1√
f
Ei, i = 2,m, (3.7)

where f : M →]0,+∞[ be a strictly positive smooth function.

Theorem 3.1. The tension field of the Identity Map I : (Mm, g̃) → (Mm, g) is given by

τ(I) =
1

f(f + 1)

((m− 2)f +m− 1

2(f + 1)
−∆(f)

)
grad f, (3.8)

where ∆(f) = tracegHessf =
∑m

i=1 g(∇Eigrad f,Ei).

Proof. Let {Ẽi}i=1,m be a locale orthonormal frame on (Mm, g̃) defined by (3.10),

then

τ(I) =
m∑
i=1

(
∇I

Ẽi
dI(Ẽi)− dI(∇̃

Ẽi
Ẽi)

)
=

m∑
i=1

(
∇

Ẽi
Ẽi − ∇̃

Ẽi
Ẽi

)
=

m∑
i=1

(
− Ẽi(f)

f
Ẽi −

(Hessf (Ẽi, Ẽi)

f + 1
− Ẽi(f)

2

f(f + 1)
− g(Ẽi, Ẽi)

2(f + 1)

)
grad f

)
=

( −1

f(f + 1)
− ∆(f)

f(f + 1)
+

1

f(f + 1)2
+

1

2(f + 1)2
+

m− 1

2f(f + 1)

)
grad f

=
1

f(f + 1)

((m− 2)f +m− 1

2(f + 1)
−∆(f)

)
grad f.

From the Theorem 3.1 we obtain

Theorem 3.2. The Identity Map I : (Mm, g̃) → (Mm, g) is harmonic if and only if f =

const or

∆(f) =
(m− 2)f +m− 1

2(f + 1)
. (3.9)

Example 3.1. Let M =]0,+∞[×FRm−1 be the Riemannian twisted product manifold equipped

with the Riemannian metric g defined by

g = dx21 + F (x1)gRm−1

were gRm−1 is the standard metric and

F (x1) = e
m−2
m−1

x1(x1 + 1)
1

m−1 .
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Let f(x1, · · · , xm) = x1, it’s clear that ∥gradf∥ = 1

as we have

∆(f) =
(m− 2)f +m− 1

2(f + 1)
.

So, thus the Identity Map I : (Mm, g̃) → (Mm, g) is harmonic.

Example 3.2. Let m = 2 and f(x, y) = F1(y − Ix) + F2(y + Ix) + 1
2x

2 + 1
2y

2, where

F1, F2 : C → R∗
+ and I2 = −1. Then the Identity Map I : (Mm, g̃) → (Mm, g) is harmonic.

Theorem 3.3. The tension field of the Identity Map I : (Mm, g) → (Mm, g̃) is given by

τ(I) =
1

f + 1

(
∆(f) +

2−m

2

)
grad f. (3.10)

Proof. Let {Ei}i=1,2m be a locale orthonormal frame on M , then

τ(I) =
m∑
i=1

(
∇I

Ei
dI(Ei)− dI(∇EiEi)

)
=

m∑
i=1

∇̃dI(Ei)dI(Ei)−∇EiEi

=

m∑
i=1

∇̃EiEi −∇EiEi

=

m∑
i=1

(Ei(f)

f
Ei +

(Hessf (Ei, Ei)

f + 1
− Ei(f)

2

f(f + 1)
− g(Ei, Ei)

2(f + 1)

)
grad f

)
=

1

f
grad f +

(∆(f)

f + 1
− 1

f(f + 1)
− m

2(f + 1)

)
grad f

=
1

f + 1

(2−m

2
+ ∆(f)

)
grad f.

From the Theorem 3.3 we obtain

Theorem 3.4. The Identity Map I : (Mm, g) → (Mm, g̃) is harmonic if and only if

∆(f) =
m− 2

2
. (3.11)

Example 3.3. The Identity Map I : (IR2, g = dx2) → (IR2, g̃) is harmonic if and only if

∆(f) =
∂2f

(∂x)2
+

∂2f

(∂y)2
= 0. (3.12)

Example 3.4. Let M =]0,+∞[×]
−π

4
,
3π

4
[ be endowed with the Riemannian metric g in

polar coordinate defined by

g = dr2 + r2dθ2.
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The non-null Christoffel symbols of the Riemannian connection are:

Γ2
12 = Γ2

21 =
1

r
, Γ1

22 = −r.

Relatively to the orthonormal frame

e1 =
∂

∂r
, e2 =

1

r

∂

∂θ
,

we have

∇e1e1 = ∇e1e2 = 0 , ∇e2e1 =
1

r2
∂

∂θ
, ∇e2e2 =

−1

r

∂

∂r
.

Let f(r, θ) = r sin(θ +
π

4
), for all (r, θ) ∈ M .

By direct computations we obtain

grad f = sin(θ +
π

4
)
∂

∂r
+

1

r
cos(θ +

π

4
)
∂

∂θ
,

∥grad f∥ = 1,

∆(f) = 0.

By virtue of the Theorem 3.4 the identity map I : (Mm, g) → (Mm, g̃) is harmonic, where

g̃ =
(
r sin(θ +

π

4
) + sin2(θ +

π

4
)
)
dr2 + r2

(
r sin(θ +

π

4
) + cos2(θ +

π

4
)
)
dθ2 + r cos(2θ)drdθ.

Theorem 3.5. The tension field of the map σ : (Mm, g̃) −→ (Nn, h) is given by

τ̃(σ) =
1

f
τ(σ) +

1

f(f + 1)

((m− 2)f +m− 1

2(f + 1)
−∆(f)

)
dσ(grad f)

− 1

f(f + 1)
∇N

dσ(grad f)dσ(grad f), (3.13)

where f : M →]0,+∞[ be a strictly positive smooth function and τ(σ) is the tension field of

σ : (M, g) −→ (N,h).

Proof. Let {Ẽi}i=1,m be a locale orthonormal frame on (Mm, g̃) defined by (3.10),

then

τ(I) =

m∑
i=1

(
∇σ

Ẽi
dσ(Ẽi)− dσ(∇̃M

Ẽi
Ẽi)

)
=

m∑
i=1

∇σ
Ẽi
dσ(Ẽi)−

m∑
i=1

dσ(∇̃M
Ẽi
Ẽi).
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By direct computations we obtain

m∑
i=1

∇σ
Ẽi
dσ(Ẽi) = ∇σ

Ẽ1
Ẽ1 +

m∑
i=2

∇σ
Ẽi
Ẽi

=
1√
f + 1

∇σ
E1

1√
f + 1

E1 +
m∑
i=2

1√
f
∇σ

Ei

1√
f
Ei

=
−1

2(f + 1)2
dσ(grad f)− 1

f(f + 1)
∇N

dσ(grad f)dσ(grad f)

+
1

f

m∑
i=1

∇σ
Ei
dσ(Ei),

and

m∑
i=1

dσ(∇̃M
Ẽi
Ẽi) = dσ

( m∑
i=1

∇̃M
Ẽi
Ẽi

)
= dσ

(
∇̃M

Ẽ1
Ẽ1 +

m∑
i=2

∇̃M
Ẽi
Ẽi

)
= dσ

( 1√
f + 1

∇̃M
E1

1√
f + 1

E1 +

m∑
i=2

1√
f
∇̃M

Ei

1√
f
Ei

)
=

1

f

m∑
i=1

dσ(∇σ
Ei
Ei) +

( ∆(f)

f(f + 1)
− m− 1

2f(f + 1)

)
dσ(grad f),

hence we get

τ̃(σ) =
1

f
τ(σ) +

1

f(f + 1)

((m− 2)f +m− 1

2(f + 1)
−∆(f)

)
dσ(grad f)

− 1

f(f + 1)
∇N

dσ(grad f)dσ(grad f).

From the Theorem 3.5 we obtain

Theorem 3.6. Let σ : (Mm, g) −→ (Nn, h) be harmonic. Then the map σ : (Mm, g̃) −→

(Nn, h) is harmonic if and only if

τ(σ) =
1

f + 1

(
∆(f)− (m− 2)f +m− 1

2(f + 1)

)
dσ(grad f)

+
1

f + 1
∇N

dσ(grad f)dσ(grad f). (3.14)

Example 3.5. If we set σ = IdM and f = const then σ : (Mm, g̃) −→ (Nn, h) is harmonic.

Lemma 3.1. [1] Given a smooth map σ : (Mm, g) −→ (Nn, h) between two Riemannian

manifolds and f ∈ C∞(N), then we have

∆(f ◦ σ) = tracegHessf (dσ, dσ) + df(τ(σ)). (3.15)
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Proof. Let X,Y ∈ ℑ1
0(M), we have f ◦ σ ∈ C∞(M) then

∇d(f ◦ σ)(X,Y ) = ∇f◦σ
X d(f ◦ σ)(Y )− d(f ◦ σ)(∇M

X Y )

= ∇f
dσ(X)df(dσ(Y ))− df(dσ(∇M

X Y ))

= ∇df(dσ(X), dσ(Y )) + df(∇N
dσ(X)dσ(Y ))− df(dσ(∇M

X Y ))

= ∇df(dσ(X), dσ(Y )) + df(∇dσ(X,Y )).

By passing to the trace in the last equation and using

traceg∇df = tracegHessf

we get

∆(f ◦ σ) = tracegHessf (dσ, dσ) + df(τ(σ)).

Theorem 3.7. The tension field of the map σ : (Mm, g) −→ (Nn, h̃) is given by

τ̃(σ) = τ(σ) +
1

f
dσ(grad(f ◦ σ))

+
1

f + 1

(
∆(f ◦ σ)− df(τ(σ))− ∥grad (f ◦ σ)∥2

f
− ∥dσ∥2

2

)
(grad f) ◦ σ, (3.16)

where f : N →]0,+∞[ be a strictly positive smooth function and τ(σ) is the tension field of

σ : (M, g) −→ (N,h).
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Proof. Let {Ei}i=1,m be a locale orthonormal frame on (Mm, g), then

τ̃(σ) =
m∑
i=1

(
∇̃σ

Ei
dσ(Ei)− dσ(∇M

Ei
Ei)

)
=

m∑
i=1

(
∇̃N

dσ(Ei)
dσ(Ei)− dσ(∇M

Ei
Ei)

)
=

m∑
i=1

(
∇N

dσ(Ei)
dσ(Ei) +

dσ(Ei)(f)

f
dσ(Ei)

+
(Hessf (dσ(Ei), dσ(Ei))

f + 1
− (dσ(Ei)(f))

2

f(f + 1)

−h(dσ(Ei), dσ(Ei))

2(f + 1)

)
(grad f) ◦ σ − dσ(∇M

Ei
Ei)

)
=

m∑
i=1

(
∇σ

Ei
dσ(Ei)− dσ(∇M

Ei
Ei) +

Ei(f ◦ σ)
f

dσ(Ei)

+
(Hessf (dσ(Ei), dσ(Ei))

f + 1
− (Ei(f ◦ σ))2

f(f + 1)

−h(dσ(Ei), dσ(Ei))

2(f + 1)

)
(grad f) ◦ σ

)
= τ(σ) +

1

f
dσ(grad(f ◦ σ))

+
( traceHessf (dσ, dσ)

f + 1
− ∥grad (f ◦ σ)∥2

f(f + 1)
− ∥dσ∥2

2(f + 1)

)
(grad f) ◦ σ

= τ(σ) +
1

f
dσ(grad(f ◦ σ))

+
(∆(f ◦ σ)− df(τ(σ))

f + 1
− ∥grad (f ◦ σ)∥2

f(f + 1)
− ∥dσ∥2

2(f + 1)

)
(grad f) ◦ σ

= τ(σ) +
1

f
dσ(grad(f ◦ σ))

+
1

f + 1

(
∆(f ◦ σ)− df(τ(σ))− ∥grad (f ◦ σ)∥2

f
− ∥dσ∥2

2

)
(grad f) ◦ σ.

From the Theorem 3.7 we obtain

Theorem 3.8. The map σ : (Mm, g) −→ (Nn, h̃) is harmonic if and only if

τ(σ) =
−1

f + 1

(
∆(f ◦ σ)− df(τ(σ))− ∥grad (f ◦ σ)∥2

f
− ∥dσ∥2

2

)
(grad f) ◦ σ

− 1

f
dσ(grad(f ◦ σ)). (3.17)
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4. Harmonicity on product manifold

Let (M, g) and (N,h) be a Riemannian manifolds.

Definition 4.1. Let (M, g) and (N,h) be two Riemannian manifolds of dimension m and

n respectively. We define the product metric on M ×N by

G = π∗g + η∗h

where π : M × N −→ M and η : M × N −→ N denote the first and the second canonical

projection.

Proposition 4.1. For all vector fields X1, X2 ∈ H(M) andY1, Y2 ∈ H(N) we have

G
(
(X1, Y1), (X2, Y2)

)
= g(X1, X2) + h(Y1, Y2)

G
(
(X1, 0), (X2, 0)

)
= g(X1, X2)

G
(
(0, Y1), (0, Y2)

)
= h(Y1, Y2)

G
(
(X1, 0), (0, Y2)

)
= 0.

Subsequently, if X ∈ H(M) and Y ∈ H(N), then we denote (X,Y ) by X + Y .

Remark 4.1. • Any vector field of H(M) is orthogonal to all vector fields of H(N).

• Let (E1, ..., Em) (resp (Em+1, ..., Em+n)) is an orthonormal basis of H(M) (resp H(N))

then (E1, ..., Em+n) is an orthonormal basis of H(M ×N).

• Let f ∈ C∞(M), then △(f) =
∑m

i=1Hessf (Ei, Ei).

Proposition 4.2. Let (M, g) and (N,h) be two Riemannian manifolds. If M∇ (resp N∇)

denote the connection of Levi-Civita on M (resp N), then the levi-civita connection ∇ on the

manifold M ×N associated with the product metric G = π∗g + η∗h is verifies the following

properties:

∇X1X2 =
M ∇X1X2

∇Y1Y2 =
N ∇Y1Y2

∇X1Y1 = ∇Y2X2 = 0

∇(
X1+Y1

)(X2 + Y2
)
=M ∇X1X2 +

N ∇Y1Y2
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for any X1, Y1 ∈ H(M) and X2, Y2 ∈ H(N).

Lemma 4.1. Let (Mm, g) and (Nn, h) be two Riemannian manifolds and f ∈ C∞(M). If

P : (x, y) ∈ M × N → y ∈ N (resp P : (x, y) ∈ M × N → (0, y) ∈ M × N) is the second

projection, then we have

grad(f) = gradG(f) = gradg(f),

d P (grad(f)) = 0,

d P (∇̃XX) = dP (∇XX) +
X(f)

f
dP (X) (4.18)

where X ∈ H(M ×N).

Proof. The proof of the formula (4.18) is a direct consequence of Theorem 2.1.

Theorem 4.1. Let (Mm, g) be a Riemannian manifolds and (Nn, h) be an Euclidian mani-

fold. If f ∈ C∞(M) is a smooth positif function, then the second projection

P : (M ×N, G̃) → (N,h)

(x, y) 7→ y

is harmonic map. where G = g + h.

Proof. Let (E1, ..., Em) be an orthonormal basis on (Mm, g) such as E1 = grad(f) and

(Em+1, ..., Em+n) be an orthonormal basis on (Nn, h) such as N∇EiEj = 0, (i, j ≥ m+1),

then (E1, ..., Em+n) is an orthonormal basis on (M ×N, g + h).

From Lemma 4.1, we obtain:

N∇
dP (Ẽi)

dP (Ẽi)− dP
(
∇̃

Ẽi
Ẽi

)
= −dP

(
∇

Ẽi
Ẽi

)
= −dP

(M∇
Ẽi
Ẽi

)
= 0

for 1 ≤ i ≤ m, and

N∇
dP (Ẽi)

dP (Ẽi)− dP
(
∇̃

Ẽi
Ẽi

)
= N∇

Ẽi
Ẽi − dP

(
∇

Ẽi
Ẽi

)
= 0

for m+ 1 ≤ i ≤ m+ n. We therefore deduce τ(P ) = 0.

We find the same result for the following theorem
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Theorem 4.2. Let (Mm, g) be a Riemannian manifolds and (Nn, h) be an Euclidian mani-

fold. If f ∈ C∞(M) is a smooth positif function, then

P : (M ×N, G̃) → (M ×N,G)

(x, y) 7→ (0, y)

is harmonic map. where G = g + h.

Theorem 4.3. Let (Mm, g) be a Riemannian manifolds and (Nn, h) be an Euclidian mani-

fold. If f ∈ C∞(M) is a smooth positif function, then the tension field of

P : (M ×N,G) → (M ×N, G̃)

(x, y) 7→ (0, y)

is given by

τ(P ) =
−n

2(f + 1)
grad(f).

Proof. Similarly to the proof of Theorem 4.1, we obtain

∇̃dP (Ei)dP (Ei)− dP
(
∇EiEi

)
= 0, (i ≤ m).

∇̃dP (Ei)dP (Ei)− dP
(
∇EiEi

)
= − 1

2(f + 1)
grad(f), (i ≥ m+ 1).

Theorem 4.4. Let (Mm, g) be a Riemannian manifolds and (Nn, h) be an Euclidian mani-

fold. If f ∈ C∞(M) is a smooth positif function, then the tension field of

P : (M ×N, G̃) → (M ×N, G̃)

(x, y) 7→ (0, y)

is given by

τ(P ) = − n

2f(f + 1)
grad(f)

where G = g + h.
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Proof. Let i ∈ {m+ 1, .., n+m}, from Theorem 2.1 and Lemma 4.1 we obtain

∇̃
dP (Ẽi)

dP (Ẽi)− dP
(
∇̃

Ẽi
Ẽi

)
= ∇̃

Ẽi
Ẽi − dP

(
∇̃

Ẽi
Ẽi

)
= ∇̃

Ẽi
Ẽi − dP

(
∇

Ẽi
Ẽi

)
= ∇̃

Ẽi
Ẽi −∇

Ẽi
Ẽi

= −G(Ẽi, Ẽi)

2(f + 1)
grad(f)

= − 1

2f(f + 1)
grad(f).

Example 4.1. Let (M, g) = (IRm, dx2), (m ≥ 3) and f(x1, x2, x3......, xm)

= f(x1, x2) such that
( ∂f
∂x1

)2
+
( ∂f
∂x2

)2
= 1. If we put

P̃ : (M, g̃) → (M, g)

(x1, x2, x3......, xm) 7→ (0, 0, x3......, xm)

then we obtain

E1 = ∂1(f)∂1 + ∂2(f)∂2

E2 = ∂2(f)∂1 − ∂1(f)∂2

Ei = ∂i, (i ≥ 3)

d P̃ (∇̃XX) = d P̃ (∇XX) +
X(f)

f
dP (X).

So

τ(P̃ ) =
∑
i

∇
d P̃ (Ẽi)

d P̃ (Ẽi)−
∑
i

d P̃
(
∇̃

Ẽi
Ẽi

)
= 0.

Then P̃ is harmonic.

On the other hand, the tension field of the projection

P : (M, g) → (M, g̃)

(x1, x2, x3......, xm) 7→ (0, 0, x3......, xm)

is given by the following formula

τ(P ) =
2−m

2(f + 1)
grad(f).

Therefore, P is non-harmonic.
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Theorem 4.5. Let (Mm, g) be a Riemannian manifolds and (Nn, h) be an Euclidian mani-

fold. If f ∈ C∞(M) is a smooth positif function, then the tension field of

Q : (M ×N, G̃) → (M, g)

(x, y) 7→ x

is given by

τ(Q) = − 1

f(f + 1)

[
△(f) +

(n+m− 2)(f + 1) + 1

2(f + 1)

]
grad(f).

Proof. Let (E1, ..., Em) be an orthonormal basis on (Mm, g) such as E1 = grad(f) and

(Em+1, ..., Em+n) be an orthonormal basis on (Nn, h) such as N∇EiEj = 0, (i, j ≥ m+1),

then (E1, ..., Em+n) is an orthonormal basis on (M ×N, g + h).

From Remark 3.1 and Theorem 2.1, we have:

m+n∑
i=m+1

[
M∇

dQ(Ẽi)
dQ(Ẽi)− dQ

(
∇̃

Ẽi
Ẽi

)]
= −

m+n∑
i=m+1

dQ
(
∇̃

Ẽi
Ẽi

)
=

m+n∑
i=m+1

G(Ẽi, Ẽi)

2(f + 1)
grad(f)

=
n

2f(f + 1)
grad(f)

M∇
dQ(Ẽ1)

dQ(Ẽ1) − dQ
(
∇̃

Ẽ1
Ẽ1

)
= M∇

Ẽ1
Ẽ1 − ∇̃

Ẽ1
Ẽ1

= −Ẽ1(f)

f
Ẽ1 +

(
Ẽ1(f)

)2
f(f + 1)

grad(f) +
G(Ẽ1, Ẽ1)

2(f + 1)
grad(f)

= − 1

f(f + 1)
grad(f) +

1

f(f + 1)2
grad(f) +

1

2(f + 1)2
grad(f)

=
[ −1

2(f + 1)2
−

Hessf (E1, E1)

f(f + 1)

]
grad(f)

m∑
i=2

[
M∇

dQ(Ẽi)
dQ(Ẽi)− dQ

(
∇̃

Ẽi
Ẽi

)]
=

m∑
i=2

[
M∇

Ẽi
Ẽi − ∇̃

Ẽi
Ẽi

]
=

m∑
i=2

[G(Ẽi, Ẽi)

2(f + 1)
−

Hessf (Ei, Ei)

f(f + 1)

]
grad(f)

=
[ m− 1

2f(f + 1)
− △(f)

f(f + 1)

]
grad(f).
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Theorem 4.6. Let (Mm, g) be a Riemannian manifolds and (Nn, h) be an Euclidian mani-

fold. If f ∈ C∞(M) is a smooth positif function, then the tension field of

Q : (M ×N, G̃) → (M ×N, G̃)

(x, y) 7→ (x, 0)

is given by

τ(Q) = − n

2f(f + 1)
grad(f).

The proof of Theorem 4.6 follows immediately from the Remark 3.1, Remark 4.1 and

Theorem 2.1.

Theorem 4.7. Let (Mm, g) be a Riemannian manifolds and (Nn, h) be an Euclidian mani-

fold. If f ∈ C∞(M) is a smooth positif function, then the tension field of

Q : (M ×N,G) → (M ×N, G̃)

(x, y) 7→ (x, 0)

is given by

τ(Q) =
1

f(f + 1)

[
△(f)− (2−m)f + 1−m

2(f + 1)

]
grad(f).

Proof. Let (E1, ..., Em) be an orthonormal basis on (Mm, g) such as E1 = grad(f) and

(Em+1, ..., Em+n) be an orthonormal basis on (Nn, h) such as N∇EiEj = 0, (i, j ≥ m+1),

then (E1, ..., Em+n) is an orthonormal basis on (M ×N, g + h).

From Remark 3.1, Remark 4.1 and Theorem 2.1, we obtain:

∇̃dQ(Ei)dQ(Ei)− dQ
(
∇EiEi

)
= 0, (m+ 1 ≤ i ≤ m+ n).

∇̃dQ(E1)dQ(E1)− dQ
(
∇E1E1

)
= ∇̃E1E1 −∇E1E1

=
[Hessf (E1, E1)

f(f + 1)
+

1

2(f + 1)2

]
grad(f).

∇̃dQ(Ei)dQ(Ei)− dQ
(
∇EiEi

)
= ∇̃EiEi −∇EiEi (2 ≤ i ≤ m)

=
[Hessf (Ei, Ei)

f(f + 1)
− 1

2f(f + 1)

]
grad(f).
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Abstract. Conformal slant Riemannian maps from almost Hermitian manifolds to Rie-

mannian manifolds are introduced. We give a non-trivial example of proper conformal

slant Riemannian maps, obtain conditions for certain distributions to be integrable and find

totally geodesicity conditions for leaves of distributions. We adjust the notion of plurihar-

monicity by considering distributions on the total manifold of a conformal slant Riemannian

map, and get conditions for such maps to be horizontally homothetic maps.
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1. Introduction

The concept of Riemannian submersion was introduced by Gray [13] and O’Neill [19].

Then, this notion was widely studied [10] and new kinds of Riemannian submersions such as

invariant, anti-invariant and slant submersion were introduced [26]. Let F be a Riemannian

submersion (respectively, horizontally conformal submersion, m > n) from (Mm, gM , J) an

almost Hermitian manifold to (Nn, gN ) a Riemannian manifold. If the angle θ(U) between

the space (kerF∗p) and JU is a constant for any non-zero vector field U ∈ Γ(kerF∗p); p ∈ M ,

i.e., it is independent from the choice of the tangent vector field U in (kerF∗p) and choice

of the point p ∈ M , then we say that F is a slant submersion (respectively, conformal slant

submersion) [5, 14, 22].
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The notions of isometric immersions and Riemannian submersions are generalized by Rie-

mannian maps between Riemannian manifolds [10, 11, 13, 19]. Let F : (M1, g1) −→ (M2, g2)

be a smooth map between Riemannian manifolds such that 0 < rankF < min{dim(M1), dim

(M2)}. So, the tangent bundle TM1 of M1 has the sequent decomposition:

TM1 = kerF∗ ⊕ (kerF∗)
⊥.

Because of rankF < min{dim(M1), dim(M2)}, we always have (rangeF∗)
⊥. Consequently,

the tangent bundle TM2 of M2 has the sequent decomposition:

TM2 = (rangeF∗)⊕ (rangeF∗)
⊥.

Hence, a smooth map F : (Mm
1 , g1) −→ (Mm

2 , g2) is called Riemannian map at p1 ∈ M1 if

the horizontal restriction F h
∗p1 : (kerF∗p1)

⊥ −→ (rangeF∗) is a linear isometry. Therefore a

Riemannian map provides the equation

g1(E,G) = g2(F∗(E), F∗(G)) (1.1)

for E,G ∈ Γ((kerF∗)
⊥). Isometric immersions and Riemannian submersions are particular

Riemannian maps with kerF∗ = {0} and (rangeF∗)
⊥ = {0}, respectively, [11]. As an another

generalization of Riemannian submersions defined and studied independently horizontally

conformal submersions [12, 15]. By following these studies and B. S. ahin’s papers including

anti-invariant Riemannian, semi-invariant, slant submersions (see also [20]) and conformal

anti-invariant [3], conformal slant [7], conformal semi-invariant [4] and conformal semi-slant

submersions [2] have appeared in the literature. At the same time, the notion of slant

submanifolds was introduced by Chen [9]. Inspiring from this notion, as a general map of

Hermitian, anti-invariant and slant submersions, slant Riemannian maps were given in [24, 25]

as follows; let F be a Riemannian map from an almost Hermitian manifold (M, gM , J) to a

Riemannian manifold (N, gN ). If the angle θ(U) is a constant between JU and the space

kerF∗ for any non-zero vector field U ∈ Γ(kerF∗); i.e., it is independent from the choice of the

tangent U in kerF∗ and choice of the point p ∈ M , then we say that F is a slant Riemannian

map [24, 25]. On the other hand, we say that F : (Mm, gM ) −→ (Nn, gN ) is a conformal

Riemannian map at p ∈ M if 0 < rankF∗p ≤ min{m,n} and F∗p maps the horizontal space

(kerF∗p)
⊥) conformally onto range(F∗p), i.e., there exist a number λ2(p) ̸= 0 such that

gN (F∗p(E), F∗p(G)) = λ2(p)gM (E,G)
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for E,G ∈ Γ((kerF∗p)
⊥). Also F is said to be conformal Riemannian if F is conformal

Riemannian at each p ∈ M [21]. Conformal Riemannian maps have many application areas,

some of them are computer vision [16], geometric modelling [29] and medical imaging [30].

In a previous paper, the second author and Akyol have studied conformal slant Riemannian

maps from a Riemannian manifold to a Kaehler manifold and they have studied the geometry

determined by the existence of these maps [5].

In this paper, we present conformal slant Riemannian maps from almost Hermitian man-

ifolds to Riemannian manifolds, investigate geometric properties of the base manifold and

the total manifold by the existence of such maps and give examples. We also obtain certain

geodesicity conditions for conformal slant Riemannian maps. Moreover, we obtain several

conditions for conformal slant Riemannian maps to be horizontally homothetic maps by using

the adapted version of the notion of pluri-harmonic maps.

2. Preliminaries

In this section, some definitions and useful results which will be used at this paper for con-

formal slant Riemannian maps are given. Let (M, gM ) and (N, gN ) be Riemannian manifolds

and suppose that F : M −→ N is a smooth map between them. The second fundamental

form of F is given by

(∇F∗)(X,Y ) =
N

∇F
XF∗(Y )− F∗(

M
∇XY ) (2.2)

for X,Y ∈ Γ(TM). We know that (∇F∗) is symmetric [17]. Here,
N

∇F is pull-back connection

of
N
∇ on N along F .

Let F be a Riemannian map from a Riemannian manifold (Mm, gM ) to a Riemannian

manifold (Nn, gN ). We characterize T and A as

AXY = h
M
∇hXvY + v

M
∇hXhY, (2.3)

TXY = h
M
∇vXvY + v

M
∇vXhY, (2.4)

for X,Y ∈ Γ(TM), where
M
∇ is the Levi-Civita connection of gM . Actually, we could see

that these are O’Neill’s tensor fields for Riemannian submersions [19]. TX and AX are skew-

symmetric operators and reversing the vertical and the horizontal distributions on (Γ(TM), g)

for any X ∈ Γ(TM). Also, it can be seen easily that T is vertical, TX = TvX , and A is

horizontal, AX = AhX . We should know that T is symmetric on the vertical distribution
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[10, 19]. Following these, from (2.3) and (2.4) we have

M
∇UV = TUV + ∇̂UV, (2.5)

M
∇UE = h

M
∇UE + TUE, (2.6)

M
∇EV = AEV + v

M
∇EV, (2.7)

M
∇EG = h

M
∇EG+AEG (2.8)

for E,G ∈ Γ((ker F∗)
⊥) and U, V ∈ Γ(kerF∗), where ∇̂UV = v

M
∇UV [10].

A vector field on M is called a projectable vector field if it is related to a vector field on

N . Thus, we say a vector field is basic on M if it is both a horizontal and a projectable

vector field. From now on, when we mention a horizontal vector field, we always consider a

basic vector field [8].

On the other hand, let F be a conformal Riemannian map between Riemannian manifolds

(Mm, gM ) and (Nn, gN ). Then, we have

(∇F∗)(E,G) |rangeF∗ = E(lnλ)F∗(G) +G(lnλ)F∗(E)

− gM (E,G)F∗(grad(lnλ)), (2.9)

where E,G ∈ Γ((kerF∗)
⊥) [6, 21]. Therefore from (2.9), we obtain

N

∇F
EF∗(G) as

N

∇F
EF∗(G) = F∗(h

M
∇EG) + E(lnλ)F∗(G) +G(lnλ)F∗(E)

− gM (E,G)F∗(grad(lnλ)) + (∇F∗)
⊥(E,G) (2.10)

where (∇F∗)
⊥(E,G) is the component of (∇F∗)(E,G) on (rangeF∗)

⊥ for E,G ∈ Γ((kerF∗)
⊥)

[27, 28].

Finally, we recall the following notion. A map F from a complex manifold (M, gM , J) to

a Riemannian manifold (N, gN ) is a pluriharmonic map if F provides the following equation

(∇F∗)(X,Y ) + (∇F∗)(JX, JY ) = 0 (2.11)

for X,Y ∈ Γ(TM) [18].

3. Conformal Slant Riemannian maps

In this section we are going to introduce conformal slant Riemannian maps as a gen-

eralization of slant Riemannian maps and conformal slant submersions, present examples

and examine the geometry of source manifolds, target manifolds and maps themselves. We

present the sequent definition.
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Definition 3.1. Let F : (M, gM , JM ) −→ (N, gN ) be a conformal Riemannian map from

an almost Hermitian manifold (M, gM , JM ) to a Riemannian manifold (N, gN ) . If for any

non-zero vector X ∈ Γ(kerF∗) at a point p ∈ M ; the angle θ(X) between the space kerF∗ and

JMX is a constant, i.e. it is independent of the choice of the tangent vector X ∈ Γ(kerF∗)

and choice of the point p ∈ M , then we say that F is a conformal slant Riemannian map. In

this situation, the angle θ is called the slant angle of the conformal slant Riemannian map.

We say that a conformal slant Riemannian map is proper if F is not a conformal invari-

ant and a conformal anti-invariant Riemannian map. The sequent example is for a proper

conformal slant Riemannian map.

Example 3.1. Let F : (R4, g4, J) −→ (R4, g4) be a map from a Kaehlerian manifold

(R4, g4, J) to a Riemannian manifold (R4, g4) defined by

(ex2 sinx4, e
x2 cosx4,−ex2 sinx4,−ex2 cosx4).

Then, F is a conformal Riemannian map with λ = ex2
√
2 and rankF = 2. One can easily

see that F is a proper conformal slant Riemannian map with the slant angle θ = α via

Jα = cosα(−c,−d, a, b) + sinα(−b, a, d,−c), 0 < α ≤ π
2 .

Let F be a conformal slant Riemannian map from a Kaehler manifold (M, gM , J) to a

Riemannian manifold (N, gN ). Then for V ∈ Γ(kerF∗), we write

JV = ϕV + ωV, (3.12)

where ϕV ∈ Γ(kerF∗) and ωV ∈ Γ((kerF∗)
⊥). Also for X ∈ Γ((kerF∗)

⊥), we write

JX = BX + CX, (3.13)

where BX ∈ Γ(kerF∗) and CX ∈ Γ((kerF∗)
⊥). We have covariant derivatives of ϕ and ω:

(
M
∇Uω)V = h

M
∇UωV − ω∇̂UV, (3.14)

(
M
∇Uϕ)V = ∇̂UϕV − ϕ∇̂UV (3.15)

for any U, V ∈ Γ(kerF∗).

We give the following result by using equations (2.5), (2.6), (3.12), (3.13) and covariant

derivatives of ϕ and ω.
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Lemma 3.1. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). Then F is a conformal

slant Riemannian map, we get

h
M
∇UωV − ω∇̂UV = CTUV − TUϕV,

∇̂UϕV − ϕ∇̂UV = BTUV − TUωV

for any U, V ∈ Γ(kerF∗).

Now, we present the following characterization for conformal slant Riemannian maps.

Theorem 3.1. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). Then F is a conformal

slant Riemannian map if and only if there exists a constant λ ∈ [−1, 0] such that

ϕ2U = λU

for U ∈ Γ(kerF∗). If F is a conformal slant Riemannian map, then λ = − cos2 θ.

Proof. For U ∈ Γ(kerF∗) we have cos θ = ∥ϕU∥
∥JU∥ . Since M is a Kaehler manifold, we

get

gM (ϕ2U,U) = −gM (ϕU, ϕU) = − cos2 θgM (U,U).

Hence, we have ϕ2U = λU . Conversely, suppose that ϕ2U = λU for ∀U ∈ Γ(kerF∗) with

λ ∈ [−1, 0]. Hence, we obtain

cos θ =
gM (JU, ϕU)

∥JU∥∥ϕU∥
= −λ

∥JU∥
∥ϕU∥

. (3.16)

Using cos θ = ∥ϕU∥
∥JU∥ in (3.16) we get λ = − cos2 θ.

From (3.12) and Theorem 3.1. we have the next result.

Theorem 3.2. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ) with the slant angle θ.

Then, we have

gM (ϕU, ϕV ) = cos2 θgM (U, V ) (3.17)

gM (ωU, ωV ) = sin2 θgM (U, V ) (3.18)

for any U, V ∈ Γ(kerF∗).
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Let F be a conformal slant Riemannian map from an almost Hermitian manifold (M, gM , J)

onto a Riemannian manifold (N, gN ) with the slant angle θ; then we say that ω is parallel

with respect to
M
∇ on kerF∗ if its covariant derivative according to

M
∇ vanishes, i.e.

(
M
∇Uω)V = 0 (3.19)

for U, V ∈ Γ(kerF∗).

Theorem 3.3. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). If ω is parallel according

to
M
∇ on kerF∗, then we have

TϕUϕU = −cos2θTUU (3.20)

for U ∈ Γ(kerF∗).

Proof. If ω is parallel according to
M
∇ on kerF∗, we obtain using (3.14) and Lemma

3.1. for U, V ∈ Γ(kerF∗)

CTUV = TUϕV. (3.21)

Now, changing roles of U and V in (3.21) we get

CTV U = TV ϕU. (3.22)

Because vertical vector field T is symmetric, from (3.21) and (3.22) we get

TUϕV = TV ϕU. (3.23)

Since ϕ2V = λV and for V = ϕU in (3.23) we obtain

− cos2 θTUU = TϕUϕU,

which gives the assertion.

Theorem 3.4. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). Then, two of the below

assertions imply the third assertion,

i- The horizontal distribution (kerF∗)
⊥ is integrable,

ii- X(lnλ)gM (Y, ωϕU) = Y (lnλ)gM (X,ωϕU),

iii- gN (F∗(Ch
M
∇XωU + ωAXωU), F∗(Y )) + gN (

N

∇F
XF∗(ωϕU), F∗(Y ))

= gN (F∗(Ch
M
∇Y ωU + ωAY ωU), F∗(X)) + gN (

N

∇F
Y F∗(ωϕU), F∗(X))
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for X,Y ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗).

Proof. Now, for X,Y ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗), using (2.8) and (3.12), we

obtain

gM ([X,Y ], U) = gM (
M
∇XJϕU, Y ) + gM (JAXωU + Jh

M
∇XωU, Y )

− gM (
M
∇Y JϕU,X)− gM (JAY ωU + Jh

M
∇Y ωU,X).

Since F is a conformal map, from Theorem 3.1., (2.8) and (3.13) we get

gM ([X,Y ], U) = cos2θgM ([X,Y ], U) +
1

λ2
{gN (F∗(h

M
∇XωϕU), F∗(Y ))

+ gN (F∗(ωAXωU), F∗(Y )) + gN (F∗(Ch
M
∇XωU), F∗(Y ))

− gN (F∗(h
M
∇Y ωϕU), F∗(X))− gN (F∗(ωAY ωU), F∗(X))

− gN (F∗(Ch
M
∇Y ωU), F∗(X))}.

Now, from (2.2) and (2.9) we have

sin2θgM ([X,Y ], U) =
1

λ2
{gN (F∗(Ch

M
∇XωU + ωAXωU), F∗(Y ))

− gN (F∗(Ch
M
∇Y ωU + ωAY ωU), F∗(X))

+ gN (F∗(
N

∇F
XF∗(ωϕU), F∗(Y ))

− gN (F∗(
N

∇F
Y F∗(ωϕU), F∗(X))

− X(lnλ)gN (F∗(ωϕU), F∗(Y ))

− ωϕU(lnλ)gN (F∗(X), F∗(Y ))

+ gM (X,ωϕU)gN (F∗(grad(lnλ)), F∗(Y ))

− gN ((∇F∗)
⊥(X,ωϕU), F∗(Y ))

+ Y (lnλ)gN (F∗(ωϕU), F∗(X))

+ ωϕU(lnλ)gN (F∗(Y ), F∗(X))

− gM (Y, ωϕU)gN (F∗(grad(lnλ)), F∗(X))

+ gN ((∇F∗)
⊥(Y, ωϕU), F∗(X))}.
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Using conformality of F we obtain

sin2θgM ([X,Y ], U) =
1

λ2
{gN (F∗(Ch

M
∇XωU + ωAXωU), F∗(Y ))

− gN (F∗(Ch
M
∇Y ωU + ωAY ωU), F∗(X))

+ gN (F∗(
N

∇F
XF∗(ωϕU), F∗(Y ))

− gN (F∗(
N

∇F
Y F∗(ωϕU), F∗(X))}

+ 2Y (lnλ)gM (X,ωϕU)− 2X(lnλ)gM (Y, ωϕU).

The proof is completed from the above equation.

Now we will examine the geometry of leaves of the vertical distribution.

Theorem 3.5. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). Then, the vertical distri-

bution kerF∗ defines a totally geodesic foliation on M if and only if

gN ((∇F∗)(U, JX), F∗(ωV )) = gN ((∇F∗)(U,X), F∗(ωϕV ))

for X ∈ Γ((kerF∗)
⊥) and U, V ∈ Γ(kerF∗).

Proof. Because of M is a Kaehler manifold and from Theorem 3.1., (3.12) and (3.13),

we have

gM (
M
∇UV,X) = −cos2θgM (

M
∇UX,V )− gM (

M
∇UX,ωϕV )

− gM (
M
∇UBX,ωV )− gM (

M
∇UCX,ωV ).

Hence we have

sin2θgM (
M
∇UV,X) = −gM (h

M
∇UX,ωϕV )− gM (TUBX,ωV )

− gM (h
M
∇UCX,ωV ).

Now, from (2.2) we get

sin2θgM (
M
∇UV,X) =

1

λ2
{−gN (F∗(h

M
∇UX), F∗(ωϕV ))

− gN (F∗(TUBX), F∗(ωV ))

− gN (F∗(h
M
∇UCX), F∗(ωV ))}

=
1

λ2
{gN ((∇F∗)(U, JX), F∗(ωV ))

− gN ((∇F∗)(U,X), F∗(ωϕV ))}.
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This completes the proof.

Now, we examine the geometry of the horizontal distribution.

Theorem 3.6. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). Then, two of the below

assertions imply the third assertion,

i- the horizontal distribution (kerF∗)
⊥ defines a totally geodesic foliation on M ,

ii- F is a horizontally homothetic map,

iii- gM (AXY,U) = 1
λ2 gN (

N

∇F
XF∗(Y ), F∗(ωϕU + CωU))

for X,Y ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗).

Proof. Now, from (2.8), (3.17) and (3.18) we have

gM (
M
∇XY,U) = gM (JAXY + Jh

M
∇XY, ϕU)

+ gM (JAXY + Jh
M
∇XY, ωU)

= cos2θgM (AXY,U)− gM (h
M
∇XY, JϕU)

+ sin2θgM (AXY,U)− gM (h
M
∇XY, JωU)

= gM (AXY, U)− gM (h
M
∇XY, ωϕU)− gM (h

M
∇XY,CϕU)

for X,Y ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗). From (2.2) and (2.9), we obtain

gM (
M
∇XY,U) = gM (AXY,U)− 1

λ2
gN (

N

∇F
XF∗(Y ), F∗(ωϕU + CωU))

+ X(lnλ)gM (Y, ωϕU) + Y (lnλ)gM (X,ωϕU)

− ωϕU(lnλ)gM (X,Y ) +X(lnλ)gM (Y,CωU)

+ Y (lnλ)gM (X,CωU)− CωU(lnλ)gM (X,Y ). (3.24)

If the horizontal distribution (kerF∗)
⊥ defines a totally geodesic foliation on M for X,Y ∈

Γ((kerF∗)
⊥), U ∈ Γ(kerF∗) and gM (AXY, U) = 1

λ2 gN (
N

∇F
XF∗(Y ), F∗(ωϕU +CωU)), we show

that the map F is a horizontally homothetic map. If (i) and (iii) are satisfied, then we have

0 = X(lnλ)gM (Y, ωϕU) + Y (lnλ)gM (X,ωϕU)

− ωϕU(lnλ)gM (X,Y ) +X(lnλ)gM (Y,CωU)

+ Y (lnλ)gM (X,CωU)− CωU(lnλ)gM (X,Y ) (3.25)
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for X,Y ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗). Suppose that X = ωϕU , Y = CωU in equation

(3.25), we have

CωU(lnλ)gM (ωϕU, ωϕU) + ωϕU(lnλ)gM (CωU,CωU) = 0. (3.26)

If CωU(lnλ) = 0 from (3.26) we get ωϕU(lnλ)gM (CωU,CωU) = 0 for CωU ∈ Γ(C(kerF∗)
⊥).

Therefore λ is a constant on Γ(ω(kerF∗)). At the same time, if ωϕU(lnλ) = 0 we derive

CωU(lnλ)gM (ωϕU, ωϕU) = 0 from (3.26) for ωϕU ∈ Γ(ω(kerF∗)). Thus λ is a constant on

Γ(C(kerF∗)
⊥). So, F is a horizontally homothetic map. The rest of the proof is clear.

Now we are going to slightly modify the notion of pluriharmonic map and use this new

notion to obtain certain conditions for conformal slant Riemannian maps to be horizontally

homothetic map. We say that a conformal slant Riemannian map F from a complex manifold

(M, gM , J) to a Riemannian manifold (N, gN ) is kerF∗− (respectively, (kerF∗)
⊥, ω(kerF∗),

µ) pluriharmonic map if F satisfies the following equation

(∇F∗)(U, V ) + (∇F∗)(JU, JV ) = 0

for U, V ∈ Γ(kerF∗) (respectively, (kerF∗)
⊥, ω(kerF∗), µ) [27, 28].

Theorem 3.7. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from a

Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). If F is a kerF∗−plurihar-

monic map, then one of the below assertions imply the second assertion,

i- F is a horizontally homothetic map,

ii- F∗(AωUϕV +AωV ϕU) = F∗(h
M
∇UωϕV + ωTUωV + Ch

M
∇UωV )

and (∇F∗)
⊥(ωU, ωV ) = 0

for U, V ∈ Γ(kerF∗).

Proof. From the definition of kerF∗−pluriharmonic map, (2.2) and (2.10), we have

0 = F∗(
M
∇UJϕV + J

M
∇UωV )− F∗(

M
∇ϕUϕV )− F∗(

M
∇ωV ϕU)

− F∗(
M
∇ωUϕV ) + (∇F∗)

⊥(ωU, ωV ) + ωU(lnλ)F∗(ωV )

+ ωV (lnλ)F∗(ωU)− gM (ωU, ωV )F∗(grad(lnλ)).
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Now, using (2.6), (3.20) and Theorem 3.1., we get

0 = F∗(h
M
∇UωϕV + ωTUωV + Ch

M
∇UωV −AωUϕV −AωV ϕU)

+ (∇F∗)
⊥(ωU, ωV ) + ωU(lnλ)F∗(ωV ) + ωV (lnλ)F∗(ωU)

− gM (ωU, ωV )F∗(grad(lnλ)). (3.27)

If (i) is provided we have from (3.27)

ωU(lnλ)F∗(ωV ) + ωV (lnλ)F∗(ωU)− gM (ωU, ωV )F∗(grad(lnλ)) = 0

for U, V ∈ Γ(kerF∗). So one can see second assertion clearly. Now if (ii) is satisfied in (3.27)

we have F∗(AωUϕV +AωV ϕU) = F∗(h
M
∇UωϕV +ωTUωV +Ch

M
∇UωV ) and (∇F∗)

⊥(ωU, ωV ) =

0 for U, V ∈ Γ(kerF∗), respectively. Thus, by (3.27) we get

0 = ωU(lnλ)F∗(ωV ) + ωV (lnλ)F∗(ωU)

− gM (ωU, ωV )F∗(grad(lnλ)). (3.28)

For ωU ∈ Γ(ω(kerF∗)) from (3.28) we get 0 = λ2ωV (lnλ)gM (ωU, ωU), which implies that

ω(kerF∗)(grad(lnλ)) = 0. At the same time, from (3.28) if we take ωU = ωV and for

X ∈ Γ(C(kerF∗)
⊥) we get

0 = 2λ2ωU(lnλ)gM (X,ωU)− λ2X(lnλ)gM (ωU, ωU). (3.29)

Because of λ is a constant on ω(kerF∗) we have 2λ
2ωU(lnλ)gM (X,ωU) = 0. Thus, by (3.29)

we get λ2X(lnλ)gM (ωU, ωU) = 0, which implies that (C(kerF∗)
⊥) (grad(lnλ)) = 0. Thus,

H(grad(lnλ)) = 0. It can be seen from here that F is a horizontally homothetic map.

Theorem 3.8. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). If F is a (kerF∗)
⊥−

pluriharmonic map, then F is a horizontally homothetic map if and only if the following

conditions

(∇F∗)
⊥(X,Y ) + (∇F∗)

⊥(CX,CY ) = 0

and

F∗(TBXBY +ACY BX +ACXBY ) = 0,

are satisfied for X,Y ∈ Γ((kerF∗)
⊥).
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Proof. From the definition of a (kerF∗)
⊥-pluriharmonic map, (2.2) and (2.9), we

have

0 = (∇F∗)
⊥(X,Y ) +X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)

− gM (X,Y )F∗(grad(lnλ)) + (∇F∗)
⊥(CX,CY ) + CX(lnλ)F∗(CY )

+ CY (lnλ)F∗(CX)− gM (CX,CY )F∗(grad(lnλ))

− F∗(
M
∇BXBY )− F∗(

M
∇CY BX)− F∗(

M
∇CXBY )

or

0 = (∇F∗)
⊥(X,Y ) + (∇F∗)

⊥(CX,CY ) +X(lnλ)F∗(Y )

+ Y (lnλ)F∗(X)− gM (X,Y )F∗(grad(lnλ)) + CX(lnλ)F∗(CY )

+ CY (lnλ)F∗(CX)− gM (CX,CY )F∗(grad(lnλ))

− F∗(TBXBY +ACY BX +ACXBY ) (3.30)

for X,Y ∈ Γ((kerF∗)
⊥). If F is a horizontally homothetic map we have from equation (3.30)

0 = X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)

− gM (X,Y )F∗(grad(lnλ)) + CX(lnλ)F∗(CY )

+ CY (lnλ)F∗(CX)− gM (CX,CY )F∗(grad(lnλ))

for X,Y ∈ Γ((kerF∗)
⊥). Since F is a horizontally homothetic map from (3.30) we obtain

(∇F∗)
⊥(X,Y )+(∇F∗)

⊥(CX,CY ) = 0 and F∗(TBXBY +ACY BX+ACXBY ) = 0 for X,Y ∈

Γ((kerF∗)
⊥). Now suppose that (∇F∗)

⊥(X,Y ) + (∇F∗)
⊥(CX,CY ) = 0 and F∗(TBXBY +

ACY BX +ACXBY ) = 0 in (3.30) for X,Y ∈ Γ((kerF∗)
⊥), respectively. Thus, by (3.30) we

get

0 = X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)

− gM (X,Y )F∗(grad(lnλ)) + CX(lnλ)F∗(CY )

+ CY (lnλ)F∗(CX)− gM (CX,CY )F∗(grad(lnλ)). (3.31)

For X = CX, Y = CY and CY ∈ Γ(C(kerF∗)
⊥) in (3.31), we get 0 = 2λ2CX(lnλ)

gM (CY,CY ), which implies that (C(kerF∗)
⊥)(grad(lnλ)) = 0. At the same time, from

(3.31) if we take X = Y = CX and ωU ∈ Γ(ω(kerF∗)), we get

0 = 4λ2CX(lnλ)gM (CX,ωU)− 2λ2ωU(lnλ)gM (CX,CX). (3.32)
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Since λ is a constant on C(kerF∗)
⊥ we have 4λ2CX(lnλ)gM (CX,ωU) = 0. Thus, by (3.32)

we get −2λ2ωU(lnλ)gM (CX,CX) = 0, which implies that (ω(kerF∗))(grad(lnλ)) = 0.

Thus, H(grad(lnλ)) = 0. It can be seen from here that F is a horizontally homothetic map.

We say that a conformal slant Riemannian map F from a complex manifold (M, gM , J) to

a Riemannian manifold (N, gN ) is {(kerF∗)
⊥ − (kerF∗)}− pluriharmonic map if F satisfies

the following equation

(∇F∗)(X,V ) + (∇F∗)(JX, JV ) = 0

for X ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗) [27, 28].

Theorem 3.9. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). If F is a {(kerF∗)
⊥ −

(kerF∗)}−pluriharmonic map, then two of the below assertions imply the third assertion,

i- F is a horizontally homothetic map,

ii- F∗(TBXωU +AωUBX +ACXϕU + h
M
∇XωϕU) = F∗(ωAXωU + Ch

M
∇XωU)

and (∇F∗)
⊥(CX,ωU) = 0,

iii- The vertical distribution kerF∗ is parallel along the horizontal distribution (kerF∗)
⊥

on M ,

for X ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗).

Proof. From the definition of {(kerF∗)
⊥ − (kerF∗)}−pluriharmonic map we get

0 = (∇F∗)(X,U) + (∇F∗)(JX, JU)

for X ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗). Using symmetry property of second fundamental

form of a map by (2.2), (3.12) and (3.13) we get

0 = −F∗(
M
∇XU) + (∇F∗)(BX,ϕU) + (∇F∗)(ωU,BX)

+ (∇F∗)(CX,ϕU) + (∇F∗)(CX,ωU).

From (2.7), (2.8) and (2.10) we get

0 = F∗(
M
∇XJϕU) + F∗(JAXωU + Jh

M
∇XωU)− F∗(TBXϕU)

− F∗(AωUBX)− F∗(ACXϕU) + (∇F∗)
⊥(CX,ωU)

+ CX(lnλ)F∗(ωU) + ωU(lnλ)F∗(CX)

− gM (CX,ωU)F∗(grad(lnλ)).



92 Ş. YANAN AND B. ŞAHİN

Now, from Theorem 3.1. , we have

cos2θF∗(
M
∇XU) = F∗(h

M
∇XωϕU + ωAXωU + Ch

M
∇XωU)

− F∗(TBXϕU +AωUBX +ACXϕU)

+ (∇F∗)
⊥(CX,ωU)

+ CX(lnλ)F∗(ωU) + ωU(lnλ)F∗(CX)

− gM (CX,ωU)F∗(grad(lnλ)) (3.33)

for X ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗). If (i) and (ii) are satisfied in (3.33) we have

0 = CX(lnλ)F∗(ωU) + ωU(lnλ)F∗(CX)− gM (CX,ωU)F∗(grad(lnλ)),

(∇F∗)
⊥(CX,ωU) = 0

and

F∗(TBXωU +AωUBX +ACXϕU + h
M
∇XωϕU) = F∗(ωAXωU + Ch

M
∇XωU),

respectively. Then we get F∗(
M
∇XU) = 0. Therefore the vertical distribution kerF∗ is parallel

along the horizontal distribution (kerF∗)
⊥ on M for X ∈ Γ((kerF∗)

⊥) and U ∈ Γ(kerF∗).

Suppose that (i) and (iii) are satisfied in (3.33), one can see clearly that (ii) is satisfies.

Assume that (ii) and (iii) are satisfied in (3.33) we get

0 = CX(lnλ)F∗(ωU) + ωU(lnλ)F∗(CX)

− gM (CX,ωU)F∗(grad(lnλ)). (3.34)

For CX ∈ Γ(C(kerF∗)
⊥) in (3.34) we get 0 = λ2ωU(lnλ)gM (CX,CX), which implies that

(ω(kerF∗))(grad(lnλ)) = 0. At the same time, from (3.34) for ωU ∈ Γ(ω(kerF∗)) we

get 0 = λ2CX(lnλ)gM (ωU, ωU), which implies that (C(kerF∗)
⊥) (grad(lnλ)) = 0. Thus,

H(grad(lnλ)) = 0. It can be seen from here that F is a horizontally homothetic map.

Theorem 3.10. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). If F is a ω(kerF∗)−

pluriharmonic map, then F is a horizontally homothetic map if and only if the following

conditions

(∇F∗)
⊥(Z, Y ) + (∇F∗)

⊥(CZ,CY ) = 0

and

F∗(TBZBY +ACZBY +ACY BZ) = 0
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are satisfied for Z, Y ∈ Γ(ω(kerF∗)).

Proof. From the definition of ω(kerF∗)− pluriharmonic map we have

0 = (∇F∗)(Z, Y ) + (∇F∗)(JZ, JY )

for Z, Y ∈ Γ(ω(kerF∗)). From (2.2), (2.9) and (3.13) we get

0 = (∇F∗)
⊥(Z, Y ) + Z(lnλ)F∗(Y ) + Y (lnλ)F∗(Z)

− gM (Z, Y )F∗(grad(lnλ))− F∗(
M
∇BZBY )− F∗(

M
∇CZBY )

− F∗(
M
∇CY BZ) + (∇F∗)

⊥(CY,CZ) + CZ(lnλ)F∗(CY )

+ CY (lnλ)F∗(CZ)− gM (CZ,CY )F∗(grad(lnλ)).

Using (2.5) and (2.7) we get

0 = (∇F∗)
⊥(Z, Y ) + (∇F∗)

⊥(CY,CZ) + Z(lnλ)F∗(Y )

+ Y (lnλ)F∗(Z)− gM (Z, Y )F∗(grad(lnλ)) + CZ(lnλ)F∗(CY )

+ CY (lnλ)F∗(CZ)− gM (CZ,CY )F∗(grad(lnλ))

− F∗(TBZBY )− F∗(ACZBY )− F∗(ACY BZ). (3.35)

If F is a horizontally homothetic map we have from (3.35)

0 = Z(lnλ)F∗(Y ) + Y (lnλ)F∗(Z)− gM (Z, Y )F∗(grad(lnλ))

+ CZ(lnλ)F∗(CY ) + CY (lnλ)F∗(CZ)− gM (CZ,CY )F∗(grad(lnλ))

for Z, Y ∈ Γ(ω(kerF∗)). Since F is a horizontally homothetic map from (3.35) we obtain

(∇F∗)
⊥(Z, Y )+ (∇F∗)

⊥(CZ,CY ) = 0 and F∗(TBZBY +ACZBY +ACY BZ) = 0 for Z, Y ∈

Γ(ω(kerF∗)). Suppose that

(∇F∗)
⊥(Z, Y ) + (∇F∗)

⊥(CZ,CY ) = 0

and F∗(TBZBY +ACZBY +ACY BZ) = 0 in (3.35) for Z, Y ∈ Γ(ω(kerF∗)). Thus, by (3.35)

we get

0 = Z(lnλ)F∗(Y ) + Y (lnλ)F∗(Z)− gM (Z, Y )F∗(grad(lnλ))

+ CZ(lnλ)F∗(CY ) + CY (lnλ)F∗(CZ)

− gM (CZ,CY )F∗(grad(lnλ)). (3.36)
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We know gM (Y,CY ) = gM (Y, JY − BY ) = gM (Y, JY ) = 0. For Z = Y and CY ∈

Γ(C(kerF∗)
⊥) in (3.36) we get 0 = −λ2CY (lnλ){gM (Y, Y ) − gM (CY,CY )} which im-

plies that (C(kerF∗)
⊥)(grad(lnλ)) = 0. At the same time, from (3.36) if we take Z = Y

and Y ∈ Γ(ω(kerF∗)) we get 0 = λ2Y (lnλ){gM (Y, Y ) − gM (CY,CY )} which implies that

(ω(kerF∗))(grad(lnλ)) = 0. Thus H(grad(lnλ)) = 0. It can be seen from here that F is a

horizontally homothetic map.

We say that a conformal slant Riemannian map F from a complex manifold (M, gM , J)

to a Riemannian manifold (N, gN ) is (µ − ω(kerF∗))−pluriharmonic map if F satisfies the

following equation

(∇F∗)(X,Y ) + (∇F∗)(JX, JY ) = 0

for X ∈ Γ(µ) and Y ∈ Γ(ω(kerF∗)).

Theorem 3.11. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map

from a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). If F is a (µ −

ω(kerF∗))−pluriharmonic map, then F is a horizontally homothetic map if and only if the

following conditions

(∇F∗)
⊥(X,Y ) + (∇F∗)

⊥(JX,CY ) = 0

and

F∗(AJXBY ) = 0

are satisfied for X ∈ Γ(µ) and Y ∈ Γ(ω(kerF∗)).

Proof. From the definition of (µ− ω(kerF∗))− pluriharmonic map, (2.2), (2.10) and

(3.13) we have

0 = (∇F∗)(X,Y ) + (∇F∗)(JX, JY )

0 = (∇F∗)
⊥(X,Y ) +X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)

− gM (X,Y )F∗(grad(lnλ)) + (∇F∗)(JX,BY ) + (∇F∗)(JX,CY ).

Since the distributions µ and ω(kerF∗) are orthogonal to each other, we have gM (X,Y ) = 0.

So, we obtain

0 = (∇F∗)
⊥(X,Y ) +X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)

− F∗(AJXBY ) + (∇F∗)
⊥(JX,CY ) + JX(lnλ)F∗(CY )

+ CY (lnλ)F∗(JX)− gM (JX,CY )F∗(grad(lnλ)) (3.37)
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for X ∈ Γ(µ) and Y ∈ Γ(ω(kerF∗)). Suppose that F is a horizontally homothetic map. From

(3.37) we have

0 = X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)

+ JX(lnλ)F∗(CY ) + CY (lnλ)F∗(JX)

− gM (JX,CY )F∗(grad(lnλ)). (3.38)

Since F is a horizontally homothetic map from (3.37) we obtain F∗(AJXBY ) = 0 and

(∇F∗)
⊥(X,Y ) + (∇F∗)

⊥(JX,CY ) = 0 for X ∈ Γ(µ) and Y ∈ Γ(ω(kerF∗)). Suppose

that F∗(AJXBY ) = 0 and (∇F∗)
⊥(X,Y ) + (∇F∗)

⊥(JX,CY ) = 0 for X ∈ Γ(µ) and

Y ∈ Γ(ω(kerF∗)) in (3.37). Using conformality of F for X ∈ Γ(µ) in (3.38) we get

0 = λ2{X(lnλ)gM (Y,X) + Y (lnλ)gM (X,X)

+ JX(lnλ)gM (CY,X) + CY (lnλ)gM (JX,X)

− X(lnλ)gM (JX,CY )}. (3.39)

We know gM (CY,X) = gM (JY,X) = −gM (Y, JX) = 0, gM (JX,CY ) = 0 for X ∈ Γ(µ) and

Y ∈ Γ(ω(kerF∗)) from (3.13). Then we obtain from (3.39) λ2Y (lnλ)gM (X,X) = 0, which

implies that ω(kerF∗)(grad(lnλ)) = 0. For X ∈ Γ(µ) and JX = X in (3.38) we get

0 = λ2{X(lnλ)gM (Y,X) + Y (lnλ)gM (X,X)

+ X(lnλ)gM (CY,X) + CY (lnλ)gM (X,X)

− X(lnλ)gM (X,CY )}. (3.40)

Since λ is a constant on ω(kerF∗) we have Y (lnλ) = 0. We get from (3.40) 0 = λ2CY (lnλ)

gM (X,X) that implies (C(kerF∗)
⊥)(grad(lnλ)) = 0. It means λ is a constant on C(kerF∗)

⊥.

Lastly for Y ∈ Γ(ω(kerF∗)) and JX = X in (3.38) we get

0 = λ2{X(lnλ)gM (Y, Y ) + Y (lnλ)gM (X,Y )

+ X(lnλ)gM (CY, Y ) + CY (lnλ)gM (X,Y )

− Y (lnλ)gM (X,CY )}. (3.41)

We know gM (CY, Y ) = gM (JY, Y ) = 0 from (3.13) for Y ∈ Γ(ω(kerF∗)). Then we ob-

tain from (3.41) 0 = λ2X(lnλ)gM (Y, Y ), which implies that µ(grad(lnλ)) = 0. Thus,

H(grad(lnλ)) = 0. It can be seen from here that F is a horizontally homothetic map.
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Theorem 3.12. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). F is a µ−pluriharmonic

map if and only if λ is a constant on ω(kerF∗).

Proof. From the definition of µ− pluriharmonic map and (2.10), we have

0 = (∇F∗)
⊥(X,Y ) +X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)

− gM (X,Y )F∗(grad(lnλ)) + (∇F∗)
⊥(JX, JY ) + JX(lnλ)F∗(JY )

+ JY (lnλ)F∗(JX)− gM (JX, JY )F∗(grad(lnλ))

for X,Y ∈ Γ(µ). Since gM (X,Y ) = gM (JX, JY ) we obtain

0 = (∇F∗)
⊥(X,Y ) + (∇F∗)

⊥(JX, JY ) +X(lnλ)F∗(Y )

+ Y (lnλ)F∗(X) + JX(lnλ)F∗(JY ) + JY (lnλ)F∗(JX)

− 2gM (X,Y )F∗(grad(lnλ)). (3.42)

Now taking X = Y in (3.42) we get

0 = (∇F∗)
⊥(X,X) + (∇F∗)

⊥(JX, JX)

+ 2X(lnλ)F∗(X) + 2JX(lnλ)F∗(JX)

− 2gM (X,X)F∗(grad(lnλ)). (3.43)

For Z ∈ Γ(ω(kerF∗)) in (3.43) we get

0 = gN ((∇F∗)
⊥(X,X), F∗(Z)) + gN ((∇F∗)

⊥(JX, JX), F∗(Z))

+ 2X(lnλ)gN (F∗(X), F∗(Z)) + 2JX(lnλ)gN (F∗(JX), F∗(Z))

− 2gM (X,X)gN (F∗(grad(lnλ)), F∗(Z)).

Because of F is a conformal map and µ is a invariant distribution we obtain

0 = 2λ2{X(lnλ)gM (X,Z) + JX(lnλ)gM (JX,Z)}

− 2λ2gM (X,X)gM (grad(lnλ), Z)

0 = −2λ2Z(lnλ)gM (X,X). (3.44)

From equation (3.44) we obtain Z(lnλ) = 0, which implies that λ is a constant on ω(kerF∗)

for Z ∈ Γ(ω(kerF∗)). The converse is clear.
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We now give necessary and sufficient conditions for a conformal slant Riemannian map to

be totally geodesic map.

Theorem 3.13. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). Then, F is a totally

geodesic map if and only if the following conditions are satisfied for X,Y, Z ∈ Γ((kerF∗)
⊥)

and U, V ∈ Γ(kerF∗);

i- gN (F∗(Ch
M
∇UωV ) + F∗(ω∇̂UϕV + ωTUωV ), F∗(X)) = 0,

ii- F is a horizontally homothetic map and (∇F∗)
⊥(X,Y ) = 0.

Proof. Now, from (2.2), (2.5), (3.12) and (3.13) we have

(∇F∗)(U, V ) = F∗(JTUϕV + J∇̂UϕV )

+ F∗(ωTUωV + Ch
M
∇UωV ).

Because T is symmetric, we get

(∇F∗)(U, V ) = cos2 θF∗(TV U) + F∗(ω∇̂UϕV )

+ F∗(ωTUωV + Ch
M
∇UωV )

which implies that

sin2 θ(∇F∗)(U, V ) = F∗(ω∇̂UϕV ) + F∗(ωTUωV + Ch
M
∇UωV ) (3.45)

for U, V ∈ Γ(kerF∗). Thus, we obtain from (3.45)

sin2 θgN ((∇F∗)(U, V ), F∗(X)) = gN (F∗(ω∇̂UϕV + ωTUωV ), F∗(X))

+ gN (F∗(Ch
M
∇UωV ), F∗(X)) (3.46)

for X ∈ Γ((kerF∗)
⊥). (i) is satisfied in (3.46). Now, from (2.9) we get

(∇F∗)(X,Y ) = (∇F∗)
⊥(X,Y ) + (∇F∗)

⊤(X,Y )

= (∇F∗)
⊥(X,Y ) +X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)

− gM (X,Y )F∗(grad(lnλ)) (3.47)
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for X,Y ∈ Γ((kerF∗)
⊥). From (3.47) we have

gN ((∇F∗)(X,Y ), F∗(X)) = gN ((∇F∗)
⊥(X,Y ), F∗(X))

+ X(lnλ)gN (F∗(Y ), F∗(X))

+ Y (lnλ)gN (F∗(X), F∗(X))

− gM (X,Y )gN (F∗(grad(lnλ)), F∗(X))

= Y (lnλ)gN (F∗(X), F∗(X))

= λ2Y (lnλ)gM (X,X)

for X ∈ Γ((kerF∗)
⊥). We have 0 = λ2Y (lnλ)gM (X,X) which implies Y (lnλ) = 0. So,

λ is a constant on (kerF∗)
⊥. F is a horizontally homothetic map and from (3.47) we get

(∇F∗)
⊥(X,Y ) = 0. Therefore, (ii) is satisfied. We complete the proof.
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