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EDITORIAL
BAYRAM SAHIN
Dear Readers,
With this new issue, the International Journal of Maps in Mathematics has pub-

lished its rst issue in its 5th year. It is important for a scienti ¢ journal to complete 5
years. It proves that this journal is recognized by the scienti c community and shows that it

is an accepted platform for researchers working on the scope of the journal. We would like
to thank our readers, editors, referees, technical assistants and you, our readers, who have
contributed signi cantly to our journal's fth year. The International Journal of Maps

in Mathematics  will continue to be a quali ed platform for researchers in the research

areas of the journal.
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THE APPROXIMATION OF BIVARIATE GENERALIZED
BERNSTEIN-DURRMEYER TYPE GBS OPERATORS

ECEM ACAR AND AYDIN 1ZGL

Abstract. In the present paper, we introduce the generalized Bernstein-Durrmeyer type
operators and obtain some approximation properties of these operators studied in the space
of continuous functions of two variables on a compact set. The rate of convergence of these
operators are given by using the modulus of continuity. The order of approximation using
Lipschitz function and Peetre's K- functional are given. Further, we introduce Bernstein-
Durrmeyer type GBS (Generalized Boolean Sum) operator by means of Begel continuous
functions which is more extensive than the space of continuous functions. We obtain the
degree of approximation for these operators by using the mixed modulus of smoothness and
mixed K -functional. Finally, we show comparisons by some illustrative graphics in Maple
for the convergence of the operators to some functions.

Keywords : Bernstein-Durrmeyer operators, Modulus of continuity, Peetre's K- functional,
GBS operators, B-continuous function, B-di erentiable function, Mixed modulus of smooth-
ness, Mixed K -functional.

2010 Mathematics Subject Classi cation 1 41A10, 41A25, 41A36, 41A63.

1. Introduction

Let f (x) be a function de ned on the closed interval [Q 1] the expression
X kon x n k
Bnf (X) = Bnp(f;x) = f - K x“(1 Xx) (1.2)
k=0 n
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is called Bernstein polynomial of ordern of the function f (x). The polynomials Bnf (x)
were introduced by S. Bernstein (seel[]5]) to give an especially simple proof of Weierstrass
approximation theorem. The generalizations of Bernstein polynomials[(1.]l) were investigated
in [I5]- [12]. In 1988, [15] the function of two real variables functionf be given over the unit

square
s:[0;1] [O;1]

then the bivariate Bernstein polynomial of degree fi; m), corresponding to the function f , is

de ned by means of the formula

n m

Nk XL )" @y (L2)
nm k j

Bnm (X) = Bam (f;%y) = f
k=0 j =0

There are many investigations devoted to the problem of approximating continuous func-
tions by classical Bernstein polynomials, as well as by two-dimensional Bernstein polynomials
and their generalizations.

In 1967, Durrmeyer [11] introduced the following positive linear operators of the classical
Bernstein operators, which modify with each function f integrable on the interval [0; 1] the
polynomial

Z,

X0
Ma(f(x)=(n+1)  pnk(x) . P (DF (),
k=0

which pok(X) = £ 7 xX(1 x)" k. D. C. Morales and V. Gupta [9] studied two families of
Bernstein-Durrmeyer type operators. The Baskakov Durrmeyer operators were introduced

in 1985 and many properties of such operators were studied comprehensively. Gupta [13]
presented the approximation properties of these operators. In 2007][1] local approximation
properties of a variant of the Bernstein-Durrmeyer operators were given.

In this paper, rstly we introduce bivariate generalized Bernstein-Durrmeyer operators.
We investigate the properties of approximation of generalized Bernstein-Durrmeyer polyno-
mials and the order of approximation using Lipschitz function and Peetre'sK - functional.
Then, we de ne the Generalized Boolean Sum (GBS) operators of generalized Bernstein-

Durrmeyer type and study the degree of approximation in terms of the mixed modulus of

smoothness.
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2. Construction of the Bivariate Generalized Bernstein-Durrmeyer Type

Operators

LetD=[ 1;1] [ L;1], (x;y) 2 D,n;m 2 N and f de ned on the interval C(D). We

de ne the linear positive operators D., (f ; X;y) in the following way:
2,2,

x X |
n+tim+l in(6y) R @u)f (Guddu - (2.3)

Dnm(fixy) = >

k=0 j =0

where
KL OGY) = K" b ()
and

K00= o p @eka 0"

Lemma 2.1. For 8(x;y) 2 D and 8n;m 2 N, Bernstein-Durrmeyer operators (2.3) satisfy

the following equalities:

Dnm(1;xy) =1 (2.4)
2X
Dnm (t;Xy) = X 7
o — 2y
Dn;m(U,X,y)— y m+2
, (6Bn+6)x% 4nx 2 2n

Dn;m(t2+ UZ;X;y):X (n+2)(n+3) + (n+2)(n+3)

(2.5)
5, (6m+6)y? Amy | 2 2m
(m+2)(m+3) (m+2)(m+3)
1202 + 24n + 24 62 +6n
3 3. . —v3 3
D (74 U5 XY) =X sy n+a) X T *2)(n+3)(n+d) <
. 12n + 48 o 12m2 +24m+24
n+2)(n+3)(n+d) Y (m+2(m+3)(m+4)’
. 6M2 +6m . 12m + 48
m+2)(m+3)(m+4) " " (m+2)(m+3)(m+4)
3 2 3 2
D (e utxy) oyt 2O HE0N+1600+120 1:® 160’+4n
’ (n+2)(n+3)(n+4)(n+5) nN+2)(n+3)(n+4)(n+b5)
4nd 1602 +32n ,  20m3+60m2+160m+120
+ X+y y
nN+2)(n+3)(n+4)(n+5) (mM+2)(m+3)(m+4)(m+5)

N 12m3  16m?+4m 2, 4m®  16m2+32m _
M+2)(m+3)(m+A(m+5)°  (m+2(m+3)(m+4)(m+5)"
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From Lemma/[2.], we obtained the following lemma.

Lemma 2.2. If the operator D is de ned by , then for 8(x;y) 2 Dandn;m 2 N
( 2n+6)x?>+4nx+2 2n

2. . —
. ._( 2m+6)y?+4my+2 2m
Dn;m ((u y)zixfy) - (m+2)(m +3) (27)
4. . _ 72n3+852n%2+1916n + 1680 , 24n 3
Prm (U X)X Y) = a2 (n+3)(n+A)(n+5) © * (n*+2)(n+3) "

. 2403 27n? 83 +840 , 4n®  64n2  464n 960
(n+2)(n+3)(n+4)(n+b5) N+2)(n+3)(n+4)(n+b5)

b (U Y )_72m3+852m2+1916m+16804+ 24m ,
nm Y oY) = e ) (m+3)(m+4)(m+5) Y  m+2)(m+3)’
, 24m® 272m’ 83m+840 ,  4m* 64m> 464n 960
M+2)(m+3)(m+a(m+5)°  m+2(m+3)(m+a)(m+5)"

Let C(D) is a continuous functions space on theD =[ 1;1] [ 1;1]. C(D) is a linear

normed space with the norm

Kf Kooy = if (x:y)j:
c® = o TR vy (y))

If fr.m is @ sequence on the spacg (D), for f 2 C(D)

im kfpm fk=0;

nm!l

then it is called uniformly convergence to the functionf .

Lemma 2.3. Letn 2 N, for every xed xg 2 [ 1, 1], there exists a positive constantM 1(x)
such thatDnn (t Xo)*;Xo;Y M1(xo)n 1.
Theorem 2.1. If Th.y is a sequence of linear positive operators satisfying the conditions

n;rlni?il KTn:m (1;X;Y) 1kC(X) =0;

lim KTom ((t X);Xy) ka(X) =0;

nm!'l

n;rﬂr!rll KTnm (U Y)iXY) ka(X) =0;
. 20 2y 2,2 =0:
i Ton (24 UZ6y) 0P+ YY) g =0;

then for any function f 2 C(X), which is bounded inR? and X is a compact set,

n;rlrir!rl1 KTom (f5xy)  f (X;y)kC(X) =0:
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In the following theorem we show that the linear positive operator D.,, convergences to

f uniformly with the help of Theorem P.1] given by Volkov [18].

Theorem 2.2. Letf 2 C(D), the operators D de ned by (2.3) converge uniformly to f
onD R%?asnm!1l
Proof. From (2.4)-(2.5), we obtain
n;rlriqgl.] an;m (1;X;Y) 1k(;(D) =O;
n;rlrEIH kD n;m ((t X); X;y) Xkc(D) :O;

lim  KDnm (U y);Xy)  yke(p) =0;

nm!

n;r!rirl? Dnim (t2 + UZ:X;Y) (X2 + y2) c(D) =0:
The proof is obvious from Volkov's Theorem.
2.1. Degree of Approximation by Dnm -

De nition 2.1. Let f 2 C(D) be a continuous function and a positive number. For

X;y 2 D, the full continuity modulus of the function f (x;y) is

L(f: )= p max jf(xy)  f(xz2iy2)]

(x1 x2)2+(y1 y2)?

and its partial continuity moduli with respect to x and y are de ned by

1 D(f; )= max max jf (x1;y) f(X2;y)j
1y 1jx1 xgj

L@ )= max  max jf(xy1) f(xy2)j:
1 x 1ljy1 yzj

It is also known thatlim , ¢! (f; )=0and!(f; ) ( +21)!(f; ) for any 0. The

same properties are satis ed by partial continuity moduli.

Theorem 2.3. Let f 2 C(D), the following inequalities hold:

1 1
kDo (Fix;y)  fkep 3 1O fip— +10 e (2.8)

KDnm (f;xy) fkepy 30 f; (2.9)
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Proof. From (2.3)-(2.4) and using the properties of the modulus of continuity we

obtain

iDam(fixy)  £06Y)] J Dam(F(u) F(GYy)ixiy)i+ iDam(fF(Ly)  f(XY)XY)i

Dom (if (Gu)  £(EY)))+ Dam (f(y)  F(XY)))

2 )
1n+1 X L .
PO ) 1+ == TR0t xRt
n k=0 !
8 . 9
< =
1m+1 X" L O
+1 @O b)) 1+ = "h) ju oyt (u)du,
. m =0 1 !

where ,, m are the sequences which tend to zero as;m ! 1 . Applying the Cauchy-

Schwartz inequality we obtain

IDam (fixy)  f(Xy)j

Z 1=2 Z 1=2)
1n+1 X ! !
LOF; ) 1+ —= 'K (x) 1(t x)2 K(t)dt 1' K(t)dt
k=0
8 9
) S Ame1X % - =2 g 1=2=
+1@(F; W), 1+ — “hn(Y) (u y)? h(udu "hwdu
. m ]:0 1 1 y
Hence we get
8 9
< 1n+1 K 12 1 2 k =
iDam(fFixy) fooy)i '@ (F; q), 1+ . "n(x) 1(t x) p(t)dt
) k=0
8 0 1 9
1=2 >
(2) 2 1 m + l Xn | j A Z 1 2, j 1=2=
OO m) 1 77@ m(Y) 1(u y)* m(u)du

m j=0

=1 W ) 1+ 1 Do ((t X)Zxy) 70 +1@(F; ) 1+ 1 Drm((u Y)Zxy) 7
n m

From (2.6) and (2.7), we obtain (2.8). Using (2.3), (2.4) and letting

=P 0z v

we have
I

T X7+ y?,,

nm

P

jiEu) o6y (D m)
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Hence, we obtain

iDam(fixy)  f(GY)i Dam(f (u)  FOGY)ixy)
1 p

P(f; nm) 1+ Dom  (t X)2+(u  y)3xy
8 nm
< XX
1 n+1m+1 y
(S ), 1 i (1Y)
' nm k=0 j=0
lel

p .
(t x)2+(u y)2 K (tu)dtdu
1 1

applying the Cauchy-Schwartz inequality, we obtain
8 0

< xXoooxn
. . 1 n+1m+1 y
iDnm(fixy) fOoy) ! (F; m), 1+ — @ ki (xy)
. nm 2 2 .
k=0 j=0
Z 1 Z 1 . l=2)
t x)2+(u y)2 2 K (tu)dtdu
1 1
P(f; am) 1+ Dnm (t X)2+(U Y)Z;X;y 1

nm

With (2.6) and (£.7) we get desired result (2.9).
Now, we give the order of approximation using Lipschitz function and Peetre's K- func-

tional.
Corollary 2.1. If f additionally satis es a Lipschitz condition

Jf (Xl; yl) f (Xz; yz)J K (Xl X2)2 + ( V1 y2)2 =2 , 0 1
then the inequality
l =2

1
: o CON o . 1 )
iDan(fixy) f(xy) K n"' m ;

whereK 9= 3K..

Corollary 2.2. If f additionally satis es a Lipschitz condition

ifxy) f(x2y) Kijxi xgj~ 2

and
ifocy) fOoy2)i Kojyr yaj =2

then the inequality
iDnn(fixy) f(xy)i K2

whereK §=3K 1, K§=3K; holds.
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Let C?(D) be the space of all functionsf 2 C(D) such that @ 2 C(D) fori=1;2.

@X @y
The norm on the spaceC?(D) is de ned as

@f @f
Kf Kooz = KF Kooy + e &
o O @kcp @Y ¢

De nition 2.2. Letf 2 C(D). The Peetre's K -functional is de ned by

n 0o

K(f; )= gzigfz(D) ki gkcipy* kokezpy; > O (2.10)

Theorem 2.4. For the function f 2 C(D), we get

iDom (F5%y)  fO65y)] 2K(F; nm(XY));

where nm (X;y) = max nfz ; miz
Proof. Let g2 C%(D) and t;s 2 [ 1;1]. If we use Taylor's theorem at point (x;y)
for the function g(t;s), we get
Z
@6xy) ‘ @g(u Y) gy + @O9Y)
t;s X;y) = t x)+ t s
a(t;s)  a(xy) z@x( ) X( ~—@d @y( y)
L s @)
y oo @

From Lemma, we haveD . (T X;Xy) =

2 veDnm (U y;xy)= =25, Applying
the operator D.,, On the above equation, we obtain

Z
. o { @g( uy) oo
Dn;m (91X1y) g(x!y)_ n+2gX Dnm (t @a du,x1y
X
Z
2y s @g( .
m+29y+ Dnm y(s @% dv,x,y
Hence,
jDom (BXy)  9(XY)j
Z
2X t @g( uy) .
n+29x-|-m+29y-‘-D XJt T @a du ;xy
ZS
: @g(
+ Dnim is dv ; Xy
y S
2y 1 @g 2.
nr2% me2® T3 @g Pom (0O0TXY
. 1 @yxv)

*5 @y Dmwm (U y)% Xy
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Using norm for 8x;y 2 (D), we get

2 2
KDnm (93X Y) g(X;y)kC(D) n+2 ngkC(D) + m+2 kgka(D)
1 @y L 1 @9

N+2 @R ¢py M+2 @Y ¢

1
max o koKe(py + kdyKe(p)
|
G, G
@3 c(D) @y c(D)
n;m kgkCZ(D) ;
where ., = max nEZ ; miz . Since D,y is a linear operator and for8 f 2 C(D), g 2

C?(D), we have

kDnm (Fixy) £ (Y)kepy K Dam (F @i Xy)ke
+ KDnm (X Y) 9 Y)kepy + Kf ke (p)
k f  gkepyiDnm (1;%Y)]
+ KDnm (9:%:y) 906 Y)kepy + Kf - ke :
Hence
kDnm (Fix7y)  f(Xi¥)kepy 2 kb gkepy + mm Kgkeo(p

Taking the in mum on the right hand side, we get
iDnm (F5xy)  f06y)] 2K(F5 nm(Xy)) :

3. Construction of GBS Operator of Generalized Bernstein-Durrmeyer Type

In 1934, Begel introduced the term B-continuous and B -di erentiable function and es-
tablished important result for these functions [6]-[4]. In 1966, Dobrescu and Matei[]10]
gave some approximation properties for bivariate Bernstein polynomials using a generalized
boolean sum. The Test function theorem is given by Badea et al.[ 4] for Bagel continuous
functions. Sidharth et al. introduced GBS operators of Bernstein{Schurer{Kantorovich type
and studied the degree of approximation by means of the mixed modulus of smoothness and
the mixed Peetre's K -functional in [17].

In this section, we introduce Bernstein-Durrmeyer type GBS (Generalized Boolean Sum)

operator by means of Begel continuous functions which is more extensive than the space
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of continuous functions. The degree of approximation for Bernstein-Durrmeyer type GBS
operators are obtained by using the mixed modulus of smoothness and mixed -functional.
Let X and Y be a compact real intervals and let (,.,yf [Xo;Yo;X;y] be mixed di erence

of f de ned by

o) f Xoyoxiyl=f(xy) f(xyo) f(xoy)+ f(Xo:Yo)

for (X;y¥);(Xo;¥0) 2 X Y. Afunction f : X Y ! R is called B-continuous (Begel

continuous) at (xo;yo) 2 X Y, if

lim T [Xo;Yo; X;y] =0
o)t ey )T X001 XGY]

for (x;y) 2 X Y. Letthe function f : X Y ! R if there exist M > 0 such that

oy f Xoryorxiyl M

for every (X;y);(Xo;¥o) 2 X Y, then the function f is de ned by B-bounded (Begel
bounded) onX Y.

Throughout this paper By(X Y) denotes allB-bounded functions onX Y and Cp(X
Y) denotesB-continuous functions onX Y. AsusualB(X Y)and C(X Y) predicate
the space of all bounded functions and the space of all continuous functions od Y.

The mixed modulus of smoothness of 2 C,(X YY) is de ned by
Pmixed (F; 15 2) :=sup  (xy)f XorYorXiy] DjX  Xoj < 1iJy Yo < 2 (3.11)

for (x;y);(Xo;¥0) 2 X Y andforany ( 1; 2) 2 (0;1) (0;1 )with ! mixeq 1 [0;1) [0;1)!
R.

In 1988-90's, Badea obtained the basic properties of the mixed modulus of smoothness
I mixed and these properties are similar to usual modulus of continuity. Also; the mixed

modulus of smoothness provide the next inequality for 1; 2> 0

Pmixed (F3 115 220 @+ 1)@+ 2)! mixed (F; 15 2): (3.12)

Let give the concept of Bagel di erentiable function. A function f : X Y R?! Ris
called B -di erentiable function at the point ( Xg;Yyo) 2 X Y if the limit
i oay)f [Xor Yoi X Y]
im
(xy)! (xoyo) (X Xo)(Y  Yo)
exists and is nite. The limit is call to be the B-dierential of f at the point (Xo;Yyo) and

is denoted by Tyyf (Xo;Yo0) := Tg(f;Xo;Y0). The space of all B-di erentiable functions is

denoted by Tg (X  Y).



12 E. ACAR AND A. IZGL

Let f 2 Cy(D), the mixed K -functional de nition is given by

n

Kmirea (Fitiit2)= inf kf g1 @ hky +t1 Tg%  +t Tgg
g1;02;h 1 1
0]

+t1t2 Té;zh 1 ;

whereg; 2 C5° g 2 CY% h2 C5%and for 0 p;q 2 CE denotes the space of the
functions f 2 Cy(D) with continuous mixed partial derivates T3, 0 a p; 0 b g

The partial derivates are

xf ([Xo0; X]; Yo)

Tf (Xo; ¥0) := Tg'(f ; %03 Yo) = li;mx[,

(X Xo)
and
Tyf (xo;Yo) := Tg(f ; Xo0; Yo) = lim yf()(/XO;B[/S;C)J;Y])
where
«F (Xo;X];¥0) = f(X;y0) f(Xo;Yo)
and

yf (Xo; [Yo; ¥I) = f (Xo;y)  f(Xo;Yo0):

De nition 3.1. For f 2 C(D) andm;n 2 N, we de ne the Generalized Boolean Sum (GBS)

operator of generalized Bernstein-Durrmeyer type operatoD ., as follows:

Z.,Z
n+1m+1 X X k;j (x:y) ted Kij (tu)
2 2 n;m 1y n;m 1
k=0 j=0 o1 (3.13)

(f(y)+ f(x;s) f(t;s))dtdu;

Snim (f(t8);x%y) =

for (x;y) 2 D where the operatorS,.,, is well de ned on the spaceCy(D) and f 2 Cy(D).
3.1. Degree of Approximation by Snim -

Theorem 3.1. For every f 2 Cy(D), the operator (3.13) satisfy the following inequality at
each point(x;y) 2 D

1=2 1=2 .

JSam (F3xy)  FOGY)I M mixea f;n 7755
Proof. Using the de nition of ! nixed (f; 1; 2) and for 1; > 0 taking the inequality

Pmixed (7 115 22) A+ 1)@+ 2)! mixed (F5 15 2)
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we can write
o f 68X Y] Pmixed (Fit Xj3is i)

itoxi s i
1 2

(3.14)
1+

Umixed (f; 1, 2)

for every (x;y);(t;s) 2 D and for any ( 1; 2) > 0. From the de nition of  (,.,yf [t;s; X Y],

we have
f(x;s)+ f(y) f(ts)=f(xy) o) f [LSixy]: (3.15)

If we apply this equality the operator D.,, and take the de nition Sy.,,, we can write
Sim (f3%y) = F(XY)Dnm (1iXY) Dam  ey)f [ESiXYLXY -

From (2.4), we have Dnm (1;%;y) = 1. Taking (3.14] into account and applying Cauchy-

Schwarz inequality, we obtain

IS (F35y) - TO6Y) Dam oo f [ESixiylixy
q

Dnm (LiX;y)+ 11 Dam (t X)Z%Y)

q

+ 21 Dam (s V)% XY)

q

+ 115" Dom (U X)%XY)Dam (s V)% X7Y)

U'mixed (f5 1, 2):

From Lemma|2.2 and for every &;y) 2 D, we have

Sia

Dnm ((t X)Z; X;Y)

and
Dam (U 9)%XY)
Therefore, choosing 1 = n ¥ ve > =m 72 we get

1=2 1=2 .

ISom (Fix5y)  £(OGY)I 9 mixea fin 75 m

Theorem 3.2. Lettake Tgf 2 B (D) with the function f 2 Ty(D). Then, for every (x;y) 2 D,

we get

h i
iSam(Fixy)  f(xy)i M: kTefk, +!mxed Taf;n ¥2m 2 (nm) 2 (3.16)

where M is any positive constant.
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Proof. Let the function f 2 Tp(D). From [8], we have the identity

(X;y)f [Gs;x;y]l=(t X)(s Y)Tef (&;); x<&<ty< <s: (3.17)

From the de nition () [t;s;x;y] and appliying Tef to each side of the equality (3.15),

we get

Tef (&)= (xy)Tef (& )+ Tef (& Y+ Tef (x; ) Tef (X;y):
Taking Tgf 2 B(D) and above equation into account, we can write

iDom  epf [ESiXyLXy
= Dnm ((t x)(s Y)Tsf (& )Xy
Dom Jt Xjis ¥Vi  y)Tef (&) Xy
+ Do (it xjis Yi(iTef (& Yi+iTef (x; )i+ jTef (xy)i):xy)
Dnm (jt Xjis  Yi! mixea (Tef;j& Xjij  Yi)ixiy)

+3KTgfk; Dnm (jt  Xjis  ViiXjy):
Also, since the mixed modulus of smoothness mixeq IS NONdecreasing, we have

U'mixed (T ;j& Xj;] Vi) 'mixed (Tef;jt  Xj;js Vi)

1+ 11jt Xj 1+ 2ljs Yi mixed (f5 15 2):

Substituting in the above equality and applying the linearity of the operator D.,, and using
the inequality of Cauchy-Schwarz, we get
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iSum (Fixy)  f(XY)i= Dam  n)f [ESiXY1iXy
q
3kTefk; Dnm ((t X)%(s  y)3Xy)

+[Dnm (it Xjjs YiiX1Y)
+ 1 'Dam (t X)%s  yixy
+ 21Dn;m jt  Xxj(s y)z;x;y

+ 1m0 )25 VEXY  Vmixed (F5 15 2)
q
3kTefk;, Dnm ((t X)2(s Y)%XY)
q

+  Dnam ((t X)2(s y)ZX%Y)
q
b Dom (0 X)4s Y)ZXY)
q
+ 5,7 Dam ((t X)%(s  y)4xY)

+

+ 175 Dam (€ XS VEXY  miced (F 15 2):
From Lemma|[2.2, we have

Dnm ((t X)Z; X;y)

Sia

and
Dam (U 9)%HXY)
For (x;y);(t;s) 2 D, p;q2 1;2 and taking
Dom (t X)®(s v)*xy =Dnpm (t X)®;Xy Dom (s Y)*xy

into account, choosing 1 = n 2 ve »=m 172 we get the desired result ).
In the following theorem, we evaluate the order of approximation of the sequencéSy.m (f )g

to the function f 2 Cy(D) in terms of mixed K -functional.

Theorem 3.3. Let the operator Sp.m given in (3.13). Then, for every f 2 Cy(D) we get

, . 2 2
ISum (F5xy) TOGY) - 2Kmixed T3 (3.18)
Proof. For the function g; 2 Cé;O(D) using Taylor formula, we get

Zt
a(ts)= ay)+(t )T am(xy)+ (¢ u)TZ u(u;y)du

X
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([el). Since the operator S,.,, reproduces linear functions
z t
Snm (91X Y) = G1(GY)+ Sum (1 WTEPqu(uy)du;xy

X

and the de nition of Spm operator for g; 2 C5°(D), we get
Z, h i
iSnm (GUXY)  G%Y)i= Dam (U u) TE%qu(uy) TEl0(us) duxy
Z'
Dnm jtou TEh(uy)  TE%u(urs) dux;y

X

Tg;ogl 1 Dnm (t X)Z;X;y

< Té;ogl . g:
For g» 2 CY%(D),
Z h i
iSum (@i%Y) @Y)i= Dam (s V) Tg2m(viy) Tgg(vis) dvixy
v
Dom js Vi Tolm(viy) Tglae(v;s) dvixy

Tg;zgz . Dnm (s y)Z;X;y
4

0;2 .
< TB 92 1 E

For h 2 C5?(D), we get

hts) =h(y)+(t X)Tgh(xy)+(s YTShecy)+(t x)(s  y)Tgth(xy)

Z, Z
+  (t wTE h(uy)du+ (s V)TF?h(x;v)dv
th ' Zs
+ (s y)(t wTZh(uy)du+ (t x)(s V)TE2h(x;v)dv
ZXtZS ’
+ (t u)s V)TF?h(u;v)dvdu:
Xy
SinceSpm ((t X);%y) =0, Sim ((s  y); X;y) =0 and the de nition of the operator Sy
ths
iSum (h;x;y)  h(y)i  Dnm (t u)s V)TFh(u;v)dvdu;x;y
X
ZtZyS
Dnim (t u)s V)TF%h(u;v)dvdu ;x;y
z.2,
Dnm jt ujjs vj Té;zh(u;v) dvdu; x; y
Xy
1 .
2 Teh | Dum (t X%(s WAy
4 TZ%h 11,

1 nm’
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Therefore, we get
iSom (F5xy) Oy T (F v 2 h)OGY)i+ (0 Sama) (X Y)]
(%2 Sam@) (%Y)i+ i(h Symh) (X y)]
HiSum (F o1 & h) X))

2 kf g o hkl +4 Té;ogl L

. 1 . 11
+4 Tghe 44 Tgth oo

S|

for f 2 Cyp(D). Since the de nition of the mixed K -functional and taking the in mum over

all g1 2 C5°(D), g2 2 C3?(D), h 2 C3?(D) we get the desired result (3.1B).

3.2. Numerical Examples.  The convergence of the operators by illustrative graphics in
Maple to certain functions for two dimensional cases are given and some numerical values
are calculated as follows. Forn;m = 1;2;5;10 and the function f (x;y) = x°y + y?, the
convergence of the operator® .,y is shown in Fig 1. Forn;m =1;2;5; 10 and the function
f(x;y) =1 x3+ y3, the convergence of the operator,, is shown in Fig 2. It is seen
that if the values of n; m increase, the convergence dd ., to the function f becomes better.
Finally, one can see that the convergence of the GBS operatd,., has better approach than

the operator D,y for the function f (x;y) =(1+ x+ y)sin(x + y) in Fig 3.

Figure 1. The convergence of theD n., operators forf (x;y) = x?y+ y? and

nm=1;2;5;10:
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Table 1. Mean errors of gure[]]

(n,m) maximize jDnpm (X;y) (X Y)]

n,m=5 1,0204
n,m=15 0,5113
n,m=25 0,3390
n,m=50 0,1836
n,m=100 0,0957
n,m=150 0,0647

Figure 2. The convergence of theD,m operators forf(x;y)=1 x3+ y3

andn;m =1;2;5; 10:
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Table 2. Mean errors of gure[2

(n,m) maximize jDnpm (X;y) T (XY)]

n,m=5 1,0476
n,m=10 0,7362
n,m=50 0,2139
n,m=100 0,1131
n,m=500 0,0066

. f(z,y)
D Fi=, 1)
N Sl my)

Figure 3. The convergence of theD ., operators and the S,., operators

for f(x;y)=(1+ x+y)sin(x+y)and n;m =5:
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Abstract.  There are many studies about rectifying curves. In this present study, we ex-

amine the ruled surfaces that have rectifying curves as base curves. We say that co-centrode
curves de ned by Chen and Dillen are the parameter curves for the special caseu =1 on

the ruled surface with a base rectifying curve. Also, we answer the question when does the
parameter curves of the surface are geodesic.

Keywords : Rectifying curve, Ruled surface, Modi ed darboux vector
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1. Introduction

The curves are the fundamental structure of di erential geometry. In this study, we
examine rectifying curves which are one of the subfamilies of the curves in Euclidean 3-
space. A regular curve (s) is called a rectifying curve, if its position vector always lies its

rectifying plane. So, the position vector of a rectifying curve satis es the equation

()= (T(+ (9B (s)
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for di erentiable functions  and according to arc length parameters: The notion of
rectifying curves is introduced by B.Y. Chen in [1]. Also B.Y. Chen and Dillen show that
there exists a relationship between the rectifying curves and the centrode$ |[2].

In the di erential geometry of a regular curve, the curvature functions and of a regular
curve play an important role to determine what is the type of the curve. One of the most
interesting characteristics of rectifying curves is that the ratio of their torsion and curvature
is a non-constant linear function of the arc length parameters.

There are many studies about rectifying curves. K. llarslan et.al in [4,[5] introduce the
rectifying curves in the Minkowski 3 space. Also E.Ozbey et.al study rectifying curves in
dual Lorentzian space and they show that rectifying dual Lorentzian curves can be stated
by the aid of dual unit spherical curves in [/]. In recent years, the rectifying curves from
various viewpoints have been studied in Pseudo-Galilean space and three-dimensional sphere
n [6l, [8].

In this paper, we de ne the ruled surface whose the base curve is a rectifying curve by
using modi ed Darboux vector eld in Euclidean 3 space. So, we examine the relationship
between rectifying curves and ruled surfaces. InJ2], Chen and Dillen introduce co-centrode
curves. Accordingly, we say that co-centrode curves are the parameter curve for the special
caseu = 1 on this ruled surface. Also, we give the hypothesis that the curve whose the
base curve for the given surface is a rectifying curve. Finally, we investigate the connection
between the rectifying curve and the parameter curves of the surface which are the geodesic.

We study the whole theory for the any orthonormal frame and also examine for special cases.

2. Preliminaries

Let :1 R! ES3be an arbitrary curve in three dimensional Euclidean space. A moving
orthonormal frame is de ned asfN1;N>; N3g in the E2 along to curve . Derivative of the

frame is given by

2 32 3
N (S) 0 1(s)  2(s) N1(s)
§ N2 (s) z E i(s) 0 3(8) zg N2 (s) z (2.1)
N3 (s) 2(s)  3(s9) O N3 (s)

where 1(s), 2(s) and 3(s) are the curvatures of the curve : This any orthonormal
frame encompasses some other frames. So, this frame is substantially important in terms
of generality. For example, if we takeN; = T;N, = N;N3 = B; ;= ; > =0 and

3 = ; above orthonormal frame coincides with the Serret Frenet frame. Also, if we take
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N;= T;N2=Nj1;N3= N3, 1=ki; 2=0and 3= ks, we have Bishop frame. Similarly, if
we takeN; = T;N2 = Y;N3=Z; 1=Ky, 2= kpand 3= ; orthonormal frame coincides
with the Darboux frame on a curve. Using the equationsN; = N;N, = C;N3 = W, 1 =
f; 2=0and 3= g, we get the alternative moving frame de ned by Uzunoglu et.al in [9].
In the Euclidean space, the Darboux vector may be interpreted kinematically as the
direction of the instantaneous axis of rotation in the moving trihedron. The direction of
the Darboux vector is the instantaneous axis of rotation. In terms of the moving frame

apparatus, the general Darboux vector eld D can be expressed as

D= 3(s)Ni(s) 2(s)N2(s)+ 1(s)Nz(s) (2.2)

and it provides the following symmetrical properties

D Ni(s) = Ny(s) (2.3)
D Na(s) = N,(s)
D Ns(s) = Ns(s)

where is the wedge product in Euclidean spacee?:

Izumiya and Takeuchi de ne the modi ed Darboux vector eld as follows

D= — (s)T(s)+ B(s)

with  (s) 6 0 and another modi ed Darboux vector eld is dened as B = T(s) +
— (s)B (s) with (s) 60 [B].
In [Z], Chen proves that the curve (s) is congruent to a rectifying curve if and only if

the ratio — with > 0 is a non-constant linear according to arc length parametess in E3.

3. Ruled Surfaces with The Base Rectifying Curves in Euclidean 3-Space

In this section, we examine the relationship between rectifying curves and ruled surfaces
according to any orthonormal framefN1; N2; N3g: We consider this any orthonormal frame
with 5 = 0 but note that the frame di erent from Frenet frame. Also, we give the hypothesis
the parameter curves of the ruled surfaces with the base rectifying curve are geodesic. We
can de ne the rectifying curve with this orthonormal frame. So, if the rate of the curvatures
3 is a non-constant linear function according to arc length functions, then we can say the

1
curve is a rectifying curve.
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R
Theorem 3.1. Let (s) = Nj(s)ds be a unit speed curve with any orthonormal frame
fN1;N2;N3; 1; 39: The curve is a rectifying curve if and only s parameter curves of the

surface (s;u) = (s)+ uD (s) are rectifying curve whereD (s) = 2 N1+ N3 is modi ed
1

Darboux vector eld and u 6 g:

R
Proof. Let (s) = Ni(s)ds be a unit speed and rectifying curve with the frame
apparatusfN1;N2; N3; 1; 30g: If the parameter u is a constant, we obtain thes parameter
R
curves of the surface as (s) = Nji(s)ds+ u 3 (S)N1(s)+ Nz (s) : If we take the
1

derivative of according to its arc length parameter, then we have

d _ dds
ds ds ds’
ds

3
1+u — N1
1 1d§

Z|
=
I

where N1;No;N3;71; 73 isthe any orthonormal frame apparatus of : If we take the norm

of both sides of above equation, we have

|
o'

ds= 1+u - ds:
1
If we integrate the last equation, we obtain

S=s+u —> +c Cconstant (3.4)
1

and we can easily see that

Wl = Ny:

Similarly, if a derivative of this equation is taken with respect to s, we obtain

dW1§ _ No:
ds ds 1ma
. 1
1N = Np—rnv
1+u 3
1

0

1 ,
where -2 6 a: If we take the norm of last equation, we get
1

=1 (3.5)
1+u 2
1

So, we can easily see that

Z|
N
1
Z
N
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Hence, we know thatN 3 = N3: If we take the derivative of this equation according to's, we

have

3= — 2 (3.6)
1+u -

[

If we look at the ratio of the Eq. (B.5) and Eq. (B.6), we can say that

e oo
1
A
~w

(3.7)

Since s a rectifying curve, we know that —2 = as+ bnon-constant linear function for some
1

, 1 . . L .
constantsa and bwith a6 0 and a 6 a: Let us write this equality in equation (.

5 = s+u(ast b+ c
5 = (1+ au)s+ buc;
S = es+f;

where e;f are some constants withe 6 0. So, we obtain the arc length parameter of the

curve as follows

5 f
S =
e
From equation (3.7), we get
- 5 f
2= 325 + b:
1 1 €

Hence, we can easily see that

73 = S +

where and are some constants with 6 O:
Finally, if the curve is a rectifying curve, then s-parameter curves of the surface (s;u) =
N1(s)ds+ u 2 N1+ N3 are rectifying curve.
1

s
1
rectifying curve. The ratio of the curvatures of the curve is the non-constant linear function

R
Conversely, lets-parameter curves of the surface (s) = N1 (s)ds+u N1+ N3 are

according to s for some constants and with 60 as

3

1

= 5+ :
From the equations (3.4) and (3.7), we can easily see that

= - = s+U—3+C+:
1
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If the necessary arrangements are made, we get

3 =as+b
1

where a; b are some constants witha 6 0: This means that is a rectifying curve.

R
Corollary 3.1. Let (s)= Ng3(s)ds be a unit speed curve witff N1;N2;N3; 1; 39: The
curve is a rectifying curve if and only if s-parameter curves of the surface (s;u) =
(s)+ vB (s) are rectifying curve whereB (s) = Nj + 1 N3 is modi ed Darboux vector
3

eld.

R
Corollary 3.2. Let (s)= T (s)ds be a unit speed curve withf T;N;B; ; g: Then the
curve is a rectifying curve if and only if s-parameter curves of the surface (s;u) =

(s)+ uD (s) are rectifying curve whereD (s) = — T+ B is modi ed Darboux vector eld.

Remark 3.1. For a regular curve in E2 with 6 0, the curve given by the Darboux vector
D = T+ B iscalled the centrode of and the curvesC = D are called the co-centrodes
of : Chen and Dillen show that a curve with non-zero constant curvature and non-constant
torsion is a rectifying curve if and only if one of its co-centrodes is a rectifying curve[2]. If
we selectu = 1 for u constant parameter curves, then we de ne theu constant parameter

curves correspond to the co-centrodes.

R
Corollary 3.3. Let (s) = N (s) be a unit speed curve withf N; C; W;f;g g de ned by
Uzunaglu [9]. The curve s a rectifying curve if and only if s-parameter curves of the
surface (s;u) = (s)+ uD (s) are rectifying curve whereD (s) = fQ N + W is modi ed

Darboux vector eld.

R
Theorem 3.2. Let (s) = Ni(s)ds be a unit speed curve with any orthonormal frame
apparatusfN1;N2;N3; 1; 39:If is a rectifying curve, the parameter curves of the surface
(s;u)= (s)+ uD (s) are geodesic curve wher® (s)= — N+ N3 is modi ed Darboux
1

1
vector eld and u 6 5:
Proof. The curve has been always geodesic on the surface, but the parameter

curves of the surface are geodesic if is a rectifying curve. The normal vector of the surface
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is as follows

1+u 3 N, and = 3 N;+ Ng;

n
I

|
o

N = 1+u = N
1

Let be a unit speed rectifying curve. Let's examines-parameter curves of the surface

z
(s;u)=  Ni(s)ds+u > (s)N1(s)+ N3(s) ;
1

Z
()= Ni(s)ds+u -2 Ni+ N3 ;
1

d d ds_ ds
ds = dsds ° ids’
@2 o2 ds? _
0~ dsas - PNz

where a and b are some constants.

Similar to the above thought, if we examine u-parameter curves of the surface (s;u) =

N1(s)ds+ u 3 N;+ N3 , then we have
1

Z

(s) = Ni(s)ds+u > Ni+ Nz ;

1

d2

— = 0:

du?

So, if the curve s a rectifying curve, then the parameter curves of the surface (s;u) =
3

(s)+ u — N3+ N3 are geodesic curve.
1
R _ : -
Corollary 3.4. Let = T(s)ds be a unit speed curve withf T;N;B; ; g:If is a
rectifying curve, the parameter curves of the surface (s;u) = (s)+ uD (s) are geodesic
curve whereD (s) = — T + B is modi ed Darboux vector eld.

R
Corollary 3.5. Let (s) = N (s) be a unit speed curve withfN;C;W;f;gg. If is a

rectifying curve, the parameter curves of the surface (s;u) = (s)+ uD (s) are geodesic

curve whereD (s) = fQ N + W is modi ed Darboux vector eld.
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Abstract. In this paper, we give some characterizations of Frenet curves in 3-dimensional
Lorentzian concircular structure manifolds(( LCS), manifolds). We de ne Frenet equations
and the Frenet elements of these curves. We also obtain the curvatures of non-geodesic
Frenet curves on (LCS), manifolds. Finally we give some theorems, corollaries and exam-
ples for these curves.

Keywords : Lorentzian manifold, Concircular structure, Frenet curve

2010 Mathematics Subject Classi cation : 53D10, 53A04.

1. Introduction

The di erential geometry of curves in manifolds investigated by several authors. Especially
the curves in contact and para-contact manifolds drew attention and studied by the authors.
B. Olszak[17], derived the conditions for an a.c.m structure on M to be normal and point
out some of their consequences. B. Olszak completely characterized the local nature of
normal a.c.m. structures on M by giving suitable examples. Moreover B. Olszak gave some
restrictions on the scalar curvature in contact metric manifolds which are conformally at or
of constant -sectional curvature in[16].

J. Welyczko|22], generalized some of the results for Legendre curves in three dimensional

normal a.c.m. manifolds, especially, quasi-Sasakian manifolds. J. Welyczko [23], studied
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the curvatures of slant Frenet curves in three-dimensional nhormal almost paracontact metric
manifolds.

B. E. Acetand S. Y. Perktas [1] obtained the curvatures of Legendre curves in 3-dimensional
("; ) trans-Sasakian manifolds. Ji-Eun Lee, de ned Lorentzian cross product in a three-
dimensional almost contact Lorentzian manifold and proved that —; = cons:along a Frenet
slant curve in a Sasakian Lorentzian three-manifold. Furthermore, Ji-Eun Lee proved that

is a slant curve if and only if M is Sasakian for a contact magnetic curve in contact
Lorentzian 3-manifold M in[L2]. Ji-Eun Lee, also gave some characterizations for the gener-
alized Tanaka-Webster connection in a contact Lorentzian manifold in[13].

A. Y Id r m[25] obtained the Frenet apparatus for Frenet curves on three dimensional
normal almost contact manifolds and characterized some results for these curves.

U.C.De and K.De[10] studied Lorentzian Trans-Sasakian and conformally at Lorentzian
Trans-Sasakian manifolds.

The LCS manifolds was introduced by [19] with an example. A. A. Shaikh[20] studied
various types of (LCS)n-manifolds and proved that in such a manifold the Ricci operator
commutes with the structure tensor ' .

In this framework, the paper is organized in the following way. Section 2 with two subsec-
tions, we give basic de nitions of a (LCS),-manifolds manifold. In the second subsection we
give the Frenet-Serret equations of a curve in (CS)3 manifold. We give nally the Frenet
elements of a Frenet curve in LCS)3; manifold and give theorems, corollaries and examples

for these curves in the third and fourth sections.

2. Preliminaries

2.1. Lorentzian Concircular Structure Manifolds. A Lorentzian manifold of dimension
n is a doublet N;g , where N is a smooth connected para-compact Hausdor manifold of
dimension n andg is a Lorentzian metric, that is, N admits a smooth symmetric tensor eld
g of type (0; 2)such that for each pointp 2 N the tensorg, : ToN  TpN !  Ris a non
degenerate inner product of signature ( ;+;:::;+), where T,N denotes the tangent space of
N at p and R is the real number space. A non zero vector eldV 2 TyN is called spacelike

(resp.non-spacelike, null and timelike) if it satis es gy (V;V) > 0 (resp., 0;=;< 0).[15]
De nition 2.1.  In a Lorentzian manifold N;g a vector eld w is de ned by

a(U; )= A(U) (2.1)
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forany U2 (N) is said to be a concircular vector eld if
(r uA)V) = fgo(U;V)+ w(U)w(V)g; (2.2)
where is a non-zero scalar andw is a closed 1-form[24]

If a Lorentzian manifold N admits a unit timelike concircular vector eld , called gener-

ator of the manifold, then we have
a; )= L (2.3)
Since is the unit concircular vector eld on N, there exists a non-zero 1-form such that
a(y; )= (V) (2.4)
which satis es the following equation
(ru )XV)= fogU;V)+ (U) (V)g; ( 60) (2.5)

for all vector elds U and V, where r gives the covariant di erentiation with respect to the

Lorentzian metric g and is a non-zero scalar function satis es

(ru)=U =d U)= (V) (2.6)
where is a certain scalar function dened by = ( ). If we take
U = 1r U (2.7)

then with the help of (2.3), (2.4) and (2.6), we can nd
U =U+ (U); (2.8)

which shows that' is a tensor eld of type (1,1), called the structure tensor of the manifold
N. Hence the Lorentzian manifoldN of classC! equipped with a unit timelike concircular
vector eld , its associated 1-form and (1,1) tensor eld ' is said to be a Lorentzian
concircular structure manifold (i.e. (LCS), manifold)[19]. Moreover, if =1, then we have
the LP-Sasakian structure of Matsumoto[14]. So we can say the generalization of LP-Sasakian
manifold gives us the (CS),, manifold. It is noteworthy to mention that LCS-manifold is
invariant under a conformal change whereas LP-Sasakian structure is not €o[18]. Il.CS),

manifolds, the following relations hold[19]
‘PU=U+ (U); ()= 4 (2.9)

"()=0; (U)=0;
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and

g(YU;'v )= g(U;V)+ (U) (V): (2.10)
2.2. Frenet Curves. Let :I! N be aunit speed curve in {CS); manifold N such that
° satis es o( °. O) = "y = 1. The constant "; is called the casual character of . The

constants ", and "3 de ned by g(n;n) = ", and g(b;9 = "3 and called the second casual

character and third casual character of , respectively. Thus we"1">, = "3.

A unit speed curve is said to be a spacelike or timelike if its casual character is 1 or -1,

respectively. A unit speed curve is said to be a Frenet curve ifg( ; °) 6 0. A Frenet curve
admits an orthonormal frame eld ft= °;n; bg along . Then the Frenet-Serret equations

given as follows:

rood = "2n
ron = "1t "3b (2.11)
r ob = "on

where = jr o j is the geodesic curvature of and is geodesic torsion[[12]. The vector
elds t, n and b are called the tangent vector eld, the principal normal vector eld and the
binormal vector eld of , respectively.
If the geodesic curvature of the curve vanishes, then the curve is called a geodesic curve. If
= cons:and =0, then the curve is called a pseudo-circle and pseudo-helix if the geodesic
curvature and torsion are constant.
A curve in a three dimensional Lorentzian manifold is a slant curve if the tangent vector
eld of the curve has constant angle with the Reeb vector eld,ie. (9= ¢( % )= cos =

constant. If (9= g( @ )=0, then the curve is called a Legendre curve[12].

3. Main Results

In this section we consider a (CS),; manifold N. Let :1 ! N be a Frenet curve
with the geodesic curvature 6 0, given with the arc-parameter s andr be the Levi-Civita

connection onN . From the basis ( 0; ' 0; ) we obtain an orthonormal basisf e1; e»; e3g which
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satisfy the equations

€ = ;
"o 0
& = p—"2+ ; (3.12)
1
" 0
es = "219—17" 5
1+
where
(9=9(%)=: (3.13)

Then if we write the covariant di erentiation of ° as
r oeg= €ex+ es3 (3.14)

such that
= g(r oer;e) (3.15)

is a certain function. Moreover we obtain by

0 P —
= g(r oep;es)="2 L T "+ 2 (3.16)
1
where qs) = % Then we nd
!
o= eit '3 o+ p——— & (3.17)
"1 +
and |
r 3= €1 "3 o+ p—% e: (3.18)
1
The fundamental forms of the tangent vector °on the basis of the equation [(3.1P) is
0 1
0
[ ( 91= % 0 T pﬁ E (3.19)
"3 pL— 0
||1+ 2

and the Darboux vector connected to the vector %is
I

n

(9= "3 +97"1+ ~ e ezt ey (3.20)
1

So we can write

ro=!(%"e @ i 3) (3.21)
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P .
Thus, for any vector eld Z = i3:l 'e 2 (N) strictly dependent on the curve on N and

we have the following equation

x3 .
roZz=1(9%9z+ "el'le: (3.22)
i=1

3.1. Frenet Elements of . Letacurve :1! N be a Frenet curve with the geodesic
curvature 8 0, given with the arc parameter s and the elementsft;n;b; ; g. The Frenet
elements of the curve can be calculated as above:

If we consider the equation [3.14), then we get
"N =r 1= €+ ea: (3.23)

If we consider {3.16) and [(3.2B) we nd

Vv .

u )

— %J 2 0 " p n 2 .
— + p 1 1 + . (324)

"1 + 2
On the other hand
0 0

 on = - e+ —1rI o+ - e3+ —1rI o€ (3.25)

2 2 2 2

= "1t "3 B:

By means of the equation (3.1¥) and|(3.18) we nd

n !#
0 n
3B = — "3t & (3.26)
2 2 1+
n !#
O n
+ n + n " + pl: e3
2 "1 + 2
By a direct computation we nd following
02 02 0 02
n + n = " n + n n (3'27)
2 2 2 2 2 2

Taking the norm of the last equation by using (3.26) and if we consider the equations| (3.16)
and (3.27) in (3.26) we obtain

Moreover we can write the Frenet vector elds of as in the following theorem
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Theorem 3.1. Let N be a(LCS); manifold and be a Frenet curve onN. The Frenet

vector elds t, n and b are in the form of

t = %=e;
n = —e+ —e3; (3.29)
2, 2 "
1 0 11}
_ " 1
b = m " " 3 + 9"72 €2
3 1+
" I#
1 O n
n n + n "3 + 917 e3
2 "+ 2
Note that
p Ty 2
= "1t —n (3.30)
" I#
"1t 2 0 "1
— = + 5 "3 tp—— b
3 2 2 "L+ 2

Let be a non-geodesic Frenet curve given with the arc-parameter s inLCS),; manifold

N. So one can state the above theorems.

Theorem 3.2. Let N be a(LCS); manifold and be a Frenet curve onN. is a slant
curve ( = (9= cos = cons) on N if and only if the Frenet elementsft;n;b; ; g of

are as follows

t = g= ¢
w0
© "1+ cog
" cos ©
b = e="p ; 3.31
P o (531
p
= 2+ 2("1+ cod );
Vv "
u 2
_ .., o 1cOS H 02+ ID"1+cos2 ¢ .
3 "+ cod "o
Proof. Let the curve be a slant curve in LCS),; manifold N. If we take account

the conditon = ( 9= cos = constant in the equations (3.12), {3.24) and [3.28) we nd
(B.317). If the equations in (3.31) hold, from the de nition of slant curves it is obvious that

the curve is a slant curve.
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Corollary 3.1. Let N be a(LCS); manifold and be a slant curve onN. If the ge-
odesic curvature of the curve is non-zero constant, then the geodesic torsion of is

= "3 +"1P25— and is a pseudo-helix onN.
1+COS

Corollary 3.2. Let N be a(LCS); manifold and be a slant curve onN . If the geodesic
curvature of the curve is not constant and the geodesic torsion of is =0 then isa

plane curve onN and function satis es the equation

y
= (a+c ) 2ds; (3.32)

- "3 — "1c0s
where ¢; pW and ¢, —rieosZ )"

Theorem 3.3. Let N be a(LCS); manifold and is a Frenet curve onN. is a spacelike
Legendre curve( = ( 9 =0) in this manifold if and only if the Frenet elementsft;n;b; ; g

of are as follows

t = = °
n = e="" 3
b = = "3; (3.33)
= P 2 4+ 2;
S
02 0 2
- ||3 — + 2 o
) 2
Proof. Let the curve be a Legendre curve in CS); manifold N. If we take

account the condition = ( 9 =0 in the equations (B.12), (8.24) and (3.28) we nd (B.33).
If the equations in (3.33) hold, from the de nition of Legendre curves it is obvious that the

curve is a Legendre curve onN.

Corollary 3.3. Let the curve is a Legendre curve in(LCS); manifold N. If the geodesic
curvature of the curve is non-zero constant, then the geodesic torsion of is =0 and

is a plane curve onN.

4. Examples

Let N be the 3-dimensional manifold given

N= (xy;z)2<3%z60 ; (4.34)



INT. J. MAPS MATH. (2022) 5(1):29{40 / FRENET CURVES IN 3-DIMENSIONAL LCS MANIFOLDS 37

where (x,y,z) denote the standart co-ordinates in<3. Then

Ei= ¢ X@’fy@ ; 52:92@;53 @

@x @y @y °~ @z (4.35)

are linearly independent of each point ofN. Let g be the Lorentzian metric tensor de ned

by

0(E1;E1) = 9(E2;E2) =1; o(Es;E3)= 1, (4.36)

o(Ei;E;)=0; 6]

fori;j =1;2;3[2]. Let be the 1-form de ned by (Z)= g(Z;E3) forany Z 2 ( TN). Let
' be the (1,1)-tensor eld de ned by

'E1=E1;, 'E2=Ey 'E 3 =0: (4.37)
Then using the condition of the linearity of * and g, we obtain (E3) = 1,

'27 =7+ (Z)Egz; (4.38)
o(Z;'W )= g(Z;W)+ (Z2) (W);
forall Z,W 2 ( TN). Thusfor = Egz, (;;; 0)denesa Lorentzian paracontact structure
onN.

Now, let r be the Levi-Civita connection with respect to the Lorentzian metric g. Then

we obtain
[E1;E2]l= €Ey [E1;Es]l= Ei; [ExEs]l= Ea (4.39)

If we use the Koszul formulae for the Lorentzian metric tensorg, we can easily calculate the

covariant derivations as follows:

re,E1= Es rEg,E1=¢€Ey rgEz= Eg;
r E2E3 = Ez; r E2E2 = eZE]_ Eg; (4.40)
r E1E2: r E3E1: r E3E2: r E3E3:0:

From the about represantations, one can easily see that'(; ; @) is a (LCS), structure on

N, thatis, N is an (LCS)s-manifold with = 1and =0.
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Example 4.1. Let

be a spacelike Legendre curve in th€LCS); manifold N and de ned
as
I ' N
s I (s)= s%s%In2 ;

consider (3.12) we nd

where the curve parametrized by the arc length parameter t. If we di erentiate (t) and

er= qt); (4.41)
1 1
e = %El + %Ez; (4.42)
e3 = "zE,: (4.43)
If we consider the equations|(3.1B), |(3.14), (3.16), (3.24) and (3.28) we can write
1
=0; = "5 = %; (4.44)
r 1 '3
= 24 Z = - =jji=1:
2- 2 1=t
From the above equations we see that the curveis a Legendre helix curve inN .
Example 4.2. Let be a spacelike Legendre curve in th@.CS); manifold N and de ned
as

I ' N

s ! (s)=(coss;sins;1);

where the curve parametrized by the arc length parameter t. If we di erentiate (t) and

consider (3.12) we nd

er= qt); (4.45)
e="s sin(Ee)E1+ cos(Ee)Ez ; (4.46)
3= "2@: (4.47)
If we consider the equations |(3.1B), |(3.14), (3.16), (3.24) and (3.28) we can write
=0; = "2; =0; (4.48)

So, the curve (s) is a Legendre helix curve inN.
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Abstract.  The purpose of this article is to give some novel identities and inequalities asso-
ciated with combinatorial sums involving special numbers and polynomials. In particular, by
using the method of generating functions and their functional equations, we derive not only
some inequalities, but also many formulas, identities, and relations for the parametrically
generalized polynomials, special numbers and special polynomials. Our identities, relations,
inequalities and combinatorial sums are related to the Bernoulli numbers and polynomials of
negative order, the Euler numbers and polynomials of negative order, the Stirling numbers,
the Daehee numbers, the Changhee numbers, the Bernoulli polynomials, the Euler polyno-
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language, we illustrate some plots of the parametrically generalized polynomials under some
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1. Introduction and preliminaries

Combinatorial sums and combinatorial numbers and polynomials have many applications
in mathematics and other applied sciences. These numbers are related to the special functions
and also some classes of special numbers and polynomials. The motivation of this paper is
to use not only generating functions, but also their functional equations, we give many
new formulas and combinatorial sums involving the Bernoulli numbers and polynomials, the
Euler numbers and polynomials, the Stirling numbers, and also combinatorial numbers and
polynomials such as the Daehee numbers, the Changhee numbers, and the parametrically
generalized polynomials. By using these formulas and combinatorial sums, we provide some
inequalities applications. In order to illustrate graph and plots of special polynomials, here
we use Mathematica with the help of the Wolfram programming language.

Throughout of this paper, we use the following notations and de nitions. Let
N=f1,2;3;:::0 and No = N[f Og:

As usual, Z, R and C denote the set of integer numbers, the set of real numbers, the set

of complex numbers, respectively. We assume that:

8
< 4. _
o = 1, n=0
* 0. n2N.
Furthermore,
( n
=1 d = 2N; 20);
0 an n n! (n ' ):

where ( )n is the falling factorial de ned by

(= C DO 2 n+l);

with ( )o =1 (cf. [1{34]; and references therein).
The Stirling numbers of the second kind are de ned by means of the following generating
function:
¢ 1% R tn
Fs(tk)= ——= S2(nk) —; (1.1)
k! n!
n=0
(cf. [1{B4]; and references therein).
The Stirling numbers of the second kind are also given by the falling factorial polynomials:

X] .
x"= Sp(mj)(x); (1.2)
=0

(cf. [1{B4]; and references therein).
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By using (1.1)), an explicit formula for the numbers S, (n; k) is given as follows:

1 X ok
Se(nik)= o ( et (1.3)
v J
j=0
wheren; k 2 Ng and for k > n,
S2(n; k) =0;

(cf. [1{B4]; and references therein).
Let v 2 Z. The Bernoulli numbers and polynomials of higher order are de ned by means

of the following generating functions:

t V_X
I wmt.
Fg (t;v) = 4 1 - ) By o (1.4)
n=0
and
)4 tn
Ge (txv)= Fg (tv)et= B (x) "t (1.5)
n=0 ’

such that v = 0,
BO(x)= x";

(cf. [13,23]29, 30, 34]; and references therein).

Substituting v =1 and x = 0 into ({.4) and ({.5), the Bernoulli numbers and polynomials
are derived, respectively,

Bn = B{Y;
and
Bn (x) = B{Y (x);

(cf. [1{B4]; and references therein).

By using ), an explicit formula for the polynomials Br(] k) (x) is given as follows:

1

B0 0= e
k Y

(1] :‘ (x+ )MK (1.6)
=0

wheren 2 Ng and k 2 N (cf. [5, Equation (3.20)]).
Putting n = x = k in (fL.6), we have the following presumably known result:
X

(mpy - N nij N \2n .
Bn " (n) (zn)!j=o( 1) j (n+j)7:

Substituting x = 0 into the above equation, and using (1.3), we have the following well-

known identity:
1
n+k
k

B( W= Sy (n + k; k) (1.7)

(cf. [33, Equation (7.17)]).
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Let v 2 Z. The Euler numbers and polynomials of higher order are de ned by means of

the following generating functions:

2 V_R "

Fe(tV)= 47 = B (1.8)

and

p3 n
Ge (txv)= Fe(tv)e = EM (X)L (1.9)
n=0 ’
such that v =0,

EQx) = x"
(cf. [13,/23] 28,28, 34]; and references therein).
Substituting v = 1 and x = 0 into ({.8] and ({.9), the Euler numbers and polynomials
are derived, respectively,
En = Er(11) ©)
and
En(x)= E{Y (x)
(cf. [1{B4]; and references therein).
By using (1.9), we have

xn ,ﬂ | d
EL900= " T ) d kL d D, ay; (1.10)

j=0 d=0 d 2
wheren 2 Ng and k 2 N (cf. [23,28|29, 34]).
Putting n = x = k in (LL.10), we have the following presumably known result:

X0 X i 1)d
EC M(n) = Jn An | d 3 1 d.(2d1)

j=0 d=0

S2(j;d):

By using ) and ), a relation between the numbers{ ¥ and the numbersB

is given as follows:
1 X n
(==
2n =0
wheren 2 Np and k 2 N (cf. [13, Equation (3.1)]).

By using ) and ), a relation between the numbersE,(1 “) and the numbersS; (n; k)

B( K = B,-‘ KWEL K. (1.12)

nj»

is given as follows:

2kn)@)4‘

|
" m=0j=0

. n k.
Sz (n;k) = Co imES (1.12)

(cf. [13, Theorem 2.14]).
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The Euler numbers of the second kindE,, are de ned by means of the following generating

function:
2 R
= E,— (1.13)
n!
n=0

(cf. [19,26] 28, 30]; and references therein).
By using (1.9) and (1.13), a relation between the Euler numbersE,, and the Euler poly-

e+et

nomials is given as follows:
1
E,=2"En >
(cf. [19,21]28, 30]).

Kilar and Simsek |13, Corollary 3.5] gave the following identity for the numbersS; (n; k):

n n+k
LY — j k : . . .
Sz(n+k,k)—‘ Wsz(J+k,k)B(n iik); (1.14)
j=0 k
wheren; k 2 Ng and
xn .
B (n;k) = K j12< s, (n:j)
i=0
— >4( k n
= ) J
j=0

(cf. [32, Identity 12.]; see also| [/, 29]).
Substituting n = k into (L.14), we have

n
on X i

nj+n
j=0 o

S, (2n;n) = S(j+nmn)B(n j;in):

The Daehee numbersD,, are de ned by means of the following generating function:

log (1 +t) _ R t"

. n:O Dp (1.15)
(cf. [17/25/30)).
By using (1.15), an explicit formula for the Daehee numbers is given by
Dp=( 1" (1.16)
n+1

(cf. [17,25]30]).
The Changhee numbersChy,, are de ned by means of the following generating function:

2 X n

= Chnt—

2+t n!
n=0

(1.17)

(cf. [18/30)).
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By using (1.17), an explicit formula for the Changhee numbers is given by
n N!
Chyp=( 1) on (1.18)

(cf. [18,30)).
Kucukoglu and Simsek |[22] de ned the numbers |, (k) by means of the following gener-

ating function:

k R n
R N (1.19)

2 n!

n=0
wherek 2 No, z 2 C with jzj < 2.
By using (1.19), we have
H"n! k k

n (k) = ( 2[)1 nTon Chp (1.20)

wheren; k 2 Ng (cf. [22, Equations (4.9) and (4.10)]).

The polynomials C,(X;y) and S,(x;y) are de ned by means of the following generating

functions:
X‘ tn
Ge(txy)= €fcosf) = Calxy) (1.21)
n=0 '
and
. * tn
Gs(t;x;y) = € sin(yt) = Sn(xy) (1.22)
n=0 :

(cf. [9{L2}[14{16,20[24]).
By using (1.21) and (1.22), the polynomialsCy(x;y) and S,(x;y) are computed by the

following formulas:

n

. X" 2i\,2j
2 y

Calxiy)= (1Y
j=0
and
el
. — ] n 2} 1,,2j+1.
respectively (cf. [9{12},14{16,20,24]).

By using (1.21) and (1.22), the polynomialsCn(x;y) and Sy(x;y) are also computed by

the following formulas:

eloxa |
Ca(xy) = (1 . San 2;d)y? (x)4 (1.23)
j=0 d=0 2
and
Belnya 1 |
Sh(xy) = (1 Sa(n 2 Ld)y3*t (x), (1.24)

2 +1
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(cf. [2]).
Simsek [31] de ned new classes of special numbers and polynomials by means of the

following generating functions:

at R tn
Fy(tka)s ———— = Yakia)— (1.25)
4sinh &2 cosh K, n:
and
% wn
Gy(t;x;k;a) = e Fy(tk;a) = Qn(x; k;a)ﬁ; (1.26)
n=0 '

wherek 2 Z anda 2 R (or C).
Substituting x = 0 into ({.26), we have

Yn(k;a) = Qn(0;k;a):

Simsek also gave the representation of equatio (1.25) as follows:

tae(k+1) t

Fy(tk;a) = ek+2)t 1 (ekt +1) :

(cf. [31)).
By using (1.25) and (1.26), a relation between the polynomialQy, (x; k; a) and the numbers
Yn(k;a) is given as follows:

X

Qn(x;k;a) = XY (ki)
j=o
(cf. [B1]).
By using (L.5), (1.8) and (1.25), we have the following identity:
X
a n k+1
Ynlkia) = —— k" S(k+2)°E, B 1.27
n(,a) 2(k+2) o s ( + ) n sbPs k+2 ) ( )

wheren 2 No (cf. [31, Equation (15)]).
Recently, Bayad and Simsek |[2] de ned new classes of the parametrically generalized
polynomials, the polynomials Qﬁc)(x;y; k;a) and Qﬁs) (x;y;k;a), by means of the following

generating functions, respectively:

t n
He(txyak)= — ex(fg)st@t)at QO (ayikia) - (1.28)
4sinh &% cosh & g n
and
t i n
Hs(tx;y;a; k) = ¢ sinfyt at QP (x;y;k;a)%; (1.29)

4sinh KDL cosh

wherek 2 Z and a2 R (or C).
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By using ) and ), the ponnomialsQﬁC) (x;y;k;a) and Qﬁs) (x;y; k;a) are com-
puted by the following formulas:
c X
Q) (x;y;k;a) = | Yiteatn j (xy) (1.30)
j=0
and

X n
QP (x;y;k;a) = | Yitkas j (cy) (1.31)
j=0

(cf. [2]).

The rest of this article is brie y summarized as follows:

In Section 2, by using generating functions and functional equations techniques, we derive
some formulas, combinatorial sums and relations including the parametrically generalized
polynomials, the Bernoulli numbers and polynomials of higher order, the Euler numbers and
polynomials of higher order, the Euler numbers of the second kind, the polynomial&€,, (X;y),
and the polynomials S, (x;y).

In Section 3, we give many inequalities for combinatorial sums including the Bernoulli
numbers of negative order, the Euler numbers of negative order, the Bernoulli polynomials,
the Changhee numbers, the Daehee numbers, the Stirling numbers, the numbeBs (n; k) and
the numbers , (k).

In Section 4, using Mathematica with the help of the Wolfram programming language,
we present some plots of the parametrically generalized polynomials under some of their
randomly selected special cases.

Finally, in Section 5, we give remarks and observations on our results.

2. Combinatorial sums and identities for the parametrically generalized

polynomials, and special numbers and polynomials

In this section, using generating functions and functional equations, we give some interest-
ing identities and combinatorial sums related to the parametrically generalized polynomials,
the polynomials C,, (x;y), the polynomials S, (x;y), the Bernoulli numbers and polynomials
of higher order, the Euler numbers and polynomials of higher order and the Euler numbers

of the second kind.

Theorem 2.1. Letn 2 Ng and a6 0. Then we have

XX g n 2k+2) T kd

1 C
d=0 j=0
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Proof. Combining (1.28) with (L.4), (L.8) and ([L.21]), we get the following functional
equation:

a

mGC(t;X+k+1iy)=FB((k+2)t; 1)Fe (kt; L)Hc(txy;a;k):

From the above equation, we obtain

a X K t"
2k+2) n:0Cn(x+ +1,Y)m
)4 tn )4 tn X‘ tn
= (k+2)"B ”m K"E{ Dﬁ Q® (xy;kia)
n=0 "'n=0 " n=0 )
Therefore
pS n
a t
262, Cn(x+ k+11y)

- N (k +2)! k¢ JBj( 1)E((j jl)QgC)d (x;y;k:a) =t
n=0 d=0 j =0 '

Comparing coe cient of ‘nl, on both sides of the above equation, and combining with following

well-known formula
1

n+1

B( Y=
we arrive at the desired result.

Theorem 2.2. Letn2 Ng anda6 0. Then we have

XX g no2k+2)i*tkdT

Sh(x+ k+1;y)= dj QE]S)d(X;y;k;a):

oo 14 A+
Proof. Combining (L.29) with (L.4), (L.8) and (L.22), we have
a
mGs (tx +k+17y)= Fg (k+2) t; 1)Fe (kt; 1)Hs(txy;a;k):
From the above functional equation, we obtain
xR n
a t
mnzo Sh(x+ k+1,y)m

R tn * n R t"
= (k+2)"B ”m k"E§ ”m QP (xyikia)

n=0 n=0 n=0
Therefore
X n
a t
2k+2) - Sh(x + k+1,Y)m
X‘ X'] Xd d n tn

= g (k+2) k4 1B{ YES PQP (xy: k@)
n=0 d=0 j=0 )
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Comparing coe cient of tni, on both sides of the above equation, after some elementary

calculations, we arrive at the desired result.

Theorem 2.3. Letn2 Ng anda6 0. Then we have

[ Insg 20

+ + -
B, = o (g ML ”2 dl p2d+1y2d 1yi (2 39)

a(n+1)(k+2) d=0  j=0 J
1 X k 1 1 S
Ef P — % Bz 3 QL 20 yikia):

Proof. By using (L.4), (1.8) and (1.29), we get the following functional equation:

a 2 ox k1

Fe((k+2)t1)= 1 Hs(txy;ak):

K+2) sngnCE Kb
Combining above equation with the following well-known identity:

t 3 1 20

sin(t) n:o( 1" 2B 3 (2n)!

(2.33)

(cf. [19, Equation (2.24)]), we have

b3 n+1 X on
_ay g 1L 1
2(k+2) (k+2)"Bp 5 = n:0( 1)" (2y)*" Bon, > @0
x x k 1 (k™R n
Eh P K (n.) QY (x;y; kja)
n=0 " n=0 :
Therefore
3 n
YT k2" %8y
n=0 n!
_ s J@] n nx 2d n o kjE( ) « K 1
- 2d j j Kk
n=0 d=0 J:O
1 t"
QP | (yrkia) (- 1)°(2)*Bag 5 o

Comparing coe cient of tnl, on both sides of the above equation, after some elementary

calculations, we arrive at the desired result.

Theorem 2.4. Letn2 Ng anda6 0. Then we have

n+1l
1 Delng 2 g n+l 2d n+1

En — ( l) 22d+1y2d l(k+2)j+l

ak" (n+1) G0 =0 ] 2d
1 x k 1 1 S
B V' = Ba 5 QW) ;(xyikia):

k+2
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Proof. By using (1.5), (1.8) and (1.29), we get the following functional equation:
a K+2 x k 1
EFE (kt; 1) = sin (yt) Gg (k+2)t Tk+2 1 Hs(txy;a;k):
Combining above equation with (2.33), we have
ayt ® R . 12
—  K'En = (1) @) Ban 5 5
2 =0 n! =0 2 (2n)!
X x k 1 tnX t"
np(1 _~ *~ -+~ > (S) (yvv-le-a) - -
(k+2)"B T2 o Qo (kyikia) o
n=0 n=0
Therefore
% nox kel X 2d |
O AP (TS )
n=0 n: n=0 d=0 j=0
x k 1 1 t"
Bj( g Tk+2 QE]S)Zd i (x;y;k;a) (ZY)ZdBZd > m

Comparing coe cient of tni, on both sides of the above equation, after some elementary

calculations, we arrive at the desired result.

Theorem 2.5. Letn 2 Ng and a6 0. Then we have

X i1 &l
a n (k+2) ' X o ok+1 i g ©) (yvy kAl -
E__ J ki n Bj k+2 nj K —-_ (1 7 Y7 E5Qp zj(X,y,k,a)-
j=0 j=0
Proof. By using (1.5), (1.9) and (1.28), we get the following functional equation:
a X k+1
WGB (k+2) t,m,l GE kt, T,l —SeC(yt)HC(t,X,y,a,k)
Combining above equation with the following well-known identity:
)é' n t2n
sect) = ) (1 E2nw (2.34)
n=0
(cf. [19, Equation (2.40)]), we have
h3 n % n
a X t k+1 t
(k + 2) n Bn - kn En —_
2(k+2) =0 k+2 n!n:0 k n!
b3 2n n
= (W Emgny A0 yikia) oy
n=0 " n=0 )
Therefore
X X n
a n i i X k+1 t
Ay . (k+2)JknJBj — Enj —/— =
2(k+2) 120 | =0 i k+2 k n!
)4 Jé] n . (C) tn
= 5 (D EgQny (yikia)

n=0 j=0 J
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tn

Comparing coe cient of

on both sides of the above equation, after some elementary
calculations, we arrive at the desired result.
Combining ([1.24) with ([L.12), after some elementary calculations, we obtain the following

theorem:

Theorem 2.6. Let n 2 N. Then we have

[ 1nyei 1 d n+2j+1y2
. 2 n+2j+1,,2j +1
Su(xy) = (v " 2 (g
=0 g0 2 +1 d!
i 1 .
nyj 1lxyd ( l)d v N 2 1 d VmE( d) )
o veo m v n2 1m:

3. Inequalities applications for combinatorial sums involving special nhumbers

In this section, we give the upper bound and the lower bound for the special numbers and
polynomials, and combinatorial sums involving the Bernoulli numbers of negative order, the
Euler numbers of negative order, the Changhee numbers, the Daehee numbers, the Stirling
numbers of the second kind, the numberd (n; k) and the numbers , (k).

In order to give our results, we need the following inequalities for the special numbers.

Gun and Simsek [8] gave the lower bound and the upper bound for the Bernoulli numbers

of negative orderBﬁ k) as follows:

kn
B{ Y — (3.35)
k
and
n+k 1 KN
k .
B{W i —; (3.36)

wheren 2 Ng and k 2 N.
Comtet [6] gave the lower bound and the upper bound for the Stirling numbers of the

second kind Sy (n; k) as follows:

So(n;k) kM K (3.37)
and
. n 1 n k.
S(nik) K (3.38)

Abramowitz and Stegun [1, p. 805] gave the following inequality for the Bernoulli numbers:

2 (2n)! .
()"@ 2 )

2(2n)! _

W ( 1)n+1 Bon <

(3.39)

wheren 2 N.
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Combining (1.11) with (B.35), we get the following theorem for the Euler numbers of

negative order and the Bernoulli numbers of negative order:

Theorem 3.1. Let n2 Ng and k 2 N. Then we have

X' n 2"K"
( Kl Kk .
i B VB e (3.40)
j=0 k
By using (L.6), (1.10), (1.18) and (3.40), we derive the following corollary:
Corollary 3.1. Letn2 Ng and k 2 N. Then we have
XXX cpkd ok om ok o1 onkn
k . :
j+k kl J d dJ+ CthZ(n J,m) W
=0 =0 m=0  k K K
By using (1.18), (1.20) and (3.40), we get the following corollary:
Corollary 3.2. Letn2 Ng and k 2 N. Then we have
X n B-( k)E( l.() (Zk)n Chk_
T GRS
Combining (1.11)) with (B.36)), we obtain the following theorem:
Theorem 3.2. Let n2 Ng and k 2 N. Then we have
X0 n on n+k 1 KN
( Kk k 1 .
| BB e (3.41)
j=0 k
Substituting n = k into (B.41), we arrive at the following result:
Corollary 3.3. Let n 2 N. Then we have
X0 n on 2n 1 nn
( MeCn) 1 .
. Bj E, i ”2n :
j=0 n
By using (1.18), (1.20) and (3.41), we obtain the following corollary:
Corollary 3.4. Letn2 Ng and k 2 N. Then we have
X n k 1)Ch
( Wk n k 1(n+ ) Chy,
. B VE, 2k :
A N TS
Combining (1.14) with (B.37), we get the following theorem:
Theorem 3.3. Let n2 Ng and k 2 N. Then we have
X0 n n+k
K g +kK)B(n k) K (3.42)

k+n J+k
j=02 k
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By using (1.14), (1.16), (1.20) and (3.37), we have the following corollary:

Corollary 3.5. Letn2 Ng and k 2 N. Then we have

X (n+ k)

Wsz(j +kk)B(n jik) (k+1)k"
k

j=0

Combining (1.12) with (B.37), we arrive at the following theorem:

Theorem 3.4. Letn2 Ng and k 2 N. Then we have

2kn)@)4‘

. (ki N mELY ke K

m=0 j=0

Combining (L.12) with (L.20) and (8.3§), we get the following theorem for the Euler

numbers of negative order:

Theorem 3.5. Letn2 Ng and k 2 N. Then we have

2kn)@)4<

|
k! m=0 j=0

K" K 1(n 1)

kj N K me( K
(o ITERR he s

4. Some plots of the parametrically generalized polynomials

In this section, with the help of Wolfram programming language in Mathematica |35, we
illustrated the plots of the parametrically generalized polynomials by applying the formulas
given by (1.30) and (1.31).

Figure [1] is obtained byy = 2, k = 10,a =2, and n 2 f 0;1;2; 3;4; 59 using (1.30) for
x 2 [ 50;50].

Figure 1. Plots of the polynomials Qﬁc) (x;2; 10;2) for randomly selected
special cases whem 2 0;1;2;3;4;59 and x 2 [ 50;50].
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Figure [2 is obtained byn = 4, y =2, a =2, and k 2 f0;1;2;3;4;5g using (1.30) for
x2[ 5;5].

Figure 2. Plots of the polynomials Q%C) (x; 2;k; 2) for randomly selected
special cases whelk 2 f 0;1;2; 3;4;5g with n=4 and x 2 [ 5;5].

Figure [3 is obtained byn =4, k = 8,a=2, and y 2 f 0;1;2;3;4;5g using (1.30) for
x2[ 6;6].

Figure 3. Plots of the polynomials Qﬁc) (x;y; 8;2) for randomly selected

special cases whey 2f0;1;2;3;4;5gwith n=4and x 2 [ 6;6].

Figure [4 is obtained byn = 15, k = 8,a=2, and y 2 f 0;1;2; 3;4; 59 using (1.30) for
x2[ 6;6].
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Figure 4. Plots of the polynomials Q%C) (x;y; 8;2) for randomly selected
special cases whey 2f0;1;2;3;4;5g with n=15and x 2 [ 6;6].

Figure [5 is obtained byy =2, k = 10,a =2, and n 2 f 0;1;2; 3;4; 59 using (1.37) for
x 2 [ 50;50].

Figure 5. Plots of the polynomials Qﬁs) (x; 2; 10;2) for randomly selected

special cases whem 2 0;1;2;3;4;59 and x 2 [ 50;50].

Figure [g is obtained byn = 4, y =2, a =2, and k 2 f0;1;2;3;4;5g using (1.31) for
x2[ 5;5].
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Figure 6. Plots of the polynomials Qﬁs) (x; 2;k; 2) for randomly selected

special cases whelk 2 f 0;1;2; 3;4;5g with n=4 and x 2 [ 5;5].

Figure [7] is obtained byn =4, k = 8,a=2, and y 2 f 0;1;2;3;4;5g using (1.31) for
x2[ 5;5].

Figure 7. Plots of the polynomials Qﬁs) (x;y; 8;2) for randomly selected

special cases whey 2f0;1;2;3;4;5gwith n=4and x 2 [ 5;5].

Figure [8 is obtained byn = 15, k = 8,a=2, and y 2 f 0;1;2; 3;4; 59 using (1.37) for
x2[ 6;6].
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Figure 8. Plots of the polynomials Q%S) (x;y; 8;2) for randomly selected

special cases whey 2f0;1;2;3;4;5g with n=15and x 2 [ 6;6].

5. Conclusion

Special numbers, special polynomials and trigonometric functions are among remarkably
wide used in applied mathematics, combinatorial analysis, mathematical analysis, analytic
number theory, mathematical physics, and engineering. Recently using di erent techniques
and methods, many properties of parametrically polynomials involving trigonometric func-
tions have been studied by many researchers. Using both the generating functions and their
functional equations techniques and some known results, we obtained many interesting iden-
tities, combinatorial sums and inequalities including the Euler numbers and polynomials of
higher order, the Bernoulli numbers of higher order, the Changhee numbers, the Daehee num-
bers, the parametrically generalized polynomials, the Stirling numbers and also well-known
special polynomials. By using Mathematica with the help of the Wolfram programming
language, we gave some plots of the parametrically generalized polynomials under the spe-
cial cases. Consequently, the results of this article have the potential to be used both pure
and applied mathematics, physics, engineering and other related areas, and to attract the

attention of researchers working in this areas.
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HARMONICITY OF MUS-GRADIENT METRIC
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Abstract. Let (M™;g) be an m-dimensional Riemannian manifold. In this paper, we in-
troduce an other class of metric on (M ™ ; g) called Mus-gradient metric. First we investigate
the Levi-Civita connection of this metric. Secondly we study some properties of harmonicity
with respect to the Mus-gradient metric. In the last section, we investigate the harmonicity
of Mus-gradient metric on product manifolds. Also, we construct some examples of har-
monic maps.
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1. Introduction

The theory of harmonic maps studies the mapping between di erent metric manifolds
from the energy-minimization point of view (solutions to a natural geometrical variational
problem). This concept has several applications such as geodesics, minimal surfaces and
harmonic functions. Harmonic maps are also closely related to holomorphic maps in several
complex variables, to the theory of stochastic processes, to nonlinear eld theory in theoretical
physics, and to the theory of liquid crystals in materials science. The last years this subject
has been developed extensively by several authors (for example séé [1], [3], [4], [5], [7], [8],
[12], [10], [11], [12] etc...).
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manifold (M ™;g). Firstly we introduce the Mus-gradient metric on M noted by g and
we investigate the Levi-Civita connection of this metric (Theorem ). Secondly we study
the harmonicity with respect to the Mus-gradient metric, then we establish necessary and
su cient conditions under which the Identity Map is harmonic with respect to this metric
(Theorem and Theore). Next we study the harmonicity of the map : (M; g) !
(N;h) (Theorem ) and the map :(M;g)! (N;h) (Theorem ). In the last section,
we investigate the harmonicity of Mus-gradient metric on product manifolds (Theorem|4.]

to Theorem ). We also construct some examples of harmonic maps.

2. Mus-gradient metric

De nition 2.1. Let (M™;g) be a Riemannian manifold andf : M ! ]0;+1 [ be a strictly

positive smooth function. We de ne the Mus-gradient metric onM noted g by
g Y )x = T Y )x + Xy () Yx(F); (2.1)

wherex 2 M and X;Y 2=§(M), f is called twisting function.

In the following, we considerkgradf k = 1, where k:k denote the norm with respect to
M™:g).

Lemma 2.1. Let gradf (resp. gtadf) denote the gradient off with respect tog ( resp. §),

then we have

dradf =

T+ 1 gradf: (2.2)

Proof. We have

X (f)

g(X;gradf )

= L goxgradf) X (f)(gradf)(f)

g(X;gradf ) X(f)

on the other hand, we have X (f) = g(X; §radf); then

g(X; radf) = f}g(X;gradf) g(X; gradf)
= ! (X;gradf )
T fe1d
1
so, thus dradf = —— gradf.

f+1
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We shall calculate the Levi-Civita connection € of (M ™; g), as follows.

Theorem 2.1. Let (M™;g) be a Riemannian manifold, the Levi-Civita connection € of

(M™:g), is given by

X(), , Y(),

IexY = rxY+ of of
Hessi (X;Y)  X(F)Y(f) a(X;Y)
R} ff+1) 20 +1 9radf (2:3)

for all vector elds X;Y 2 =3(M), wherer denote the Levi-Civita connection of (M ™; g)

and Hesst (X;Y ) = g(r x gradf;Y ) is the Hessian off with respect tog.
Proof. From Kozul formula and Lemma 2.1, we have

2¢(€x Y;2) XY 2)+ YHZ X)) Ze(X)Y ) +9(Z; XY ])

+9(Y;[Z; X)) &X; [Y;Z])
= X fg(Y;2)+ Y(F)Z(f) + Y fg(Z;X)+ Z(F)X (f)
Z fg(X;Y )+ X(F)Y(f) +fg(Z, XY D+ Z(F)IX Y 1(F)
+ig (V[Z, X D)+ Y(F)Z X](F)  fg(X; [Y;Z])
X (F)Y;Z](F)
= X(F)g(Y:2)+ tXg (Y;Z2)+ X(Y(F)Z(F)+ Y(F)X(Z(F))
+Y(F)Q(Z; X )+ FY g(Z; X )+ Y(ZE )X (F)+ Z(F)Y (X (F))
Z(F)gX;Y) fZg(XiY) Z(XENY(E) X(FIZ(Y(F))
+HQZ XY D+ Z(F) X(Y(F))  Y(X(F)) +fg(Yi[Z;X])
+Y(F) Z(X(F))  X(Z()  fo(X[Y;2Z])
X(F) Y(Z(f)) zZ(Y(f)
= 2fg(r xY:Z2)+ X(fF)a(Y;Z) + Y(f)a(Z; X) Z(f)a(X;Y)
+2X (Y (F)Z(f)
= 29(r xY;Z)  2(r x Y)F)Z(f)+2X (Y (f))Z(f)
L X(f) Y(f)

—— 8:2) Y(HZ(E) + —— o4 X)) Z(T)X(F)

Z(f)a(X;Y):
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From the de nition of Hessian, we obtain

X (f)
f

Y (f)
f

26(Fx Y;Z) 29(r xY;2Z) + oY;Z) + 5Z; X)

2X (F)Y (f)
f

X (f) Y(f)
o Vo

XUYE 290 v) olbradtiz)

+ 2Hess; (X;Y) a(xX;Y) Z(f)

29(r xY +

X;Z)

+2 Hessi (X;Y)

From the formula (2:2), we get
X(H)y, Y,

IexY = rxY+

of of
Hessi (X;Y)  X(F)Y(f) o(X(Y) :
e ff+1) 20 +1) 9dF

Lemma 2.2. Let (M™;g) be a Riemannian manifold, then for all vector eld X 2 =§(M),

we have

_ 1 X(f) :

€xgradf = r xgradf + ﬁx mgradf. (2.4)
Proof. Using the theorem[2.], we have
€xgradf = r xgradf + X(f)gradf + MX
2f 2f
. Hesst (X;gradf ) X (f)(gradf)(f) o(X;gradf) radf-
f+1 f(f +1) 2(f +1) '

Sincekgradf k = 1, we obtain (gradf)(f) =1 and Hess; (X;gradf ) = 0. then we get

€xgradf = r xgradf + iX X(f)

2% o eporadt

3. Harmonicity of Mus-gradient metric

Consider a smooth map :(M™;g)! (N";h) between two Riemannian manifolds, then

the second fundamental form of is de ned by
(rd)XY)=ryd (YY) d(rxY): (3.5)

Here r is the Riemannian connection onM and r is the pull-back connection on the
pull-back bundle  TN. The tension eld of is de ned by
X1
()= tracegr d = red (Ei) d(rgEi); (3.6)
i=1
where fEig,- t is an orthonormal frame on M ™;g). A map is called harmonic if and

onlyif ()=0.
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Remark 3.1. Let (M™;g) be a Riemannian manifold andg the Mus-gradient metric on M .
If fEig,=tm be an orthonormal frame on(M ™; g), such thatE; = gradf, the setf Ei Oi=Tm>

which is de ned as below, is an orthonomal frame on(M ™; g), then

B = %Eligi = pl?Ei; i=2,m; (3.7)

wheref : M ! ]0;+1 [ be a strictly positive smooth function.

Theorem 3.1. The tension eld of the Identity Map | : (M™;g) ! (M™;Q) is given by
1 (m 2f+m 1

(1) fF+1) 20 + 1) ( f) gradf; (3.8)
P
where ( f)= trace,Hess; = {1, o(r g, gradf;E}).
Proof. Let fE; J-Tm Pe a locale orthonormal frame on W1 ™;g) de ned by (),
then
X [
(nm = r EidI(FEi) dl(leEi E)
i=1
= r e, Ei Iel?; Ei
i=1
_ Bi(f) . Hesst(Bi;E) Ei(f)2 o &)
T £ f+1 ff+1) 20 +1) °2redf
_ 1 (f) N 1 1 m grad

ff+1) f(+1) fH+D2 20 +1)2 2 (f +1)

3 1 (m 2)f +m 1 :
R 2 +1) () gradf.

From the Theorem[3.1 we obtain

Theorem 3.2. The Identity Map | : (M™;g) ! (M™;qg) is harmonic if and only if f =
const or

~(m 2f+m 1

2(f +1) (3.9)

(1)

Example 3.1. LetM =]0;+1 [ ¢R™ 1 be the Riemannian twisted product manifold equipped

with the Riemannian metric g de ned by
g= dx2+ F(X1)Orm 1
were ggm 1 IS the standard metric and

m_ 2y 1
F(xy)= em 17 (xy+1)m 1;
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Let f (Xq; i Xm) = X1, it's clear that kgradf k =1

as we have

_(m 2 +m 1
(1= 2(f +1)

So, thus the Identity Mapl : (M™;g)! (M™;g) is harmonic.

Example 3.2. Let m =2 and f(x;y) = Fi(y Ix)+ Fa(y + Ix) + $x2+ 3y% where
Fi;F,:C! R, and1?= 1. Then the Identity Map | : (M™; g ! (M™;g) is harmonic.

Theorem 3.3. The tension eld of the Identity Map | : (M™;g)! (M™;g) is given by

1 2 m
) = Tl ( )+ > gradf: (3.10)
Proof. Let fEig,->m be a locale orthonormal frame onM , then
xn
(1 = r g di(Ei) di(rgEi)
i=1
= €ae)dl (Ei) r gEi
i=1
= IeEiEi r EiEi
i=1
_ Ei(f) _ HeSSf(Ei;Ei) Ei(f)2 g(Ei;Ei)
- Bt — 1 fr+1) 20 +1) 9df
_ 1 (f) 1 m
= poadt T fren 2@ +n 9df
1 2 m
= T > + ( f) gradf:

From the Theorem[3.3 we obtain

Theorem 3.4. The Identity Map | : (M™;g)! (M™;g) is harmonic if and only if

m 2

(="

: (3.11)

Example 3.3. The Identity Map | : (IR%;g= dx?) ! (IR?;g) is harmonic if and only if
@f @t

+

(0= Tex " @y =°

(3.12)

3 . . . o
Example 3.4. Let M =]0;+1 [ ]—;—[ be endowed with the Riemannian metricg in
4" 4

polar coordinate de ned by

g=dr?+r3d %
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The non-null Christo el symbols of the Riemannian connection are:

Relatively to the orthonormal frame

@ 1@
e = 7, = 77;
Ter® T re
we have
1 1
re€=r1e€=0;r1¢6€= rzg; I e,€ = rgr:
Letf(r; )= rsin( + Z)’ forall (5 )2 M.
By direct computations we obtain
o @ 1 @
gradf = sin( + Z)@r+ Fcos( + Z)@’
kgradfk = 1;
(f) = 0:

By virtue of the Theorem the identity map | : (M™;g)! (M™;g) is harmonic, where
g= rsin( + Z)+sin2( - Z) dr?+ r? rsin( + Z)+cosz( + Z) d 2+ rcos(2)drd :

Theorem 3.5. The tension eld of the map :(M™;g) ! (N";h) is given by

_ 1 1 (m 2f+m 1
)= 7 O gy 20+ (1) d (gradt)
f(fl,,l)f 8 (graat)d (gradf); (3.13)

wheref : M ! ]0;+1 [ be a strictly positive smooth function and ( ) is the tension eld of
t(M;g) ! (N;h).

Proof. Let fEijg,_ 1 be a locale orthonormal frame on Y1 ™; &) de ned by (),

then

xn
(1 = red (B) d(8g8)

i=1

X M
red (B)  d(PRE):

i=1 i=1
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By direct computations we obtain

xn xXn
rEid(E) r@lE1+ r . g
i=1 i=2
plir pliE +)(n pljr ple-
1 B5F+r 0 NF BUE

- 1 1 N
- Wd (gradf) mr d (gradf)d (gradf)

1 X"
e g, d (Ei);

i=1

and

xn xn
d(eNeE) = d el e

i=1 i=1

X0
d eM e+ eVe

i=2

d 1 empt E+Xn Levpl g,
pﬁElpﬁl _ P? iﬁ?l

1 X _ ( f) m
dreB)* 763D ZFE+D

d (gradf);
i=1

hence we get

1 1 (m 2f+m 1
) = ¢ O raap 20 +1)

f ( f) d (gradf)

1
mr 0 (gradf)d (gradf):
From the Theorem[3.3 we obtain

Theorem 3.6. Let :(M™;g)! (N";h) be harmonic. Then the map :(M™;g) !

(N";h) is harmonic if and only if

() = fil (n 22(12f++1)m *d (grad)
+%r 8 (gradf)d (gradf): (3.14)
Example 3.5. Ifweset =Idy andf = constthen :(M™;g)! (N";h) is harmonic.
Lemma 3.1. [1] Given a smooth map : (M™;g) ! (N";h) between two Riemannian

manifolds andf 2 C! (N), then we have

(f ) = tracegHessi(d;d )+ o ( ()): (3.15)
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Proof. Let X;Y 2=3(M), we havef 2 Cl (M) then

rdf )OGY) = orlodf )Y) df ) XY)
= Ty od@d (V) dd YY)
= rd(d (X);d (Y)+ d(r g xd (V) d(d (r¥y))

= rd(d (X);d (Y)+ d(rd (X;Y)):

By passing to the trace in the last equation and using

tracegr df = tracegHess;

we get

(f ) = tracegHessi(d;d )+ d( ()):

Theorem 3.7. The tension eld of the map :(M™M;g)! (N";8) is given by

e() = ()+ d (grad(f )

1 kgrad(f  )k? kd k2
tr (f ) d(() f :

(gradf) ; (3.16)

wheref : N ! ]0;+1 [ be a strictly positive smooth function and ( ) is the tension eld of
t(M;g) ! (N;h).
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Proof. Let fEig- ty be a locale orthonormal frame on M ™; g), then

xXn

e( ) fed (E) d (r ¥ E)

= €4 &) d (Ei) d (r ¥Ep)

d (Ei)(f)
f

= raeyd (E)+ d (Ei)
, Hessi(d (Ei);d (Ei)) (d (Ei)(f )?
f+1 f(f +1)
h(d (Ei);d (Ei))
2(f +1)

xn .
= 7 red(E) d ey 20

i=1
. Hessi(d (Ei)id (E)) (Ei(f ))?
f+1 f(f +1)
h(d (Ei);d (Ei))
2 +1)

= ()+ 1d (grad(f )

, traceHess;(d;d ) kgrad(f K2 kd k2

(gradf) d (r £ Ei)

d (Ei)

(gradf)

f+1 f(f +1) o +1) (9radh)
= () £d (grad(f )
(f ) d(()) kgrad(f )k2  kd k2
¥ f+1 T +1) 2( +1) 9radf)
= () 7d (grad(f )
kgrad (f k? kd k?
Pt (1) d((y R KA graar)

From the Theorem[3.7 we obtain

Theorem 3.8. Themap :(M™;g)! (N";R) is harmonic if and only if

1 kgrad(f  )k? kd k2

() = 7 () d(() f 5

(gradf)

fid (grad(f  )): (3.17)
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4. Harmonicity on product manifold

Let (M;g) and (N; h) be a Riemannian manifolds.

De nition 4.1. Let (M;g) and (N; h) be two Riemannian manifolds of dimensionrm and

n respectively. We de ne the product metric onM N by

G= g+ h
where ' M N | Mand : M NI N denote the rst and the second canonical
projection.
Proposition 4.1. For all vector elds X1;X22H (M)andYy; Y2 2H (N) we have

G (X1;Y1);(X2;Y2) 9(X1; X2)+ h(Y1;Y2)

G (X1;0);(X2;0) = 9(X1;X2)
G (0;Y1);(0;Y2) = h(Y1;Y2)
G (X1;0);(0;Y2) = 0:

Subsequently, iftX 2H (M) and Y 2 H(N), then we denote (X;Y ) by X + Y.

Remark 4.1. Any vector eld of H(M) is orthogonal to all vector elds of H(N).
Let (E1;::5Em) (resp (Em+1; i Em+n)) is an orthonormal basis of H(M ) (resp H(N))
then (E1;::;;Em+n) is an orthonormal basis ofH(M N).

P
Letf 2 Ct (M), then4 (f)= 2, Hesst (Ej; Ei).

Proposition 4.2. Let (M;g) and (N; h) be two Riemannian manifolds. IfMr (respNr )
denote the connection of Levi-Civita onM (resp N), then the levi-civita connectionr on the
manifold M N associated with the product metricG= g+ h is veri es the following
groperties:

%I‘ x1X2=M r x1X2

r lez =N r lez
%r le]_: r Y2X2:O

—M N
- + = +
r X1+ Y X2 Y2 r x1X2 r Y1Y2
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forany X1;Y1 2H (M) and X2;Y2 2 H (N).

Lemma 4.1. Let (M™;g) and (N";h) be two Riemannian manifolds andf 2 C! (M). If
P:(x;y)2M N! y2N (respP:(x;y)2M N1 (0;y)2 M N)is the second

projection, then we have

grad(f) = gradg(f)= gradg(f);
dP(grad(f)) = O;
X(f)
dP(ExX) = dP(rxX)+ =—dP(X) (4.18)
whereX 2H(M N).
Proof. The proof of the formula (4.18) is a direct consequence of Theorein 3.1.

Theorem 4.1. Let (M™;g) be a Riemannian manifolds and(N "; h) be an Euclidian mani-

fold. If f 2 C! (M) is a smooth positif function, then the second projection
P:(M N;& ! (N;h)
(xy) 7y
is harmonic map. whereG = g+ h.

Proof. Let (Eq;:::; Em) be an orthonormal basis on M ™; g) such asE; = grad(f ) and
(Em+1; 5 Em+n) be an orthonormal basis on N";h) such asNr g, E; =0; (i;j m+1),
then (Eq;:::;; Em+n) is an orthonormal basison M N;g + h).

From Lemmal[4.], we obtain:

NI gp dP(ED) dP BBl = dPrE

= dPMrEE

forl i m,and

Ny dp(ti)dp(ti) dP € E Nrg B dPr g E

form+1 i m+ n. We therefore deduce (P) =0.

We nd the same result for the following theorem
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Theorem 4.2. Let (M™;g) be a Riemannian manifolds and(N "; h) be an Euclidian mani-

fold. If f 2 C1 (M) is a smooth positif function, then

P:(M N;€& ! (M N;G)

(x;y) 7' (0ry)

is harmonic map. whereG = g+ h.

Theorem 4.3. Let (M™;g) be a Riemannian manifolds and(N "; h) be an Euclidian mani-

fold. If f 2 C! (M) is a smooth positif function, then the tension eld of

P:(M N;G) ! (M N;G
(xy) 7 Gy
is given by
(P)= — _grad(f):
2(f +1)
Proof. Similarly to the proof of Theorem 4.1, we obtain

Iedp(Ei)dP(Ei) dP r EiEi

[
o
=
3
N—r

1 .
C4pE)dP(Ei) dPrgE = mgrad(f); (i m+1):

Theorem 4.4. Let (M™;g) be a Riemannian manifolds and(N "; h) be an Euclidian mani-

fold. If f 2 C! (M) is a smooth positif function, then the tension eld of

P:(M N;€& ! (M N;G
(xy) 7 (07y)
is given by
P) = n d(f
(P)= mgra (f)

whereG = g+ h.
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Proof. Leti 2fm+1;:;n+ mg, from Theorem[2.] and Lemm4 4.]L we obtain

e dP(Ei) dP fLE = E€.E dP € E

dP(E)

'egifzi dpP rEifEi

IeEiEi r EiEi

G(Ei; E)
20 +D) grad(f)

= 2f(f1+]_)grad(f ):

Example 4.1. Let (M;g)=(IR™:dx?, (m 3) and f (X1;X2;X3::: Xm)

= f (x1:X2) such that &I 2y o Z=1. If we put

P:(M;g ! (M;9)
(X1;X2; Xz Xm) 70 (0;0; X300 Xm)

then we obtain

m
=
1

Qf)a+ @f)@
@f)a @)@
Ei = @ ( 3

dB(E ¢ X) Xf(f)

E>

dlﬂ(r x X)+

dP(X):

So

X
M gec, dPE) de e E
i i

= 0:

(®) =

Then P is harmonic.

On the other hand, the tension eld of the projection
P:(M;g) !' (M;g)
(X1;X2; X3 Xm) 71 (0;0; X300 Xm)

is given by the following formula

2 m

(P)= 20 +1) grad(f):

Therefore, P is non-harmonic.
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Theorem 4.5. Let (M™;g) be a Riemannian manifolds and(N "; h) be an Euclidian mani-

fold. If f 2 C! (M) is a smooth positif function, then the tension eld of

Q:(M N;& ! (M;9)

(xy) 7 x
is given by h . i
@= oy 4O+ T AT grad):
Proof. Let (Eq;:::; Em) be an orthonormal basis on M ™; g) such asE; = grad(f ) and

(Em+1; 3 Em+n) be an orthonormal basis on (N"; h) such asNr e E =0, (] m + 1),

’

then (E1;:::;; Em+n) is an orthonormal basison M N;g + h).

From Remark[3.] and Theorem 2.1, we have:

m+n h i + N
Mo dQED) dQ e B = dQ e E
i=m+1 i=m+1
xn EiE
('ng " 1))grad(f)
i=m+1
_ n
= 2 v 9red®)
Mr dQ(El)dQ(El) dQ Ietltl = Mr Elél Ielfilél
_ B Ei(f) ° G(Ey Ey)
= : E,+ D grad(f ) + mgrad(f)
= f(flJrl)grad(f)+ f(lerl)zgrad(f)+ 2(f+11)29rad(f)
_ h 1 HeSSf(E]_;E]_)i
= +nz ey 9redd)
X0 h [ X0 h i
Mr dQ(E.)dQ(El) dQ IeEiEi = Mr EiEi IeEiEi
i=2 i=2
X' NG E) Hess (E;E)'
_, 2 +1) fr+n  9rad®)
i
L . 1)

2 (f+1) f(f +1)
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Theorem 4.6. Let (M™;g) be a Riemannian manifolds and(N "; h) be an Euclidian mani-
fold. If f 2 C! (M) is a smooth positif function, then the tension eld of
Q:(M N;& ! (M N;G)

(xy) 70 (x0)
is given by

Q)= grad(f ):

n
2 (F +1)

The proof of Theorem[4.6 follows immediately from the Remark[3.]l, Remark 4]1 and
Theorem[2].

Theorem 4.7. Let (M™;g) be a Riemannian manifolds and(N "; h) be an Euclidian mani-

fold. If f 2 C! (M) is a smooth positif function, then the tension eld of

Q:(M N;G) ! (M N;6)
(xy) 7t (x0)
is given by _
@= f(fﬂ)h4 0 C L ™ gra
Proof. Let (Eq;:::; Em) be an orthonormal basis on M ™; g) such asE; = grad(f ) and

(Em+1; 5 Em+n) be an orthonormal basis on N";h) such asNr g, E; =0; (i;j m+1),
then (E1;::;; Em+n) is an orthonormal basis on M N; g+ h).

From Remark[3.], Remark[4.]1 and Theorenj 2]1, we obtain:

€aoeE)dQ(Ei) dQr gE; 0; (m+1 i m+n)

€e,E1 r g,E1

CaoEdQ(E1) dQr g, Eg

h . [
_ Hess: (E1;E1) 1 ]
= f(Fr0) + 2 +1)2 grad(f ):
CoqendQE) dQregEi = FgE r gE (2 1 m)
hHeSSf(Ei;Ei) 1 !

F(f +1) o+ 1) 9rad):
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CONFORMAL SLANT RIEMANNIAN MAPS
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Abstract. Conformal slant Riemannian maps from almost Hermitian manifolds to Rie-
mannian manifolds are introduced. We give a non-trivial example of proper conformal
slant Riemannian maps, obtain conditions for certain distributions to be integrable and nd
totally geodesicity conditions for leaves of distributions. We adjust the notion of plurihar-
monicity by considering distributions on the total manifold of a conformal slant Riemannian
map, and get conditions for such maps to be horizontally homothetic maps.

Keywords : Kaehler manifold, Slant immersion, Slant submersion, Slant Riemannian map
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1. Introduction

The concept of Riemannian submersion was introduced by Gray [13] and O'Neill[19].
Then, this notion was widely studied [10] and new kinds of Riemannian submersions such as
invariant, anti-invariant and slant submersion were introduced [26]. Let F be a Riemannian
submersion (respectively, horizontally conformal submersionm > n) from (M™;g, ;J) an
almost Hermitian manifold to (N"; g, ) a Riemannian manifold. If the angle (U) between
the space kerF p) and JU is a constant for any non-zero vector eldU 2 ( kerF p); p2 M,
i.e., it is independent from the choice of the tangent vector eld U in (kerF ) and choice
of the point p2 M, then we say that F is a slant submersion (respectively, conformal slant
submersion) [5,[14/22].
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The notions of isometric immersions and Riemannian submersions are generalized by Rie-
mannian maps between Riemannian manifoldd 10, 11,18, 19]. L& : (M1;01) ! (M2;02)
be a smooth map between Riemannian manifolds such that & rankF <min fdim(M1);dim

(M2)g. So, the tangent bundleTM of M; has the sequent decomposition:
TMq = kerF  (kerF )?:

Because ofrankF < min fdim(M1);dim(M,)g, we always have tangeF )”. Consequently,

the tangent bundle TM» of M, has the sequent decomposition:
TM, = (rangeF ) (rangeF )’:

Hence, a smooth mapF : (M{";01) ! (M3'; @) is called Riemannian map atp; 2 M if

?

the horizontal restriction thl . (kerF p,) (rangeF ) is a linear isometry. Therefore a

Riemannian map provides the equation

a(E;G) = q(F (E);F (G)) (1.1

for E;G 2 (( kerF )?). Isometric immersions and Riemannian submersions are particular
Riemannian maps withkerF = f0g and (rangeF )? = f0g, respectively, [T1]. As an another
generalization of Riemannian submersions de ned and studied independently horizontally
conformal submersions[[12, 15]. By following these studies and B.aBin's papers including
anti-invariant Riemannian, semi-invariant, slant submersions (see also[[20]) and conformal
anti-invariant [3], conformal slant [7], conformal semi-invariant [4] and conformal semi-slant
submersions [[2] have appeared in the literature. At the same time, the notion of slant
submanifolds was introduced by Chenl[B]. Inspiring from this notion, as a general map of
Hermitian, anti-invariant and slant submersions, slant Riemannian maps were given in[[24, 25]
as follows; letF be a Riemannian map from an almost Hermitian manifold M;g,, ;J) to a
Riemannian manifold (N; g, ). If the angle (U) is a constant betweenJU and the space
kerF for any non-zero vector eld U 2 ( kerF ); i.e., itis independent from the choice of the
tangent U in kerF and choice of the pointp 2 M, then we say that F is a slant Riemannian
map [24,[25]. On the other hand, we say thatF : (M™;gy) ! (N";gn) is a conformal
Riemannian map atp2 M if 0 <rankF , minfm;ng and F , maps the horizontal space

(kerF p)?) conformally onto range(F p), i.e., there exist a number 2(p) 6 0 such that

on (F p(E);F p(G)) = ?(p)om (E; G)
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for E;G 2 (( kerF p)?). Also F is said to be conformal Riemannian ifF is conformal
Riemannian at eachp 2 M [21]. Conformal Riemannian maps have many application areas,
some of them are computer vision[[16], geometric modelling [29] and medical imaging [30].
In a previous paper, the second author and Akyol have studied conformal slant Riemannian
maps from a Riemannian manifold to a Kaehler manifold and they have studied the geometry
determined by the existence of these maps [5].

In this paper, we present conformal slant Riemannian maps from almost Hermitian man-
ifolds to Riemannian manifolds, investigate geometric properties of the base manifold and
the total manifold by the existence of such maps and give examples. We also obtain certain
geodesicity conditions for conformal slant Riemannian maps. Moreover, we obtain several
conditions for conformal slant Riemannian maps to be horizontally homothetic maps by using

the adapted version of the notion of pluri-harmonic maps.

2. Preliminaries

In this section, some de nitions and useful results which will be used at this paper for con-
formal slant Riemannian maps are given. Let M;g,, ) and (N; g, ) be Riemannian manifolds
and suppose thatF : M | N is a smooth map between them. The second fundamental

form of F is given by

(r F)X;Y)= rN)F(F (Y) F (?AXY) (2.2)

N
for X;Y 2 ( TM). We know that (r F )is symmetric [17]. Here,r ¥ is pull-back connection

N
ofr onN alongF.
Let F be a Riemannian map from a Riemannian manifold ¥ ™;g, ) to a Riemannian

manifold (N"; g, ). We characterize T and A as

M M
AxY hr nx vY + vr px hY; (2.3)

M M
TxY hr yx VY + vr yx hY; (2.4)

for X;¥Y 2 ( TM), where ?A is the Levi-Civita connection of g, . Actually, we could see
that these are O'Neill's tensor elds for Riemannian submersions[[19].Tx and Ax are skew-
symmetric operators and reversing the vertical and the horizontal distributions on (( TM); g)
forany X 2 ( TM). Also, it can be seen easily thatT is vertical, Tx = Tyx, and A is

horizontal, Ax = Anx . We should know that T is symmetric on the vertical distribution
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[10,[19]. Following these, from [(2.B) and[(2.}}) we have

M N\

rov = TuV+r1yV,; (2.5)
M M

ryE = hr yE + TyE; (26)
M M

reV = AgV+vrgV; (2.7)
M M

reG = hregG+ AegG (28)

for E;G 2 (( kerF )?)and U;V 2 ( kerF ), where " yV = V?AUV [1Q].

A vector eld on M is called a projectable vector eld if it is related to a vector eld on
N . Thus, we say a vector eld is basic onM if it is both a horizontal and a projectable
vector eld. From now on, when we mention a horizontal vector eld, we always consider a
basic vector eld [8].

On the other hand, let F be a conformal Riemannian map between Riemannian manifolds

(M™M:g,)and (N";g,). Then, we have
(r F)(E;G)jranger = E(In )F (G)+ G(In )F (E)
ov (E; G)F (grad(In )); (2.9)

N
where E;G 2 (( kerF )?) [6, 21]. Therefore from ), we obtainr EF (G) as

rEF(G) = F (h?AEG)+ E(n )F (G)+ G(n )F (E)

gv (E;G)F (grad(in ))+(r F)?(E;G) (2.10)
where (r F )? (E;G) is the componentof ¢ F )(E;G)on (rangeF )? forE;G 2 (( kerF )?)
[27,[28].

Finally, we recall the following notion. A map F from a complex manifold (M;gw ;J) to

a Riemannian manifold (N; gy ) is a pluriharmonic map if F provides the following equation
(r F)YOGY)+(r F)YJIX;dY )=0 (2.11)
for X;Y 2 ( TM) [18].
3. Conformal Slant Riemannian maps

In this section we are going to introduce conformal slant Riemannian maps as a gen-
eralization of slant Riemannian maps and conformal slant submersions, present examples
and examine the geometry of source manifolds, target manifolds and maps themselves. We

present the sequent de nition.
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Denition 3.1. Let F : (M;gm;Jm) ! (N;gn) be a conformal Riemannian map from
an almost Hermitian manifold (M;gm ;Jm) to a Riemannian manifold (N;gn) . If for any
non-zero vectorX 2 ( kerF ) at a point p2 M ; the angle (X) between the spackerF and
Jum X is a constant, i.e. it is independent of the choice of the tangent vectoK 2 ( kerF )
and choice of the pointp 2 M, then we say thatF is a conformal slant Riemannian map. In

this situation, the angle is called the slant angle of the conformal slant Riemannian map.

We say that a conformal slant Riemannian map is proper ifF is not a conformal invari-
ant and a conformal anti-invariant Riemannian map. The sequent example is for a proper

conformal slant Riemannian map.

Example 3.1. Let F : (R%gsJ) ! (R* g4) be a map from a Kaehlerian manifold
(R*: g4;J) to a Riemannian manifold (R*;gs) de ned by

(€2 sinxg4; €2 cosxs; €*2sinXy; €2 COSXy):

Then, F is a conformal Riemannian map with = exng and rankF = 2. One can easily
see thatF is a proper conformal slant Riemannian map with the slant angle =  via

J =cos ( c; d;ja;bh+sin ( bja;d; c),0< 3.

Let F be a conformal slant Riemannian map from a Kaehler manifold 1;gn ;J) to a

Riemannian manifold (N;gn). Then for V 2 ( kerF ), we write

V=V +1V; (3.12)
where V. 2 ( kerF )and !V 2 (( kerF )?). Also for X 2 (( kerF )?), we write

JX = BX + CX; (3.13)
whereBX 2 ( kerF )and CX 2 (( kerF )?). We have covariant derivatives of and! :

M
(r u!)V

M N\
hr g!V 1R QV; (3.14)

M
(ruy )V rAUV I'A

uV (3.15)

forany U;V 2 ( kerF ).
We give the following result by using equations [2.5), [2.6), [(3.1P), [(3.1B) and covariant

derivatives of and! .
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Lemma 3.1. Let F : (M;gm;J) ! (N;gn) be a conformal slant Riemannian map from
a Kaehler manifold (M;gwm ;J) to a Riemannian manifold (N;gyn). Then F is a conformal

slant Riemannian map, we get

M A
hr ulVv IfyV=CTyvV TyV,;

N\

ATRY fuV =BTyV TylV

for any U;V 2 ( kerF ).
Now, we present the following characterization for conformal slant Riemannian maps.

Theorem 3.1. LetF :(M;gm;J)! (N;gn) be a conformal slant Riemannian map from
a Kaehler manifold (M;gwm ;J) to a Riemannian manifold (N;gyn). Then F is a conformal

slant Riemannian map if and only if there exists a constant 2 [ 1;0] such that

U= U
for U2 ( kerF ). If F is a conformal slant Riemannian map, then = cos .
Proof. For U 2 ( kerF ) we have cos = % SinceM is a Kaehler manifold, we

get
ov( *U;U)= gu(U; U )= cos gwm(U;U):

Hence, we have ?U = U . Conversely, suppose that 2U = U for 8U 2 ( kerF ) with

2 [ 1,0]. Hence, we obtain

ov(JU; U) _ kJUk
cos KJUKkUK = KUK (3.16)
. _ kUk ; -
Using cos = (g% In (B.16) we get = cos .
From (B.12) and Theorem 3.1. we have the next result.
Theorem 3.2. LetF :(M;gm;J)! (N;gn) be a conformal slant Riemannian map from

a Kaehler manifold (M;gwm ;J) to a Riemannian manifold (N;gn) with the slant angle .

Then, we have

am (U; V) cos® gm (U; V) (3.17)

g (U; 1V ) sin? g (U; V) (3.18)

for any U;V 2 ( kerF ).
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Let F be a conformal slant Riemannian map from an almost Hermitian manifold M; gy ;J)
onto a Riemannian manifold (N; gy ) with the slant angle ; then we say that! is parallel

M M
with respect to r on kerF if its covariant derivative according to r vanishes, i.e.

M

(rut)v=0 (3.19)

for U;V 2 ( kerF ).

Theorem 3.3. LetF :(M;gm;J)! (N;gn) be a conformal slant Riemannian map from
a Kaehler manifold (M;gm ;J) to a Riemannian manifold (N;gy). If ! is parallel according

M
tor on kerF , then we have

Ty U = coTyU (3.20)
for U 2 ( kerF ).
Proof. If ! is parallel according to?/| on kerF , we obtain using (3.14) and Lemma
B.1. forU;V 2 ( kerF )
CTyV = Ty V: (3.21)

Now, changing roles ofU and V in (8.21) we get

CTyU =Ty U: (3.22)

Because vertical vector eld T is symmetric, from (3.21) and (3.22) we get

TU V =Ty U: (323)
Since 2V = V andforV = U in (B.23) we obtain
cos TyU =Ty U;

which gives the assertion.

Theorem 3.4. LetF :(M;gm;J)! (N;gn) be a conformal slant Riemannian map from
a Kaehler manifold (M;gpm ;J) to a Riemannian manifold (N;gn). Then, two of the below

assertions imply the third assertion,
i- The horizontal distribution (kerF )? is integrable,
ii- X (In )gm (Y;TU )= Y(n Jou (X;1U ),
ii- on (F (Cthx!U + 1A x!U ) F (Y))+ on (er(F (‘U ) F(Y))

= on(F (Chllylle +IAvyIU)F (X)) + gN(er(F (U ) F (X))
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for X;Y 2 (( kerF )?) andU 2 ( kerF ).

Proof. Now, for X;Y 2 (( kerF )?)and U 2 ( kerF ), using (2.8) and (3.13), we

obtain

M M
ov ((X;YLU) = ou(r xJUsY )+ gu (JAx!U + Jhr x!U;Y )

M M
ov(r yJU; X ) ou(JAy!U + Jhr y!U; X ):

SinceF is a conformal map, from Theorem3.1.,[(2.B) and|(3.13) we get

1 M
GV TU) = cof gu (XY LU+ Stan(F (hr x!U )iF (V)
+ gu(F (A x1U )F (Y)+ au(F (Chr x!U );F (Y))

an(F (hr v1U )iF (X)) an(F (A v1U );F (X))

on (F (ChI vIU );F (X))g:

Now, from (2.2) and (2.9) we have

SinZgu (G YLU) = —Stau(F (Chr x1U + 1A x1U );F (V)

on (F (Ch?AY!u +1A yIU );F (X))
b o (F (T EF (U )F (V)

on (F (rN$F<!u )i F (X))

X(In Yon(F (1U );F (Y))

U (In Jan (F (X):F (Y))
+ gu(%!U Do (F (grad(in ));F (Y))

an((r F)P(XHU )iF (Y)
+Y(n Yo (F (1U );F (X))
+ LU (In an(F (Y);F (X))

o (Y;!'U Yo (F (grad(in ));F (X))

+ ov((r F)?(Y;'U )F (X))g:
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Using conformality of F we obtain

sin? gy ([X;Y ];U) izng(F (Cthx!U + 1A x!U ), F (Y))

on (F (Ch?ﬂy!U + 1A vIU ) F (X))
N
+ ov(F (r §F (U ) F (Y))
N
ov(F (r $F (1U ) F (X))g

+ 2Y(n Hgu CX;'U ) 2X(In gm (Y;TU ).

The proof is completed from the above equation.

Now we will examine the geometry of leaves of the vertical distribution.

Theorem 3.5. LetF :(M;gm;J)! (N;gn) be a conformal slant Riemannian map from
a Kaehler manifold (M; gy ;J) to a Riemannian manifold (N;gn). Then, the vertical distri-

bution kerF de nes a totally geodesic foliation onM if and only if
on ((r F)(USIX)E (V) = on((r FO(UIX)FE (MY )

for X 2 (( kerF )?) and U;V 2 ( kerF ).

Proof. Because oM is a Kaehler manifold and from Theorem 3.1.,[(3.1R) and[(3.13),

we have
M M M
gv(r uV;X) = cogm(r uX;V) ogm(r uX;!'V )
M M
ov (r uBX;!'V ) gu(r uCX;!V ):
Hence we have
M M
sin®gm (r uViX) = agm(hr uX;!V ) gu(TuBX;!IV )
M

am (hr yCX; 1V ):

Now, from (2.2) we get

sin? r LV 1 r ;
gM(I' UV,X) 2f gN(F (hl’ UX),F (!V ))

on(F (TuBX);F (V)
on (F (hr uCX);F (IV ))g
= Ligu((r F)(UIX)F (V)

on((r F)U; X)), F ('Y )a:
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This completes the proof.

Now, we examine the geometry of the horizontal distribution.

Theorem 3.6. LetF :(M;gm;J) ! (N;gn) be a conformal slant Riemannian map from
a Kaehler manifold (M;gwm ;J) to a Riemannian manifold (N;gn). Then, two of the below

assertions imply the third assertion,

i- the horizontal distribution (kerF )? de nes a totally geodesic foliation onM ,

ii- F is a horizontally homothetic map,
N

iii- aw (Ax Y;U)= Lou(r §F (Y);F (1U +ClU))

for X;Y 2 (( kerF )?) and U 2 ( kerF ).

Proof. Now, from (2.8), (8.17) and (3.18) we have
M M
ov(r xY;U) = gu(JAxY + Jhr xY; U)

M

+ ovw(JAxY + Jhr xY;!U)
M

= cofgm(AxY;U) gu(hr xY;JU)
M

+ sin?gm (AxY;U) gu(hr xY;JIU)

M M
= omw(AxY;U) ogu(hr xY;tU ) ogu(hr xY;CU)

for X;Y 2 (( kerF )?)and U 2 ( kerF ). From (.2) and (2.9), we obtain

N
om (AxY;U)  Sou(r F (Y);F (U +CIU))

M
am (r x Y;U)

+

X(In )gwm (Y;1U )+ Y(n Jom (X;HU )

U (In Jom (X;Y)+ X(In )ou (Y;CIU)

+

Y(n )ou (X;CIU ) CIU (In )gw (X;Y): (3.24)

If the horizontal distribution ( kerF )? de nes a totally geodesic foliation onM for X;Y 2
N

(( kerF )?), U2 (kerF )and gu (AxY;U)= Lon(r §F (Y);F (U + ClU)), we show
that the map F is a horizontally homothetic map. If (i) and (iii) are satis ed, then we have
0 = X(n Yagu(Y;'U )+ Y(n Hgu(X;tU )
U (In ow (X;Y )+ X(In )gw (Y;C!U)

+ Y(n )gu(X;CIU ) CIU (In Ygw (X;Y) (3.25)
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for X;Y 2 (( kerF )?)and U 2 ( kerF ). Suppose thatX = !U ,Y = CIU in equation

(B.25), we have
ClU(@n )gu('U:'U Y+ 1U (In )gu(C!U:CIU )=0: (3.26)

If C!U (In ) =0from (we get!U (In )gu (C!U;CIU )=0for CIU 2 ( C(kerF )?).
Therefore is a constant on (! (kerF )). At the same time, if 'U (In ) = 0 we derive
ClU(n Yav(*U;'U ) =0 from ( for 'U 2 (! (kerF)). Thus is a constant on
( C(kerF )?). So, F is a horizontally homothetic map. The rest of the proof is clear.

Now we are going to slightly modify the notion of pluriharmonic map and use this new
notion to obtain certain conditions for conformal slant Riemannian maps to be horizontally
homothetic map. We say that a conformal slant Riemannian mapF from a complex manifold
(M;gm;J) to a Riemannian manifold (N;gy) is kerF  (respectively, (kerF )?, ! (kerF ),

) pluriharmonic map if F satis es the following equation
(r FY(U;V)+(r FYJU;Jv)=0
for U;V 2 ( kerF ) (respectively, (kerF )?, ! (kerF ), ) [27,128].

Theorem 3.7. LetF : (M;gm;J) ! (N;gn) be a conformal slant Riemannian map from a
Kaehler manifold (M;gwm ;J) to a Riemannian manifold (N;gn). If F is a kerF  plurihar-

monic map, then one of the below assertions imply the second assertion,

i- F is a horizontally homothetic map,
M M
i- F(Ay V +Ay U)=F (hr y!V +ITy!vV + Chr y!VvV)
and (r F)?(IU;lV )=0

for U;V 2 ( kerF ).
Proof. From the de nition of kerF  pluriharmonic map, (2.2) and (2.10), we have

M M M M
0 = F((rydV +JryV) F@ruyV) F((rw U)
F(rM!U V)+(r F)?QU;IV )+ U (In )F (V)

+ W (n )F(U) guw(lU;!V )F (grad(in )):
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Now, using (2.6), (3.20) and Theorem 3.1., we get

0 = F(h?ﬂu!v + IT y!Vv +Ch?/lu!v Ay V Ay U)
+ (r F)?(U;IV )+ 1U (In )F (IV )+ IV (In )F (IU)

om ('U; 'V )F (grad(in )): (3.27)
If (i) is provided we have from (3.27)
U (n )F (IV )+ IV (In )F (IU) gu(U:IV )F (grad(n ))=0

for U;V 2 ( kerF ). So one can see second assertion clearly. Now if (ii) is satis ed i (3.27)
M M

we haveF (Aiy V +Ay U)=F (hr y!V +IT gV +Chr gV )and(r F)?(IU;IV )=

0 for U;V 2 ( kerF ), respectively. Thus, by (3.27) we get

0 = WU (n )F(IV)+ IV (n )F (1U)
om ('U; 'V )F (grad(in )): (3.28)
For IU 2 (! (kerF )) from (B.28) we get 0 = 2IV (In )gw ('U;!U ), which implies that

I (kerF )(grad(In )) = 0. At the same time, from (3.28} if we take !U = !V and for
X 2 ( C(kerF )?) we get

0=2 21U (In )gu(X;!U )  2X(In )gu ('U;!U ): (3.29)

Because of is a constant on! (kerF ) we have 2 21U (In )gw (X;!U ) = 0. Thus, by (3.29)
we get 2X (In )gw ('U;!U ) =0, which implies that ( C(kerF )?) (grad(in )) = 0. Thus,

H(grad(In ))=0. It can be seen from here that F is a horizontally homothetic map.

Theorem 3.8. LetF :(M;gm;J)! (N;gn) be a conformal slant Riemannian map from
a Kaehler manifold (M; gy ;J) to a Riemannian manifold (N;gy). If F is a (kerF )?
pluriharmonic map, then F is a horizontally homothetic map if and only if the following

conditions

(r F)?(X;Y)+(r F)?(CX;CY)=0

and

F (TBX BY + AcyBX + Acx BY):O;

are satis ed for X;Y 2 (( kerF )?).
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Proof. From the de nition of a ( kerF )? -pluriharmonic map, (.2) and @.9), we

have
0 = (rF)?(X;Y)+ X(In )F (Y)+ Y(n )F (X)
gv (X;Y)F (grad(ln ))+(r F)?(CX;CY)+ CX(In )F (CY)
+ CY(In )F (CX) gu(CX;CY)F (grad(n ))
F(lexBY) F(IcyBX) F(cxBY)
or

(r F)?(X;Y)+(r F)?(CX;CY)+ X(In )F (Y)

o
1

+

Y(n )F (X) ou(X;Y)F (grad(in ))+ CX(In )F (CY)

+

CY(n )F (CX) ogw(CX;CY)F (grad(In ))
F (Tex BY + AcyBX + Acx BY) (3.30)
for X;Y 2 (( kerF )?). If F is a horizontally homothetic map we have from equation )
0 = X(n )F (Y)+ Y(n )F (X)
ov (X;Y)F (grad(In ))+ CX(In )F (CY)
+ CY(n )F (CX) gu(CX;CY)F (grad(in ))
for X;Y 2 (( kerF )?). SinceF is a horizontally homothetic map from ) we obtain
(r F)?(X;Y)+(r F)?(CX;CY)=0and F (Tgx BY + AcyBX + Acx BY) =0for X;Y 2

(( kerF )?). Now suppose that f F )? (X;Y)+(r F)?(CX;CY)=0and F (Tgx BY +

AcyBX + AcxBY)=0in (8.30) for X;Y 2 (( kerF )?), respectively. Thus, by (3.30) we
get

0 = X(n YF((Y)+Y(n )F (X)
ov (X;Y)F (grad(In ))+ CX(In )F (CY)
+ CY(n )F (CX) gu(CX;CY)F (grad(In )): (3.32)

For X = CX,Y = CY and CY 2 ( C(kerF )?) in (B.31), we get 0 = 2 2CX(In )
gm (CY; CY), which implies that (C(kerF )?)(grad(in )) = 0. At the same time, from
@3 ifwetakeX =Y = CX and!U 2 (! (kerF )), we get

0=4 2CX(n )gu(CX;!U ) 2 21U (In )gu (CX;CX ): (3.32)



INT. J. MAPS MATH. (2022) 5(1):78{100 / CONFORMAL SLANT RIEMANNIAN MAPS 91

Since is a constant onC(kerF )? we have 4 2CX (In )gu (CX;!U ) =0. Thus, by (8.32}
we get 2 2lU (In )gu (CX;CX ) = 0, which implies that (! (kerF ))(grad(in )) = O.
Thus, H(grad(In )) =0. It can be seen from here that F is a horizontally homothetic map.

We say that a conformal slant Riemannian mapF from a complex manifold (M; gy ;J) to
a Riemannian manifold (N;gn) is f(kerF )?  (kerF )g pluriharmonic map if F satis es

the following equation

(r FHYV)+(r F)YJX;Jv)=0
for X 2 (( kerF )?)and V 2 ( kerF ) [27,128].
Theorem 3.9. LetF :(M;gm;J) ! (N;gn) be a conformal slant Riemannian map from

a Kaehler manifold (M; gy ;J) to a Riemannian manifold (N:gn). If F is a f(kerF )?

(kerF )g pluriharmonic map, then two of the below assertions imply the third assertion,

i- F is a horizontally homothetic map,
i- F (Tex 'U + Ay BX + Acx U + h?/lx! U)=F((Ax!U + Ch?AX!U)
and (r F)?(CX;!U )=0;
iii- The vertical distribution kerF is parallel along the horizontal distribution (kerF )?

on M,

for X 2 (( kerF )?) andU 2 ( kerF ).

Proof. From the de nition of f(kerF )? (kerF )g pluriharmonic map we get
O=(r FH)CX;U)+(r F)IX;JU)
for X 2 (( kerF )?) and U 2 ( kerF ). Using symmetry property of second fundamental
form of a map by (2.3), (3.12) and (3.13) we get
0 = F (erU)+(r F)BX; U )+(r F)(U;BX )

+ (r F)CX; U)+(r F)CX;U):

From (£.7), (2.8) and ([@.10) we get
0 = F(rxJU)+F (JAxIU + Jhr xIU) F (Tex U)
F (AuBX) F (Acx U)+(r F)?(CX;'U)
+ CX(n )F (U)+ U (In )F (CX)

ov (CX;!'U )F (grad(In )):
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Now, from Theorem[3.1. , we have

M M M
cos F (r x V) F(hr x!U +!1AxIU + Chr x!U)

F(TB)(U + Ay BX +Ach)

+

(r F)?(CX;!U )

+

CX(n )F (IU )+ IU (In )F (CX)

ov (CX; U )F (grad(in )) (3.33)

for X 2 (( kerF )?)and U 2 ( kerF ). If (i) and (ii) are satis ed in (333)Jwe have
0=CX(n )F (IU)+ U (In )F (CX) gu(CX;!U )F (grad(in ));

(r F)?(CX;!U )=0
and
M M
F (TB)(!U + Ay BX + Acx U + hr x!U )= F (!Ax!U + Chr x'U );
M
respectively. Then we getF (r x U) = 0. Therefore the vertical distribution kerF is parallel
along the horizontal distribution (kerF )? on M for X 2 (( kerF )?) and U 2 ( kerF ).

Suppose that (i) and (iii) are satis ed in (8.33), one can see clearly that (i) is satis es.
Assume that (ii) and (iii) are satis ed in ( we get

0 = CX(In )F(lU)+ U (n )F (CX)
omv (CX;!'U )F (grad(In )): (3.34)

For CX 2 ( C(kerF )?)in (B.34) we get 0 = 2IU (In )gu (CX;CX ), which implies that
(! (kerF ))(grad(in )) = 0. At the same time, from (3.34) for 'U 2 (! (kerF )) we
get 0 = 2CX(In )gw ('U;!'U ), which implies that (C(kerF )?) (grad(ln )) = 0. Thus,

H(grad(In )) =0. It can be seen from here that F is a horizontally homothetic map.

Theorem 3.10. LetF : (M;gm;J)! (N;gn) be a conformal slant Riemannian map from
a Kaehler manifold (M;gwm ;J) to a Riemannian manifold (N;gn). If F is a! (kerF )
pluriharmonic map, then F is a horizontally homothetic map if and only if the following
conditions

(r F)?(Z;Y)+(r F)?(CZ;CY)=0

and

F (TgzBY + AczBY + AcyBZ)=0
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are satised for Z;Y 2 (! (kerF )).

Proof. From the de nition of ! (kerF ) pluriharmonic map we have
O=(r F)ZY)+(r F)JZJY)

for Z;Y 2 (! (kerF )). From (2.2), (B.9) and (B.13) we get
0 = (rF)’(ZY)+ Z(In )F (Y)+ Y(n )F (2)
ow (Z;Y)F (grad(n )) F (T s2BY) F ( czBY)
F (?ACYBZ)+(r F)?(CY;CZ)+ CZ(In )F (CY)

+ CY(n )F (CZ) gu(CZ;CY)F (grad(ln )):

Using (2.8) and (2.7) we get
0 = (rF)’(ZY)+(r F)?(CY;CZ)+ Z(In )F (Y)
+ Y(n )F (Z) ou(ZY)F (grad(ln ))+ CZ(In )F (CY)
+ CY(n )F (CZ) gw(CZ;CY)F (grad(in ))

F (TezBY) F (AczBY) F (AcyBZ): (3.35)
If F is a horizontally homothetic map we have from [3.35)
0 = Z(n )F (Y)+ Y(n )F (Z) gw(ZY)F (grad(in ))
+ CZ(n )F (CY)+ CY(In )F (CZ) gu(CZ;CY)F (grad(n ))

for Z;Y 2 (! (kerF )). Since F is a horizontally homothetic map from (B.35) we obtain
(r F)?(Z;Y)+(r F)?(Cz;CcY)=0and F (TgzBY + AczBY + AcyBZ)=0for Z;Y 2
(! (kerF )). Suppose that

(r F)?(Z;Y)+(r F)?(CZ;CY)=0

and F (TgzBY + AczBY + AcyBZ)=0in (3.35) for Z;Y 2 (! (kerF )). Thus, by (B.35)
we get
0 = Z(In YF(Y)+Y(n )F (Z) gu(Z Y)F (grad(in ))
+ CZ(n )F (CY)+ CY(In )F (C2)

om (CZ; CY)F (grad(In )): (3.36)
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We know gy (Y;CY) = gu(Y;JY BY) = gu(Y;JY) =0. For Z = Y and CY 2
( C(kerF )?) in (B.36) we get 0 = 2CY(In )fgu(Y;Y) gu(CY;CY)g which im-
plies that (C(kerF )?)(grad(In )) = 0. At the same time, from ( if we take Z = Y
andY 2 (! (kerF))we get 0= 2Y(n )fgu(Y;Y) ogw(CY;CY)g which implies that
(! (kerF ))(grad(ln ))=0. Thus H(grad(In )) = 0. It can be seen from here that F is a
horizontally homothetic map.

We say that a conformal slant Riemannian mapF from a complex manifold (M;gm ;J)
to a Riemannian manifold (N;gn) is ( I (kerF )) pluriharmonic map if F satis es the
following equation

(r FYXY)+(r F)JX;JY)=0

forX 2 ( YandY 2 (! (kerF)).

Theorem 3.11. Let F : (M;gm;J) ! (N;gn) be a conformal slant Riemannian map
from a Kaehler manifold (M;gwm ;J) to a Riemannian manifold (N;gn). If F is a (
I (kerF )) pluriharmonic map, then F is a horizontally homothetic map if and only if the
following conditions

(r F)?(GY)+(r F)?(IX;CY)=0
and

F (AJX BY):O

are satised for X 2 ( )andY 2 (! (kerF)).

Proof. From the de nition of ( ! (kerF )) pluriharmonic map, (2.2), (2.10) and
(B.13) we have
0 = (rF)OCY)+(r F)JIX:JY)

0

(r E)Y?(X;Y)+ X(n )F (Y)+ Y(n )F (X)
ov OX;Y)F (grad(In )+ (r F )(JIX;BY )+(r F )(JX;CY):

Since the distributions and! (kerF ) are orthogonal to each other, we havegy (X;Y ) =0.

So, we obtain
0 = (rF)’(X;Y)+ X(n )F (Y)+ Y(n )F (X)
F (A;xBY)+(r F)?(X;CY)+ IX(In )F (CY)

+ CY(n )F (IX) ogu(IX;CY)F (grad(in )) (3.37)
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forX 2 ( )andY 2 (! (kerF )). Suppose thatF is a horizontally homothetic map. From
(B.37) we have
0 = X(n )F (Y)+ Y(n )F (X)
+ JIX(In )F (CY)+ CY(n )F (IX)
ov (IX;CY )F (grad(In )): (3.38)
Since F is a horizontally homothetic map from (B8.37) we obtain F (A;x BY) = 0 and
(r F)?(X;Y)+(r F)?AX;CY)=0for X 2 ( )andY 2 (! (kerF)). Suppose
that F (AjxBY) = 0 and (r F)?(X;Y)+(r F)?(JX;CY) =0 for X 2 ( ) and
Y 2 (! (kerF ))in (8.37). Using conformality of F for X 2 ( ) in (B.38) we get
0 = 2fX(In )ou(Y;X)+ Y(n )gu (X;X)
+ JIX(n )gu(CY;X)+ CY(In )gu (IX;X)
X(n Jow (IX;CY )g: (3.39)

We know gy (CY; X)=gu (AY;X)= agu(Y;IX)=0, gu(IX;CY)=0for X 2 ( )and
Y 2 (! (kerF )) from (8.13). Then we obtain from (8.39) 2Y(In )gw (X;X ) = 0, which

implies that ! (kerF )(grad(In ))=0. For X 2 ( )and JX = X in (B.38) we get
0 = 2X(n )am(Y:X)+ Y(n )gu(X;X)
+ X(In )gw (CY;X)+ CY(In )gw (X;X')
X(n HJagu (X;CY)g: (3.40)
Since is a constant on! (kerF ) we haveY (In )=0. We get from (8.40) 0= 2CY(In )
gm (X; X ) that implies (C(kerF )?)(grad(In ))=0. It means is a constant onC(kerF ).
Lastly for Y 2 (! (kerF ))and JX = X in (B.38) we get
0 = 2X(n )gu(Y;Y)+ Y(n )gu(X;Y)
+ X(n Jam (CY;Y)+ CY(In Jou (X;Y)
Y({n )gw (X;CY)o: (3.41)
We know gw (CY;Y) = au(JY;Y) = 0 from (8.13) for Y 2 (! (kerF )). Then we ob-

tain from (B.41) 0 = 2X(In )gm (Y;Y), which implies that (grad(n )) = 0. Thus,

H(grad(In ))=0. It can be seen from here that F is a horizontally homothetic map.
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Theorem 3.12. LetF :(M;gm;J) ! (N;gn) be a conformal slant Riemannian map from
a Kaehler manifold (M; gy ;J) to a Riemannian manifold (N;gn). F isa  pluriharmonic

map if and only if is a constant on! (kerF ).

Proof. From the de nition of ~ pluriharmonic map and (2.10), we have
0 = (rF)’(X;Y)+ X(In )F (Y)+ Y(In )F (X)
gv O Y)F (grad(n ))+(r F)?(3X;JY )+ IX(n )F JY)
+ JY(In )F (IX) gu(IX;IY )F (grad(n ))
for X;Y 2 (). Sincegw (X;Y) = gu (JX;JY ) we obtain
0 = (rF)?(XY)+(r F)?(@XJY )+ X(n )F (Y)
+ Y(n )F (X)+ IX(In )F AY)+ JY(In )F (IX)
2gv (X;Y)F (grad(in )): (3.42)
Now taking X =Y in (B.42) we get
0 = (rF)?OGX)+(r F)?(X;IX)
+ 2X(n )F (X)+2JX(In )F (IX)

2gv (X; X )F (grad(In )): (3.43)
For Z 2 (! (kerF ))in (B.43) we get

0 on ((r F)POGX ) F (Z)+ on((r F)?(@EX;3X ) F (2))

+ 2X(In Jon(F (X);F (Z2))+23X (In Jon (F (IX);F (2))

29w (X; X )on (F (grad(Iin ));F (2)):

Because ofF is a conformal map and is a invariant distribution we obtain

0 = 2 2%X(In )gu(X;Z)+ IX(In gu(IX;Z)g
2 %gv (X; X )om (grad(in );Z)
0 = 2°2Z(n )au(X;X): (3.44)

From equation (3.44) we obtainZ(In ) = 0, which implies that is a constant on! (kerF )

for Z 2 (! (kerF )). The converse is clear.
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We now give necessary and su cient conditions for a conformal slant Riemannian map to

be totally geodesic map.

Theorem 3.13. LetF :(M;gm;J) ! (N;gn) be a conformal slant Riemannian map from
a Kaehler manifold (M;gm ;J) to a Riemannian manifold (N;gn). Then, F is a totally
geodesic map if and only if the following conditions are satis ed forX;Y;Z 2 (( kerF )?)
and U;V 2 ( kerF );

N

M
i- on(F (Chr g!'V)+ F (I fyV +ITylV)F (X)) =0;
ii- F is a horizontally homothetic map and(r F )?(X;Y)=0:

Proof. Now, from .2), @.5), (3.17) and (3.13) we have

(r F)U;V) = F@QTyV +JFyV)

M
+ F (TuylV +Chr gV ):

BecauseT is symmetric, we get

(r F)U;V) = cos? F (TVU)+ F (1 yV)
M
+ F (ITy!V + Chr y!Vv)
which implies that
M
sin? (r F)U;V)=F (1 gV )+ F (ITy!V + Chr y!V) (3.45)

for U;V 2 ( kerF ). Thus, we obtain from (3.45)

sin® gn((r F)(U;V)F (X)) = on(F (1P uV +1TylV ) F (X))

+ on(F (ChIMU!V );F (X)) (3.46)

for X 2 (( kerF )?). (i) is satis ed in (3.46). Now, from (2.9)] we get

(r FYOXY) (r F)?GY)+(r F)(XY)

(r F)?(X;Y)+ X(@n )F (Y)+ Y(n )F (X)

ov (X;Y)F (grad(in )) (3.47)
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for X;Y 2 (( kerF )?). From (B.47) we have
on((r F)OGY)FE (X)) = an((r F)7OGY);F (X))
+ X(In an(F (Y):F (X))
+ Y(n D)o (F (X);F (X))
av (X;Y)an (F (grad(in )); F (X))

= Y(n )on(F (X);F (X))

2Y (I Ygm (X; X))

for X 2 (( kerF )?). We have 0 = 2Y(In )gu (X;X ) which implies Y(In ) = 0. So,
is a constant on kerF )?. F is a horizontally homothetic map and from ) we get
(r F)?(X;Y ) =0. Therefore, (ii) is satis ed. We complete the proof.
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